Index

<table>
<thead>
<tr>
<th>a</th>
<th>activation energy</th>
<th>for lattice self-diffusion vs. melting temperature 104</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– for vacancy diffusion 102</td>
<td>active-passive cell 256</td>
</tr>
<tr>
<td></td>
<td>advanced test reactor (ATR) 11</td>
<td>aluminum alloy</td>
</tr>
<tr>
<td></td>
<td>– fracture toughness and tensile strength 210</td>
<td>S–N curves for 229</td>
</tr>
<tr>
<td></td>
<td>– Andrade β-flow 215</td>
<td>anisotropy 195, 333</td>
</tr>
<tr>
<td></td>
<td>– crystallographic 195</td>
<td>elastic 142</td>
</tr>
<tr>
<td></td>
<td>– mechanical 206</td>
<td>in tensile properties 195</td>
</tr>
<tr>
<td></td>
<td>antiphase boundary (APB) 173</td>
<td>Arrhenius equation 213</td>
</tr>
<tr>
<td></td>
<td>atomic diffusion mechanisms 97–100</td>
<td>atomic packing efficiency 51</td>
</tr>
<tr>
<td></td>
<td>atomic theories, of diffusion 95–97</td>
<td>body-centered tetragonal (BCT) lattice structure 174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>boron nitride nanotube 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bragg’s law 139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>breaking stress. see fracture, stress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>breeder reactors 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brinell hardness number (BHN) 197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brinell hardness test 197, 199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulk modulus 173, 183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Burgers vector 81–84, 133, 134, 136, 137, 141, 142, 146, 147, 151, 155, 161, 163, 165, 170, 175, 176, 272–274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cantilever fatigue beam testing 229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carbon nanotube 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cathodic reactions 252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cellular substructure 168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ceramic fuels 347</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ceramic materials 134, 245, 248, 350, 351</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– displacement energies 117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ceramic uranium fuels 347, 354</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charpy and Izod tests, specimen configuration 204, 205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charpy V-notch energy vs. temperature behavior 204, 207</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chromium carbide formation 256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>classical slip concept, schematic representation 128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cleavage fracture process 202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>closest-packed directions (CPDs) 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>closest-packed planes (CPPs) 52, 127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster formation 271</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coble constant 223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coble creep. see also grain boundaries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– diffusion of vacancies, occurrence through 223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– equations, assumptions 223</td>
</tr>
</tbody>
</table>
Index

- mechanisms 222
- coefficient of thermal expansion 242, 244
- cohesive stress 201
- cold work, effect of 281
- compact test specimen (CT) 209
- composition cells, benefits 253
- compression tests 196
- compressive stresses 183, 222
- concentration cells 253, 254
- conventional/nominal stress 185
- coolants 36
- corrosion 249–259
- basics 249–253
- cell, operation 250
- composition cells 253
- concentration cells 253, 254
- couples, types 253–259
- fatigue 258
- intergranular corrosion 255, 256
- mechanisms 255–258
- prevention 258, 259
- stress cells 254–255
- stress corrosion cracking 256–258
- corundum structure 66–68
- crack growth 234–237
- constitutive equation 212–214
- mechanism 234–237, 256
- tests 234
- creep curve 215, 216
- stages 212
- stress effect 213
- temperature effect 213
- creep deformation, mechanism map 225
- creep-fatigue interaction 239, 240
- creep properties 211–227
- creep constitutive equation 212–215
- creep curve 215, 216
- creep mechanisms 219–226
- stress and creep rupture 216–218
- creep rate equation 213
- creep-resistant material, features 225
- creep rupture 216–218, 302
- creep strain 211, 212, 215, 216, 223, 304
- creep tester 212
- critical resolved shear stress (CRSS) 127, 130–133, 131
- vs. theoretical shear strength 133
- critical stress intensity factor 208
- Crowdis 272, 273
- CRSS. see critical resolved shear stress (CRSS)
- crystal defects 69, 70
- line defects 79–84
- point defects 69, 70–77, 274
- in ionic crystals 77, 78
- Schottky defect/disorder 78, 79
- surface defects 84–88
- volume defects 88
- crystal structure 43, 44
- Bravais lattices 46
- carbon 60
- ceramics 62, 63
- Euler’s rule 46
- lattice parameters 45
- unit cell 45
- CsCl structure 64, 65
- cup-and-cone fracture
- formation stages 204
- cup-like depressions 203
- curve fitting constants 243
- cyclic hardening coefficient 232
- cyclic stress–strain curve 232, 233
- hysteresis loop 232, 233
- Darken–Manning relation 104
- Debye’s theory 241, 242
- decoration technique 139
- deformation
- modes, schematic illustration 182
- by slip in single crystals 127–140
- Burgers vector magnitude determination 136, 137
- dislocation velocity 137–140
- Peierls–Nabarro (P–N) stress 133, 134
- plastic strain, accumulation 134–136
- types
- anelastic 182
- elastic 182
- plastic 182
- delayed neutrons 6
- depleted zones 112
- diamond 60
- crystal structure 61
- differential depth measurement technique 198
- differential scanning calorimetry (DSC) curve 243
- diffusion 89, 90
- atomic theories of 95–97
- carburizing/decarburizing 94, 95
- coefficient 90–92, 105, 223, 302
- in different microstructural paths 106–108
- dislocation core diffusion 108
- grain boundary diffusion 106, 107
- surface diffusion 108
- in multicomponent systems 105, 106
elastic collision, characteristics 118
elastic deformation 184
elastic interaction 173
elastic modulus 183, 186, 201, 213, 307
elastic scattering 3, 4, 118
elastic stress 207
electric charge effects 166
electrochemical cell 250
electrochemical series 251
electrode potential 251, 252, 257
electrolytic cell 249
electronic cutoff energy 122
elementary jogs 156
endurance limit 229
engineering strain 186
engineering stress–strain curves 186, 194
vs. true stress–true strain curve 190
enthalpy 71, 72, 80, 102, 240
equicohesive temperature concept 171
etch pit technique 138
optical micrograph 138
extended dislocation 162, 165, 173

f
face-centered cubic (FCC)
copper (FCC) 274
crystal 49
metals 49, 103, 104, 113, 128, 134, 136, 168, 221, 269, 271, 291
unit cell 49, 59, 60, 63, 75, 116, 128
fatigue 258
corrosion 258
creep–fatigue interaction 239, 240
curve 229–234
cycle 236
failure process 227, 230
fracture, clamshell markings 235
life, factors affecting 238
life plot 231
limit 229
properties 227–239
protection methods 238, 239
testing 232, 258
Fick’s steady-state flow 246
fine particle strengthening mechanism
dispersion strengthening 174
precipitation hardening 174
fission chain reaction 5, 6, 11, 13, 33, 34, 323
flow stress versus strain rate 193, 194
fluorite structure 65
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier’s law</td>
<td>246</td>
</tr>
<tr>
<td>fracture</td>
<td>129, 131, 165, 171, 181, 188, 192, 196, 200–203</td>
</tr>
<tr>
<td>– critical normal stress for</td>
<td>202</td>
</tr>
<tr>
<td>– metallographic aspects</td>
<td>202, 203</td>
</tr>
<tr>
<td>– strain</td>
<td>231</td>
</tr>
<tr>
<td>– stress</td>
<td>188</td>
</tr>
<tr>
<td>– theoretical cohesive strength</td>
<td>201, 202</td>
</tr>
<tr>
<td>– toughness</td>
<td>207–211</td>
</tr>
<tr>
<td>– test procedure</td>
<td>209–211</td>
</tr>
<tr>
<td>– types</td>
<td>200</td>
</tr>
<tr>
<td>Frank loops</td>
<td>272, 274, 275</td>
</tr>
<tr>
<td>– TEM images</td>
<td>277</td>
</tr>
<tr>
<td>Frank partial dislocation</td>
<td>162</td>
</tr>
<tr>
<td>– stacking sequence configuration</td>
<td>163</td>
</tr>
<tr>
<td>Frank–Read mechanism</td>
<td>157, 158</td>
</tr>
<tr>
<td>Frank’s rule</td>
<td>145–147, 161, 163</td>
</tr>
<tr>
<td>Frenkel pairs</td>
<td>115</td>
</tr>
<tr>
<td>friction stress</td>
<td>171</td>
</tr>
<tr>
<td>fuel cladding materials</td>
<td>36</td>
</tr>
<tr>
<td>galvanic series</td>
<td>252</td>
</tr>
<tr>
<td>gas-cooled reactors</td>
<td>11</td>
</tr>
<tr>
<td>glide–climb model</td>
<td>220</td>
</tr>
<tr>
<td>glissile dislocations</td>
<td>162</td>
</tr>
<tr>
<td>304-grade stainless steel, sensitized</td>
<td></td>
</tr>
<tr>
<td>microstructure</td>
<td>256</td>
</tr>
<tr>
<td>grain boundaries</td>
<td>84, 86</td>
</tr>
<tr>
<td>– chromium content at</td>
<td>256</td>
</tr>
<tr>
<td>– diffusion</td>
<td>106, 107</td>
</tr>
<tr>
<td>– dislocation sources at</td>
<td>157</td>
</tr>
<tr>
<td>– grain boundary sliding (GBS) model</td>
<td>224</td>
</tr>
<tr>
<td>– helium bubbles</td>
<td>300, 301</td>
</tr>
<tr>
<td>– sliding</td>
<td>339</td>
</tr>
<tr>
<td>– temperature dependence</td>
<td>171</td>
</tr>
<tr>
<td>grain boundary sliding (GBS) model</td>
<td>224</td>
</tr>
<tr>
<td>grain size</td>
<td></td>
</tr>
<tr>
<td>– effect of</td>
<td>281, 282</td>
</tr>
<tr>
<td>– exponent</td>
<td>214</td>
</tr>
<tr>
<td>– strengthening mechanisms</td>
<td>170–172</td>
</tr>
<tr>
<td>graphene</td>
<td>62</td>
</tr>
<tr>
<td>graphite</td>
<td>60</td>
</tr>
<tr>
<td>Griffith’s equation</td>
<td>201, 202, 257</td>
</tr>
<tr>
<td>Hall–Petch relation</td>
<td>160, 171, 172</td>
</tr>
<tr>
<td>Hall–Petch strengthening</td>
<td>84, 168, 291</td>
</tr>
<tr>
<td>hardness, defined</td>
<td>197</td>
</tr>
<tr>
<td>hardness properties</td>
<td>196</td>
</tr>
<tr>
<td>– macrohardness testing</td>
<td>197–200</td>
</tr>
<tr>
<td>– microhardness technique</td>
<td>198–200</td>
</tr>
<tr>
<td>hardness testing</td>
<td>197</td>
</tr>
<tr>
<td>Hartmann lines</td>
<td>187</td>
</tr>
<tr>
<td>heat affected zone (HAZ)</td>
<td>255</td>
</tr>
<tr>
<td>helium, effect of</td>
<td>283</td>
</tr>
<tr>
<td>hexagonal close-packed (HCP)</td>
<td></td>
</tr>
<tr>
<td>– crystal structure</td>
<td>49, 50</td>
</tr>
<tr>
<td>– metals</td>
<td>129</td>
</tr>
<tr>
<td>– unit cell</td>
<td>61</td>
</tr>
<tr>
<td>high cycle fatigue (HCF)</td>
<td>230</td>
</tr>
<tr>
<td>high-energy radiation</td>
<td></td>
</tr>
<tr>
<td>– interactions of</td>
<td>111</td>
</tr>
<tr>
<td>high-temperature graphite reactors (HTGRs)</td>
<td>62</td>
</tr>
<tr>
<td>Hollomon’s equation</td>
<td>190, 191</td>
</tr>
<tr>
<td>Hooke’s law</td>
<td>182, 191</td>
</tr>
<tr>
<td>hysteresis loop</td>
<td>232</td>
</tr>
<tr>
<td>impact properties</td>
<td>203–207</td>
</tr>
<tr>
<td>– ductile–brittle transition behavior</td>
<td>206, 207</td>
</tr>
<tr>
<td>impact-testing techniques</td>
<td>203</td>
</tr>
<tr>
<td>inelastic scattering</td>
<td>4</td>
</tr>
<tr>
<td>infrared radiant heat transport</td>
<td>247</td>
</tr>
<tr>
<td>interaction</td>
<td></td>
</tr>
<tr>
<td>– forces</td>
<td>153</td>
</tr>
<tr>
<td>– neutrons with matter</td>
<td>3</td>
</tr>
<tr>
<td>– probability</td>
<td>121</td>
</tr>
<tr>
<td>intergranular corrosion</td>
<td>255, 256</td>
</tr>
<tr>
<td>interstitial clusters</td>
<td>271</td>
</tr>
<tr>
<td>– TEM micrographs</td>
<td>272</td>
</tr>
<tr>
<td>interstitial jog</td>
<td>156</td>
</tr>
<tr>
<td>irradiation creep</td>
<td>303–305</td>
</tr>
<tr>
<td>irregular prismatic loops, TEM micrograph</td>
<td>157</td>
</tr>
<tr>
<td>isotropic elastic scattering</td>
<td>119, 120</td>
</tr>
<tr>
<td>KCl crystal, optical micrograph</td>
<td>139</td>
</tr>
<tr>
<td>Kinchin–Pease model</td>
<td>121</td>
</tr>
<tr>
<td>– assumptions</td>
<td>121, 122</td>
</tr>
<tr>
<td>– derivation</td>
<td>122, 123</td>
</tr>
<tr>
<td>– elastic collision cross section, depends on</td>
<td>123</td>
</tr>
<tr>
<td>– total integrated neutron flux</td>
<td>123</td>
</tr>
<tr>
<td>– weighted average energy of neutrons</td>
<td>123</td>
</tr>
<tr>
<td>kinks</td>
<td>156</td>
</tr>
<tr>
<td>Knoop hardness number (KHN)</td>
<td>199</td>
</tr>
<tr>
<td>Knoop indenter</td>
<td>199</td>
</tr>
<tr>
<td>Larson–Miller parameter (LMP)</td>
<td>216, 219</td>
</tr>
<tr>
<td>lattice atoms, binding energy</td>
<td>111</td>
</tr>
<tr>
<td>lattice constant</td>
<td>116, 136</td>
</tr>
<tr>
<td>light/heavy water reactors</td>
<td>11</td>
</tr>
<tr>
<td>linear variable differential transformer</td>
<td>(LVDT)</td>
</tr>
</tbody>
</table>
line tension, curved dislocation line 149
liquid metal-cooled reactors 11
load-bearing structures 181
load–crack displacement curves 210
load–displacement curves 210
loading cycles
– crack length vs. number 235
Lomer–Cottrell barriers 163–165, 221
Lorenz number 246
low cycle fatigue (LCF) 230
lower yield point 187
Ludwik’s equation 191
Ludwigson’s equation 191
m
macrohardness testing 197, 198
– Brinell hardness test 197
– Rockwell hardness test 198
– Vickers hardness test 197, 198
MD simulations 271
mechanical properties 181, 287
– channeling, plastic instability 294, 295
– effect of composition and fluence 297
– effect of irradiation temperature 297–299
– effect of thermal annealing 299, 300
– helium embrittlement 300–302
– radiation anneal hardening (RAH) 293, 294
– radiation embrittlement 295–297
– radiation hardening 287–292
– friction hardening 291, 292
– source hardening 291
– saturation radiation hardening 292, 293
melting temperature 103
metal deformation processing 188
metallic fuels 321
metallic plutonium 335
– alloying of plutonium 341
– corrosion properties 339–341
– crystal structure and physical properties 336–338
– fabrication of plutonium 338
– mechanical properties 338, 339
metallic thorium fuel 341, 342
– alloying of thorium 344–346
– corrosion properties of thorium 344
– crystal structure and physical properties 343
– extraction of thorium and fabrication 342, 343
– mechanical properties 343, 344
– radiation effects 345
– thorium-based fuel cycles, pros and cons 346
metallic uranium 321, 322
– alloying of uranium 328, 329
– corrosion properties 327, 328
– extraction of uranium 322, 323
– fabrication of uranium 330
– irradiation properties 331–335
– mechanical properties 326, 327
– nuclear properties 323
– stress–strain curves of uranium 326
– thermal cycling growth in uranium 330, 331
– uranium crystal structure, and physical properties 324–326
microhardness technique 198–200
mild steel, S–N curves 229
Miller–Bravais indices 57–59
Miller index 54–57, 129, 130
Miners rule 234
mobile clusters 274
moderators 36, 120, 240
– graphite 13
– modulus of resilience 189
Monkman–Grant relationship 217–219
– titanium tubing depicting validity 217
n
Nadai’s analysis 193
natural creep law 221
Nernst equation 251, 253
neutron flux 123
neutron–lattice interactions 114
neutron–nucleus elastic scattering 120
neutron–nucleus interaction 119
neutrons
– classification 3
– interactions with matter 3
– sources 3
N–H model 223
Ni3Al – MD simulation 271
niobium-bearing zirconium alloy
– stress vs. rupture time 217
Norton’s law 212
nuclear energy 1, 2, 21
nuclear fission energy 2
nuclear fuel, basic requirements 319, 320
nuclear fusion energy 2
nuclear power, evolution 13
nuclear reactors 11–13
– boiling water reactor 16–20
– generation-III and III+ reactors 22–24
– generation-II reactors 15
– light water reactors 15
– pressurized water reactor 16
– generation-I reactors 13–15
– Magnox reactor 13–15
Index

- generation-IV reactors 25, 27
- reflector 24
- liquid metal fast breeder reactor 21, 22
- materials selection criteria 28, 30, 31
- to reactor components 35–37
- mechanical properties 31–33
- neutronic properties 33–35
- pressurized heavy water reactor 20, 21
- test reactors 28
nucleation 275

o
octahedral planes 128
ODS alloys 283
Orowan bypassing mechanism 177
Orowan looping 176
Orowan’s equation 134
oxidation cell 254
oxidation reaction 250
oxidation-type concentration cells 254
oxide ceramics 248
- thermal conductivity 248

p
packing efficiency 51
Paris law 236
particle–lattice atom interactions 112
particle shearing mechanism 175
particle strengthening 177
Peach–Koehler formula 148, 149
Peierls energy 134
Peierls–Nabarro (P–N) stress 133, 134
perfect dislocation 136, 160, 162, 163, 165, 166
- loops 273
permanent deformation. see plastic deformation
pits 138
plastic deformation 84, 127
- under compression 132
- to create dislocation pileups 201–203
- dislocations in 127
- line defects 79
- in single crystals 170
- stress relaxation in one of grains by 330
- time-dependent 32, 239
- of uranium 326
plastic strain accumulation 134–136
plutonium-bearing ceramic fuels 354
Poisson’s ratio 133, 144, 183, 189
polymorphism 53, 243
- in ceramics 65
postnecking regime 190
potential energy 77, 116, 244
- vs. interatomic distance 244
power-law breakdown regime 221
power-law creep 221
power-law relationship 232
precipitation strengthening mechanisms 175–177
- dispersion strengthening 177
- Orowan bypassing 175–177
- particle shearing 175
primary knock-on atom (PKA) 111, 125
- energy 122, 123
protection methods, against fatigue 238, 239

q
quantum theory 241
quasi-binary phase diagram 255
quasi-static uniaxial tensile state 184

r
radiation damage models 118–125. see also Kinchin-Pease model
- displacement damage, expression of 121
- elastic collision event, characteristics of 118
- isotropic elastic scattering event 119
radiation defects, induced by intense nuclear radiation 112
radiation effects 111
- corrodent 308, 309
- hydriding 311
- liquid metal embrittlement 313
- LWR environment 309
- oxidation 309–311
- stress corrosion cracking 312, 313
- on corrosion properties 308, 309
- on fatigue properties 305, 306
- irradiation-assisted stress corrosion cracking 313, 314
- microstructural changes 267–271
- on physical properties 306
- density 307
- thermal conductivity 307
- thermal expansion coefficient 308
- protective layer 308, 309
radiation embrittlement 295–300
- BCC metals/alloys 295
- composition/fluence, effect 297
- irradiation temperature, effect 297–299
- thermal annealing, effect 299, 300
radiation-enhanced creep 304, 305
radiation hardening 287–295
- annealing 293, 294
- channeling 294, 295
- friction hardening 291, 292
- saturation 292, 293
– source hardening 291
– stress corrosion cracking 312, 313
radiation-induced creep 303–305
radiation-induced precipitation/dissolution 287
radiation-induced segregation (RIS) 286, 287
radioisotopic energy 3
Ramberg–Osgood relation 191
rate-controlling process 220
recombination process 162
reflectors 36
replacement collision 112
repulsion potential 115
rock salt structure 63, 64
– edge dislocation configuration in 167
Rockwell hardness test 198
rotating–bending test 229
rupture tests 216–218

s
scattering angle 119
Schmid’s law 131
screw dislocation 142
– elastic distortion 143
sensitization problems 256
sessile dislocations.
– see Lomer–Cottrell barrier
shear modulus 170, 173, 176, 183
shear stress 132, 135, 137
Sherby–Dorn parameter 218, 219
Sherby plot 213
shielding materials 37
Shockley partials 160–162, 166
short-range barriers 173
simple reactor design 11, 12
Single-crystals 131
slip planes 128, 153
– in ionic crystals 167
slip systems 127, 130, 171
– in beryllium 129
– lines 127
solid solution strengthening
– mechanisms 172–174
– elastic interaction 173
– electrical interaction 173, 174
– long-range order interaction 173
– modulus interaction 173
– stacking fault interactions 173
solute–vacancy complex 104
specific heat 240–243
stacking fault interactions 173
stair-rod dislocation 165
steady-state flux 223
stoichiometric fraction 117

strain energy 144–147
strain hardening 154, 162, 168–170, 175, 178, 187, 190–193, 195, 288, 296
strain rate sensitivity (SRS) 193
strength coefficient 191
strengthening (hardening)
– mechanisms 167–177, 225
– from fine particles 174–177
– precipitation strengthening 175–177
– grain size strengthening 170–172
– solid solution strengthening 172–174
– strain hardening 168–170
stress, and creep rupture 216–218
stress corrosion cracking (SCC) 255–258
stress field, of dislocations 142–144
– edge dislocation 143, 144
– screw dislocation 142, 143
stress–strain curves 184–195
stretcher strains 187
superficial Rockwell test 198
superjogs 156
Suzuki effect 173
swelling behavior 278, 280, 282–285. see also
void swelling
– effect of irradiation temperature 280
– ferritic/martensitic steel vs. austenitic
stainless steels 283

t	tangled networks 168
Taylor’s factor 171
tensile cycle 230
tensile deformation 203
tensile ductility 204, 230
tensile properties
– anisotropy in 195
– strain rate effect on 192–195
– stress–strain curves 184–192
– temperature effect on 193–195
tensile stress 132, 144, 183, 201, 211, 235, 287, 288
tensile test 181, 184, 185, 193, 230, 257, 295, 302
tensile toughness 189
tension–compression stress cycle 228
tension–compression test 229
tension–compression-type loading 236
tension test 185, 188
thermal barriers 195
thermal conductivity 246–248
– of ceramic materials 248
thermal expansion 244, 245
– coefficient 169, 240, 244, 245
thermal gradient 246
<table>
<thead>
<tr>
<th>thermal shock</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermophysical properties</td>
<td>240–248</td>
</tr>
<tr>
<td>– specific heat</td>
<td>240–243</td>
</tr>
<tr>
<td>– thermal conductivity</td>
<td>246–248</td>
</tr>
<tr>
<td>– thermal expansion</td>
<td>244, 245</td>
</tr>
<tr>
<td>thorium-bearing ceramic fuels</td>
<td>354–356</td>
</tr>
<tr>
<td>threshold energy</td>
<td>118</td>
</tr>
<tr>
<td>transmutation, nuclei</td>
<td>4</td>
</tr>
</tbody>
</table>

ultimate tensile stress (UTS)	188
unit dislocation	136
upper yield point	187
uranium carbide	352, 353
uranium dioxide (urania)	347–352
– crystal structure and physical properties	348–351
– fabrication	347, 348
– irradiation effects	351, 352
– mechanical properties	351
uranium nitride	353, 354

vacancy clusters	273
vacancy diffusion	82, 83
– activation energy for	102
– in metals	105
– substitutional	102
vacancy jog	156
van der Waals interaction	62
Vickers hardness number (VHN)	197, 198, 199, 329
Vickers hardness test	197
Vickers indenter	197, 199
viscous flow	193
void distribution function	279, 280
void size distribution	281
void swelling	35, 275, 278–280, 283
– characteristics in	283
– fluence dependence of	285, 286
– generalized behavior, stages	285
– temperature dependence of	280
Volterra dislocation	142, 143
volumetric coefficient	244

| Wiedemann–Franz law | 246 |

| X-ray diffraction topography | 140 |

| Young’s modulus | 183, 186, 257, 338, 351 |

Zener–Holloman parameter	218, 219
zinchblende structure	66
zirconium alloys	– for Gen-IV reactors, limitations 27
– in LWRs	33
– Nb-containing	310
– for PWR fuel rod cladding	22, 25, 311