Contents

Preface to the Second Edition ix
Preface to the First Edition x

Part 1 Communities: Basic Patterns and Elementary Processes

1 Communities
 1.1 Overview 3
 1.2 Communities 3
 1.3 Communities and their members 7
 1.4 Community properties 14
 1.5 Interspecific interactions 18
 1.6 Community patterns as the inspiration for theory: alternate hypotheses and their critical evaluation 19
 1.7 Community patterns are a consequence of a hierarchy of interacting processes 22
 1.8 Conclusions 23

2 Competition: Mechanisms, Models, and Niches 24
 2.1 Overview 24
 2.2 Interspecific competition 24
 2.3 Mechanisms of interspecific competition 26
 2.4 Descriptive models of competition 27
 2.5 Mechanistic models of competition 33
 2.6 Neighborhood models of competition among plants 40
 2.7 Competition, niches, and resource partitioning 46
 2.8 The many meanings of the niche 46
 2.9 Other ways of thinking about the niche 50
 2.10 Guild structure in niche space 54
 2.11 Conclusions 55

3 Competition: Experiments, Observations, and Null Models 58
 3.1 Overview 58
 3.2 Experimental approaches to interspecific competition 58
 3.3 Experimental studies of interspecific competition 62
 3.4 Competition in marine communities 62
 3.5 Competition in terrestrial communities 65
 3.6 Competition in freshwater communities 74
 3.7 An overview of patterns found in surveys of published experiments on interspecific competition 79
3.8 Null models and statistical/observational approaches to the study of interspecific competition 85
3.9 Conclusions 88

4 Predation and Communities: Empirical Patterns 90
4.1 Overview 90
4.2 Predation 90
4.3 Examples from biological control 91
4.4 Impacts of predators on different kinds of communities 93
4.5 Examples of predation in marine communities 93
4.6 Examples of predation in terrestrial communities 97
4.7 Examples of predation in freshwater communities 105
4.8 Inducible defenses 110
4.9 When is predation likely to regulate prey population size and community structure? 111
4.10 Overviews of general patterns based on reviews of experimental studies of predation 116
4.11 Trade-offs between competitive ability and resistance to predation 116
4.12 Conclusions 119

5 Models of Predation in Simple Communities 120
5.1 Overview 120
5.2 Simple predator–prey models 120
5.3 Models of predation on more than one prey 128
5.4 Models of intraguild predation 132
5.5 Models of infectious disease 133
5.6 Conclusions 135

6 Food Webs 136
6.1 Overview 136
6.2 Food-web attributes 136
6.3 Patterns in collections of food webs 144
6.4 Explanations for food-web patterns 147
6.5 Other approaches to modeling food-web patterns 153
6.6 Experimental tests of food-web theory 155
6.7 Omnivory, increasing trophic complexity, and stability 159
6.8 Interaction strength 162
6.9 Some final qualifications about empirical patterns 163
6.10 Conclusions 165

7 Mutualisms 166
7.1 Overview 166
7.2 Kinds of mutualisms 166
7.3 Direct and indirect mutualisms 167
7.4 Simple models of mutualistic interactions 167
7.5 Examples of obligate mutualisms 171
7.6 Energetic and nutritional mutualisms 174
7.7 Examples of facultative mutualisms and commensalisms 179
7.8 Theories about the conditions leading to positive interactions among species 181
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9</td>
<td>Integrating positive interactions into ecological networks</td>
<td>183</td>
</tr>
<tr>
<td>7.10</td>
<td>Conclusions: Consequences of mutualism and commensalism for community development</td>
<td>186</td>
</tr>
<tr>
<td>8</td>
<td>Indirect Effects</td>
<td>187</td>
</tr>
<tr>
<td>8.1</td>
<td>Overview</td>
<td>187</td>
</tr>
<tr>
<td>8.2</td>
<td>Types of indirect effects</td>
<td>187</td>
</tr>
<tr>
<td>8.3</td>
<td>Apparent competition</td>
<td>190</td>
</tr>
<tr>
<td>8.4</td>
<td>Indirect mutualism and indirect commensalism</td>
<td>194</td>
</tr>
<tr>
<td>8.5</td>
<td>Trophic cascades, tri-trophic interactions, and bottom-up effects</td>
<td>196</td>
</tr>
<tr>
<td>8.6</td>
<td>Interaction modifications: Higher-order interactions, non-additive effects, and trait-mediated indirect effects</td>
<td>201</td>
</tr>
<tr>
<td>8.7</td>
<td>Indirect effects can complicate the interpretation of manipulative community studies</td>
<td>206</td>
</tr>
<tr>
<td>8.8</td>
<td>Conclusions: Factors contributing to the importance of indirect effects</td>
<td>210</td>
</tr>
</tbody>
</table>

Part 2 Factors Influencing Interactions Among Species

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Temporal Patterns: Seasonal Dynamics, Priority Effects, and Assembly Rules</td>
<td>215</td>
</tr>
<tr>
<td>9.1</td>
<td>Overview</td>
<td>215</td>
</tr>
<tr>
<td>9.2</td>
<td>The importance of history</td>
<td>215</td>
</tr>
<tr>
<td>9.3</td>
<td>Interactions among temporally segregated species</td>
<td>217</td>
</tr>
<tr>
<td>9.4</td>
<td>Consequences of phenological variation: case studies of priority effects</td>
<td>224</td>
</tr>
<tr>
<td>9.5</td>
<td>Assembly rules</td>
<td>229</td>
</tr>
<tr>
<td>9.6</td>
<td>Examples of assembly rules derived from theory</td>
<td>229</td>
</tr>
<tr>
<td>9.7</td>
<td>Conclusions</td>
<td>237</td>
</tr>
<tr>
<td>10</td>
<td>Habitat Selection</td>
<td>238</td>
</tr>
<tr>
<td>10.1</td>
<td>Overview</td>
<td>238</td>
</tr>
<tr>
<td>10.2</td>
<td>Features of habitat selection</td>
<td>238</td>
</tr>
<tr>
<td>10.3</td>
<td>Correlations between organisms and habitat characteristics</td>
<td>239</td>
</tr>
<tr>
<td>10.4</td>
<td>Cues and consequences</td>
<td>241</td>
</tr>
<tr>
<td>10.5</td>
<td>A graphical theory of habitat selection</td>
<td>247</td>
</tr>
<tr>
<td>10.6</td>
<td>Conclusions</td>
<td>249</td>
</tr>
<tr>
<td>11</td>
<td>Spatial Dynamics</td>
<td>251</td>
</tr>
<tr>
<td>11.1</td>
<td>Overview</td>
<td>251</td>
</tr>
<tr>
<td>11.2</td>
<td>Spatial dynamics in open systems</td>
<td>251</td>
</tr>
<tr>
<td>11.3</td>
<td>Metapopulations and metacommunities</td>
<td>252</td>
</tr>
<tr>
<td>11.4</td>
<td>Interspecific interactions in patchy, subdivided habitats</td>
<td>253</td>
</tr>
<tr>
<td>11.5</td>
<td>Competition in spatially complex habitats</td>
<td>253</td>
</tr>
<tr>
<td>11.6</td>
<td>Predator–prey interactions in spatially complex habitats</td>
<td>255</td>
</tr>
<tr>
<td>11.7</td>
<td>Habitat fragmentation and dispersal corridors affect diversity and movement among patches</td>
<td>266</td>
</tr>
<tr>
<td>11.8</td>
<td>Recruitment-limited interactions – “supply-side ecology”</td>
<td>269</td>
</tr>
<tr>
<td>11.9</td>
<td>Large-scale spatial patterns: island biogeography and macroecology</td>
<td>271</td>
</tr>
<tr>
<td>11.10</td>
<td>Conclusions</td>
<td>280</td>
</tr>
</tbody>
</table>
Part 3 Large-Scale, Integrative Community Phenomena

12 Causes and Consequences of Diversity
 12.1 Overview
 12.2 Equilibrium and non-equilibrium communities
 12.3 Experimental studies of community stability and alternate stable states
 12.4 Examples of stable community patterns
 12.5 Equilibrium explanations for diversity
 12.6 Situations where diversity may result from non-equilibrium dynamics
 12.7 Stability and complexity
 12.8 Productivity–diversity curves
 12.9 Effects of diversity on the variability of processes
 12.10 Effects of diversity on invasibility
 12.11 Conclusions

13 Succession
 13.1 Overview
 13.2 Succession
 13.3 A brief history of succession
 13.4 Quantitative models of ecological succession
 13.5 Case studies of succession in different kinds of habitats
 13.6 Effects of plant succession on animal assemblages
 13.7 Succession in microbial assemblages
 13.8 Conclusions

14 Applied Community Ecology
 14.1 Overview
 14.2 Anthropogenic changes and applied community ecology
 14.3 Epidemiology of animal borne diseases
 14.4 Restoration of community composition and function
 14.5 Biological control of invasive species
 14.6 Biomanipulation of water quality
 14.7 Management of multispecies fisheries
 14.8 Optimal design of nature preserves
 14.9 Predicting and managing responses to global environmental change
 14.10 Maximization of yield in mixed species agricultural and biofuel systems
 14.11 Assembly of viable communities in novel environments
 14.12 Conclusions

Appendix: Stability Analysis
References
Index

COMPANION WEBSITE
This book has a companion website:
www.wiley.com/go/morin/communityecology
with Figures and Tables from the book for downloading