Index

Accelerated failure time (AFT) model, 411–13
Accelerated hazards
 AFT model, 411–13
 bone marrow transplant, 412–13
 proportional hazards model, 411
 Weibull hazard, 412
Akaike information criterion (AIC), 36–7
ARCH model, 244–6
ARD prior. See Automatic relevance determination (ARD) prior
ARMA models. See Autoregressive and moving average (ARMA) models
Augmented data regression, 107–9
Automatic relevance determination (ARD) prior, 366
Autoregressive and moving average (ARMA) models
 Bayesian priors
 BUGS code, 218–19
 normal–gamma conjugate priors, 219
 outliers/shifts, 221
 Schur’s theorem, 218
 stationarity enforcement, 219–20
 dependent errors, 218
 distributed lag regression, 217
 estimation and forecasting, 216
 likelihood model, 216
 vector autoregressive models, 217
Bayesian evidence synthesis. See Meta-analysis
Bayesian information criterion (BIC), 36–7, 216, 403
Bayesian regression, 97
Bernoulli parameters, 111
Beta-binomial hierarchical model, 56, 59–61
Bias–variance trade-off, 35
BIC. See Bayesian information criterion (BIC)
Binary and binomial regression
 Cauchy priors, 103
 cross-validated (CV) predictive density, 104–5
 DAP prior, 103
 distribution function, 102
 evidence-based priors, 103
 latent outcome approach, 104
 link function, 102–3
 MCMC iteration, 104
 posterior density, 103
 predictive/discriminatory value, 104
 scaling nonbinary predictors, 103
Binary panel data
 employment transitions, 287–8
 latent continuous variables, 285–6
 logit link, 286
 MCMC sampling, 285
 permanent subject effects, 286–7
 probability of success, 286
 truncated normal sampling, 286
Bivariate meta-analysis, 67–9, 194–5
Box–Cox transform, 152, 154, 332
CESD depression index, 153
Conditional autoregressive (CAR) prior, 321–3
Conditional predictive ordinate (CPO) cross-validation, 47, 48
 leave-one-out posterior predictive distribution, 5
 outlier diagnostic, 24
 predictive density, 101
 pseudo Bayes factor, 25
Conditional prior models
 CAR prior, 321–2
 conditional expectations, 324
 ecological analysis
 averaged spatial effect, 325
 crime rates, English local authorities, 327–8
 FDR, 326–7
 INLA spatial estimation, 328–9
 marginal variance, 324
 maximum likelihood fixed effects, 324
 mixed regressive-convolution, 324
 overdispersion, 324
 spatial switching prior, 326
 Student-t distribution, 325
 ICAR prior, 322
 MCAR prior, 323
 MCMC computation, 321
 normal iid prior, 322

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Continuous data, hierarchical smoothing methods
bivariate meta-analysis, 67–9
multivariate borrowing of strength, 65–6
priors on hyperparameters, 62–3
teacher expectancy and pupil IQ, 66–7
unit latent means, 61

Continuous time functions
bladder cancer, 411
cancer survival, 410–411
cumulative density, 403
deviance residuals, 405
Gompertz parametric model, 409
hazard and survival rates, 404
intensity function, 404–5
Martingale residual, 405
parametric hazard models, 405–7
Poisson mean, 405
semi-parametric hazards, 408–9
time density, 403

CPO. See Conditional predictive ordinate (CPO)

Cross-sectional normal structural equation models
(SEM)
ARD prior, 366
canonical structural equation model, 365
dependent and exogenous factors, 365
formative indicators, 365
measurement model, 365
spike-slab priors, 366–7
variance/covariance factor, 366

Cross-validation procedures
adaptive score data, 49
case-influence assessment, 48
discrepancy measures, 47
dSS, 50, 52
intrinsic Bayes factor, 49
Kullback–Leibler divergence, 48–9
omnibus criteria, 51
PIT, 47
posterior predictive distribution, 50, 51
posterior predictive sampling, 52
PsBF, 48
PsML, 48
ranked probability score, 50
reference distribution, 51
Cumulative incidence function, 424

Dawid-Sebastiani score (DSS), 50, 52
Differential item functioning (DIF), 382
Dirichlet process priors (DPP)
multinomial sampling, 73
random distribution, 72
stick-breaking prior, 74

Discrete mixture models
data likelihood stage, 69–71
English abortion rates, 74–5
Hepatitis B, Berlin regions, 76–8
hierarchical mixtures, 70
latent binary/multinomial indicator, 72
MCMC estimation, 71
normal–normal models, 70–71
Poisson–gamma models, 59

Discrete mixture regressions
concomitant variable modelling, 161
latent class Poisson regression mixture, 162
outlier accommodation, 163–5
viral infections, potato plants, 165–7

Discrete outcomes
benefit claims, 233–4
conjugate process parameters, 232–3
INAR models, 231–2
latent class models (see Latent class models)
latent trait models (see Latent trait models)
logit regression, 230, 231
overdispersed discrete outcomes (see
Overdispersed discrete outcomes)
onew own and cross category lags, 230
Poisson count data, 231
Poisson time series regression, 229
polio infections, USA, 234–5
unconditional mean and variance, 230

Discrete process convolution (DPC) approach
continuous white noise process, 332
discretized kernel smoother, 333
multivariate factor models, 333
ozone readings, 333–5
spatial framework interpolation, 335–7

Discrete time approximations
discrete distributions, 413
event variable, 414
hazard regressions, 415–17
interval hazard rate, 413
Kaplan–Meier method, 414–15

DPC approach. See Discrete process convolution
(DPC) approach
DPP. See Dirichlet process priors (DPP)
DSS. See Dawid-Sebastiani score (DSS)
Dynamic factor models
autoregressive dependence, 373
Bayesian dynamic factor models, 372
Canadian money measurement, 373–4
multivariate stochastic volatility, 372
structural model time dependence, 373

Dynamic linear and general linear models
Arctic sea ice, 241–2
autoregressive priors, 237
constant dispersion matrix, 238
trend variance and state variance, 238
first-order random walk prior, 239
Markov sequence, 236
MCMC sampling schemes, 239
non-linear Gaussian models, 238
non-linear latent series, 239–41
prior, predictive and posterior distributions, 236
state equation, 236
time varying regression coefficients, 237
TV advertising, 243–4

False discovery rate (FDR), 326–7
Formal Bayesian model assessment, 37–8
Fraility, 403
continuous longitudinal biomarker, 421–2
Dirichlet process and Polya tree priors, 418
institutional frailty effects, 418–21
longitudinal and survival components, 421
population hazard rate, 417
primary biliary cirrhosis, 422–3
randomly distributed multiplicative frailty, 418
shared trajectory model, 421
survivors proportion, 417

Gamma Markov process, 233
Gamma scale mixing, 150
GARCH model, 244–5, 247
Gaussian linear model, 330–331
Gelman–Rubin scale reduction factors, 20, 21
Geographically weighted regression (GWR), 338–9, 341–2
Gibbs sampling, 8–9, 71
Gibbs variable sampling (GVS) method, 111
Gompertz parametric model, 409
GWR. See Geographically weighted regression (GWR)

Hierarchical longitudinal models
autoregressive errors, 275–6
continuous data specification, 274
correlation, 275
dynamic linear models, 276
extended time dependence, 276–7
linear growth curve model, 274
random subject effects, 275
returns to education, 277–8
Histogram smoothing, 80–81, 83
Huber M-estimation technique, 150
Hyper-population smoothing, 34–5

Integer valued autoregressive (INAR) models, 231–2
Integrated nested Laplace approximations (INLA), 10–11
Intrinsic conditional autoregressive (ICAR) prior, 322, 324, 325, 327, 340, 378
Item response theory (IRT) model, 381

Jeffreys prior, 2–3

Kaplan–Meier method, 414–15
Kullback–Leibler divergence, 48–9
Kuo-Mallick prior, 117

Lasso prior methods, 116–17
Latent class models
beta priors, 383
corner constraint, 382
Dirichlet prior, 383
gold standard indicators, 383
independent variable, 382
psychiatric caseness, 383–5
Latent trait models
continuous variables, 382
DIF, 382
government services and interventions, 385–7
IRT model, 381
item response probability, 381

multilevel data, 387–9
probit and logit link, 381
Linear regression model
Browley’s coefficient of skewness, 100
chi-square discrepancy, 101
conditional predictive ordinate (CPO), 101
permanent income and consumption, 101–2
posterior predictive probability, 100
residual checking, 100
skew and kurtosis, 100–101
Linear structural equation models (SEMs)
edogenous and exogenous indicators, 374
identifiability constraints, 375
measurement model, 375
two wave data
baseline structural model, 376
covariance matrix, 375–6
grade lag effect, 377
measured indicators, 376
posterior means, 378
PPLC measure, 377
quantitative and verbal ability, 376
Link selection, 160–161
Logit-Poisson hurdle regression model, 158

Longitudinal discrete data
binary panel data
employment transitions, 287–8
latent continuous variables, 285–6
logit link, 286
MCMC sampling, 285
permanent subject effects, 286–7
probability of success, 286
truncated normal sampling, 286
ordinal panel data
cumulative density, 289
cumulative probabilities, 289
Markov transition approaches, 288
missing data modelling, 288
ordinal probit model, 289
ordinal scales, 288
schizophrenia ratings, 289–92

Mantel–Haenszel method, 185
MAR. See Missing at random (MAR)
Marginal likelihood estimation, 38–40, 122, 329
Matérn correlation function, 330
MCAR prior. See Multivariate conditional autoregressive (MCAR) prior
MCMC methodology. See Monte Carlo Markov chain (MCMC) methodology

Meta-analysis
binomial/Poisson likelihood, 186
canonical meta-analysis model, 185
dose–response curves, 184
hip arthroplasties, 190–191
input data, 184
inverse variance method, 185
lung cancer and environmental smoking, 192–3
Mantel–Haenszel method, 185
medical meta-analyses, 185
meta-regression, 187
multivariate meta-analysis, 193–5
Meta-analysis

- (continued)
 - predictive cross-validation, 191–2
 - publication bias, 187
 - random effects model, 185–6
 - scale mixture approach, 186
 - second stage variance (τ^2), 188–9
 - smoking cessation treatments, 190

Meta-regression, 187

- Metropolis–Hastings algorithm, 112
 - candidate value, 7
 - Gibbs sampling, 8–9
 - κ and σ_q parameters, 8
 - logistic regression, 15–17, 19
 - updating schemes, 8

Missing at random (MAR), 298, 389

Model choice and checking. See Cross-validation procedures

Monte Carlo Markov chain (MCMC) methodology

- Bayes factor, 44–5
- BUGS software, 11–12, 26–8
- computation, 321
- convergence, 19–21
- fit measures, 36
- INLA approximations, 10–11
- iteration, 104
- JAGS software, 11–12
- label switching, 71
- marginal likelihood estimation, 38–40, 45–6

- Metropolis–Hastings algorithm
 - candidate value, 7
 - Gibbs sampling, 8–9
 - κ and σ_q parameters, 8
 - logistic regression, 15–17, 19
 - updating schemes, 8

model assessment
 - informal sensitivity analysis, 23–4
 - model choice, 25
 - posterior predictive checks, 24–5
 - model averaging, 42–4
 - model identifiability, 21–2
 - normal likelihood, 13–15
 - parallel sampling method, 45–6
 - penalised goodness of fit, 36–7
 - posterior density approximation, 40–42
 - R-INLA software, 11–12
 - RJMCMC algorithm, 9–10, 112
- sampling, 239, 280, 285
- sampling parameters, 6, 7

Mortality odd ratios, 5

Multilevel analysis

- cluster-specific regression estimates, 184
- correlated effects, 197
- crossed classification analysis, 198, 201
- discrete responses, 201–4
- fixed and zero-centred random effects, 196
- heteroscedasticity, 204–6
- multivariate indices, 206–8
- nested arrangement of data, 198
- normal linear multilevel model, 197
- normal linear two level model, 198, 199
- posterior predictive checks, 198
- pupil attainment, 201

pupil popularity, 199–201
random effects, 184
robust estimation, 199
statistical inferences, 183
univariate effects, 197
variance components form, 196

Multinomial–Dirichlet model, 233
Multinomial logit and probit models, 127–8, 131–2
Multivariate conditional autoregressive (MCAR) prior, 323
Multivariate meta-analysis, 193–5

Nelson–Plosser series, 224–6
Nested logit model, 128–30, 132–4
Non-linear Gaussian models, 238

Non-linear regression effects
 - fixed effects prior, 171
 - kyphosis data, spinal surgery, 172–5
 - motorcycle dataset, 171–2
 - random effects prior, 171
 - smoothness priors, 167–9
 - spline regression, 169–70

Normal–gamma conjugate priors, 219

Normal linear models
 - growth curves
 - autoregressive errors, 281
 - bivariate normal random effects, 280
 - hypertension trial, 281–4
 - iid measurement error, 281
 - Markov chain Monte Carlo sampling, 280
 - mixed model, 279–80
 - multivariate normal, 278
 - scale matrix, 279
 - subject level autoregressive parameters
 - autoregressive latent trait model, 283
 - log link regression, 284
 - p lags growth model, 284
 - protein content, milk, 284–5
 - Normal linear regression model, 98–100, 112, 115, 151

Normal linear structural equation models (SEMs)
 - confirmatory factor analysis and invariance, 370–371
 - cross-sectional, 365–7
 - democracy and development, 368–70
 - identifiability constraints, 367–8
 - non-linear and interactive latent variable effects, 371–2

OpenBUGS, 12, 124, 154, 159, 224, 226, 247, 449

Ordinal panel data
 - cumulative density, 289
 - cumulative probabilities, 289
 - Markov transition approaches, 288
 - missing data modelling, 288
 - ordinal probit model, 289
 - ordinal scales, 288
 - schizophrenia ratings, 289–92

Ordinal regression, 130–131, 134–6

Overdispersed discrete outcomes
 - beta-binomial regression, 156
 - conditional variance, 155
 - excess zeroes, 157–8
German Socioeconomic Panel (SOEP), doctor visits, 158–9
multinomial-Dirichlet mixture, 157
multiplicative unobserved gamma-distributed effects, 155
National Medical Expenditure Survey (NMES), 159–60
NB1 likelihood, 156
NB2 model, 155
nonconjugate hierarchical models, 156–7
Poisson regression model, 155
response patterns, 155

Panel data analysis
Bayesian estimation, 273
for counts
autoregressive conditional Poisson specification, 292
Burglary rates, England districts, 293–5
hierarchical longitudinal models
autoregressive errors, 275–6
continuous data specification, 274
correlation, 275
dynamic linear models, 276
extended time dependence, 276–7
linear growth curve model, 274
random subject effects, 275
returns to education, 277–8
longitudinal discrete data (see Longitudinal discrete data)
missing data
attrition, 297
continuous data, 298
full data model, 297
intermittent non-response, 297
MAR, 298
mastitis data, 301–2
pattern mixture models, 298
smoking cessation, 299–301
normal linear models (see Normal linear models)
random effects selection
Cholesky decomposition, 296
Gaussian densities, 295
Laplace densities, 295–6
simulated data, 296
student-mixture models, 295
time scales, 273
Parameter blocks, 3
Pareto/log-logistic density, 188
Penalised goodness of fit, 36–7
PIT. See Probability integral transform (PIT)
Poisson/binomial time series regression, 229
Poisson–gamma hierarchical model
fixed effect analysis, 56
Hepatitis B, Berlin regions, 57–9
heterogeneous model, 54, 55
homogeneous model, 54
joint beta-binomial posterior density, 56
moment estimator, 55
Poisson-lognormal scheme, 55
random effects, 53
skewness, 54
Poisson-lognormal scheme, 55
Poisson regression, 105–7, 155
Posterior density, 3
approximation, 40–42
beta density, 6
hyperparameters, 11
Jacques–Bera (JB) statistic, 277
joint beta-binomial posterior density, 56
kernel density methods, 7
mean and variance, 7
regression coefficients, 126
un-normalised posterior density, 3, 4
Posterior predictive loss criterion (PPLC) measure, 377
Predictor subset choice
Bernoulli parameters, 111
Chevrolet Camaro price, 125–6
diabetes diagnosis, 124–5
elementary school attainment, 117–20
g-prior approach, 114–15
GVS method, 111
hierarchical predictor groups, 113
Lasso prior methods, 116–17
median probability model, 110
parameter instability reduction, 110
parsimonious models, 111
posterior marginal retention probabilities, 110
prostatic cancer nodal involvement, 120–124
RJCMC method, 112
SVSS, 110
Prior density cumulative evidence, 2
Prior estimates of moments, 2
Probability integral transform (PIT), 47
Pseudo Bayes factor (PsBF), 48
Pseudo marginal likelihood (PsML), 48
Quantile regression, 175–7
Ranked probability score (RPS), 50
Reversible jump Monte Carlo Markov chain (RJCMC) algorithm, 9–10, 38, 112, 119, 123, 252
R-Integrated nested Laplace approximations (R-INLA), 12, 68, 121, 240, 241, 328–9, 343, 410–411
R-packages, 53
Sampling parameters, 6–7
SEMs. See Structural equation models (SEMs)
Skew-minimising transformation, 152
Smoothness priors, 79–80, 82–3
Spatial convolution model, 21
Spatial factor models
air quality and asthma admissions, 379–80
ICAR prior, 378, 379
MCMC iteration, 379
M-dimensional spatially structured random effects, 378
precision matrix, 378
Spatial heterogeneity
heteroscedasticity, 337
normal linear model, 337
spatial expansion and GWR, 338–9
SVC via multivariate priors
conditional autoregressive scheme, 340
exponential spatial interaction, 339
multivariate convolution prior, 340
multivariate ICAR(1) prior, 340
row standardised spatial interactions, 341
TB incidence, 341–4
Spatially varying coefficients (SVC)
conditional autoregressive scheme, 340
exponential spatial interaction, 339
vs. GWR, 341–4
multivariate convolution prior, 340
multivariate ICAR(1) prior, 340
row standardised spatial interactions, 341
Spatial outcomes and geographical association
clustering
areas/cases, 350
exponential function, 349
hot spot, 349
Larynx cancer, 351–2
multiple sources, 350–351
Poisson point process, 349
spatial structure, 348
testing, 349
conditional prior models (see Conditional prior models)
covariation and interpolation
Bayesian predictor selection methods, 331
Box–Cox transformation, 332
discrete convolution processes (see Discrete process convolution (DPC) approach)
Euclidean interpoint distances, 330
exponential correlation function, 330
fixed interaction matrix, 329
Gaussian linear model, 330–331
isotropic stationary Gaussian model, 330
lattice data, 329
log-likelihood kernel, 332
Matérn correlation function, 330
variogram, 331–2
heterogeneity (see Spatial heterogeneity)
normal linear geostatistical regression, 313
regression errors, 312
simultaneous autoregressive models, 313
spatial correlation, 313
spatial regressions and simultaneous dependence (see Spatial regressions and simultaneous dependence)
spatial statistics, 312
spatio-temporal models (see Spatio-temporal models)
Spatial regressions and simultaneous dependence
binary outcomes
binary data, 317
Columbus crime, 320–321
heteroscedasticity, 318
logit/probit link, 318
tuberculosis notification rates, London districts, 318–20
BUGS selection, 315
Durbin model, 315
lag model, 315
latent continuous variable models, 313
with localised dependence, 316–17
log-likelihood, 315–16
normal scale mixture, 316
row-standardised matrix, 314
spatial error model, 314–15
Spatio-temporal models
conditional prior representations
AR1 scheme, 346
Kronecker product, 346–7
prior conditional means, 347
spatial and iid dependence, 345
spatial clustering, 346
spatial linear trend model, 345
TB incidence, 347–8
unstructured age-area-time effects, 346
error lag model, 344
heteroscedasticity, 344
probit/logit models, 345
spatial errors model, 343
spatial lag model, 344–5
Stochastic search variable selection scheme (SVSS), 110
Stochastic variances and stochastic volatility
ARCH and GARCH models, 244–5
Intel share price, 246–8
state space stochastic volatility models, 245–6
Structural equation models (SEMs)
dynamic factor models
autoregressive dependence, 373
Bayesian dynamic factor models, 372
Canadian money measurement, 373–4
multivariate stochastic volatility, 372
structural model time dependence, 373
latent class models
beta priors, 383
corner constraint, 382
Dirichlet prior, 383
gold standard indicators, 383
independent variable, 382
psychiatric caseness, 383–5
latent trait models
continuous variables, 382
DIF, 382
government services and interventions, 385–7
IRT model, 381
item response probability, 381
multilevel data, 387–9
probit and logit link, 381
linear (see Linear structural equation models (SEMs))
missing data
alienation over time, 389–92
informative missingness, 389
MAR assumption, 389
sample selection, 389
multiple equation representations, 364
normal linear SEMs
confirmatory factor analysis and invariance, 370–371
cross-sectional, 365–7
democracy and development, 368–70
identifiability constraints, 367–8
non-linear and interactive latent variable effects, 371–2
spatial factor models
air quality and asthma admissions, 379–80
ICAR prior, 378, 379
MCMC iteration, 379
M-dimensional spatially structured random effects, 378
precision matrix, 378
Student t regression, 150, 164
Survival and event history models
accelerated hazards
AFT model, 411
bone marrow transplant, 412–13
proportional hazards model, 411
Weibull hazard, 412
censoring, 402–3
competing risks
bivariate random variable, 424
cumulative incidence function, 424
follicular cell lymphoma, 424–5
latent failure time interpretation, 424
subdensity function, 424
subhazard, 423
continuous time functions
bladder cancer, 411
cancer survival, 410–411
cumulative density, 403
deviance residuals, 405
Gompertz parametric model, 409
hazard and survival rates, 404
intensity function, 404–5
Martingale residual, 405
parametric hazard models, 405–7
Poisson mean, 405
semi-parametric hazards, 408–9
time density, 403
discrete time approximations
discrete distributions, 413
event variable, 414
hazard regressions, 415–17
interval hazard rate, 413
Kaplan–Meier method, 414–15
frailty, 403
continuous longitudinal biomarker, 421–2
Dirichlet process and Polya tree priors, 418
institutional frailty effects, 418–21
longitudinal and survival components, 421
population hazard rate, 417
primary biliary cirrhosis, 422–3
randomly distributed cirrhosis, 418
shared trajectory model, 421
survivors proportion, 417
heterogeneity, 402
non-renewable events, 402
predictive loss methods, 403
renewable events, 402
time varying predictor effects, 403
SVC. See Spatially varying coefficients (SVC)
SVSS. See Stochastic search variable selection scheme (SVSS)
Time series models
ARMA models (see Autoregressive and moving average (ARMA) models)
discrete outcomes (see Discrete outcomes)
dynamic linear and general linear models (see Dynamic linear and general linear models)
dynamic regression models, 215
goals, 215
stochastic variances and stochastic volatility
ARCH and GARCH models, 244–5
Intel share price, 246–8
state space stochastic volatility models, 245–6
structural shifts
consumption function, France, 256–8
global temperatures, 1850–2010, 252–3
hepatitis A, Germany, 253–4
latent state models, 249
level, trend and variance shifts, 248–9
state space models, 248
switching regressions and autoregressions, 250
US unemployment, 254–6
time dependence
firms investment levels, 227–8
Nelson–Plosser series, 224–6
nonstationarity, 222–3
oxygen inhalation, 223–4
periodic fluctuations, 222
Swedish unemployment and production, 228–9
wholesale prices, 226–7
Uniform shrinkage option, 62, 66
Un-normalised posterior density, 3, 4
Weibull hazard, 406–7, 412