Subject Index

SUBJECT INDEX

assessment (Continued)
language (terminology) of, 6–8, 85
and learning, 165
mastery learning, 15, 144–145, 149, 151
multiple strategy/objective, 307
orals, 202–203, 233–234
overloading by, 17
perceptions of, 24, 66, 152
performance, 7. See also performance
based of performance, 7, 26
philosophy of, 26
by portfolios, 207
program, 308
of project work, 66–67
self, 6, 10, 17, 89. See also separate entry
by stealth, 151
summative, 3, 32, 308
systems and culture, 16, 122
techniques of, 8, 27. See also examinations
(tests)
theory of, for higher education, 5, 26
variety in, 16–17
Australia, 6, 11, 32, 114
Australian Council for Educational Research,
246
Australian system of competency based
Vocational Education, 114
behavioral objectives, 259
Behrend College, Erie, 149
Big-Five Personality Measure, 225
Bloom’s Taxonomy. see Taxonomy of
Educational Objectives
Bologna Agreement (Process), 16, 135
Bradford College of Advanced Technology
(University), 12, 22
brainstorming, 45
British Steel Corporation, 96, 248
Humles analysis of the tasks of unit
managers, 96–97
Brunel College of Advanced
Technology, 38
California Critical Thinking Skills test, 169
capability, 7, 11, 25, 27, 117–118
capability manifesto (movement), 117, 130
versus competency, 118
CDIO initiative, 247
Centre for Higher Education, Penn State
University, 297
classroom assessment technique(s), 76, 164
classroom research, 246
cluster analysis, 22
Coast Guard Academy, 145
Cognitive Complexity Index, 167
cognitive development
Baxter Magolda’s model, 160, 183
King and Kitchener’s model, 40, 157, 160,
173, 175
Perry’s model, 40, 157, 160, 165–166, 195,
275, 290, 293, 295
cognitive dissonance, 170
College Outcome Measures Program
(COMP), 112, 125–127
areas of evaluation, 126
Colleges of Advanced Technology, 11, 21,
23, 37, 130
Collegiate Learning Assessment (CLA), 169
Colorado School of Mines, 170, 290
Commission du tire d’ingénieurs, 273
Committee of Vice-Chancellors and
Principals (CVCP), 18, 21
Committee on Manpower Resources for
Science and Technology, 42
communication (skills), 35–36, 49, 200,
225–226, 254
with drawings/visual, 49, 233
person-centered course, 255
comparison of German and UK production
managers, 100–103
competence, 32, 111, 119, 208, 241–259,
256–279
acting as an engineer, 290
cognitive dimension, 289
core work, 290
contextual, 269–272
definitions of, 115, 289, 306
disciplinary, 305
global, 243
human, 270
inside-theory of, 10, 114, 152, 179, 242,
266, 289, 306
job, 113
levels of, 270, 289
outside-theory of, 114, 265, 267, 306
professional, 113, 152
and standards, 116
SUBJECT INDEX

competencies, 113, 209, 241–242, 252
 accidental, 267–268
 Australian, 274
 CESI, 274
 Irish, 274
 UK, 274
 competency (based education), 9, 10, 11–130, 305–306
 adaptability, 180
 industry, 274, 278
 v outcomes, 289
 Russia, 246
 competency based teacher education, 120
 Comprehensive Assessment of Team Member Effectiveness, 202
 concept learning, 10
 misconceptions, 78
 syllabus (curriculum) design, 78
 Confederation of British Education, 112
 Consensual Assessment Technique, 36, 47
 constructive controversy, 217, 224–225
 continuous assessment, 17, 150. See also coursework
 continuous (quality) improvement, 19, 142
 cooperative learning, 176
 cooperative (sandwich) courses, 9, 15, 37–39, 290
 assessment in, 38
 integration of academic and industrial study, 38
 structure of, 38
 cooperative learning, 45. See also group work
 Cornell Critical Thinking Test, 169
 correlation, 22
 Council of Engineering Institutions, 90, 107
 course (s), 17
 design of, 10, 22
 flipped, 75
 coursework
 assessment of, 16
 Coventry University, 200
 Creative Thinking Value Rubric, 47
 creativity, 36–48
 assessment of, 46–48
 in taxonomies, 136
 credentialing, 266, 293–295
 criterion referenced assessment, 306
 criterion referenced testing, 306
 Council of Engineering Institutions project on, 44–46
 definition of, 44, 251
 investment theory of, 47
 and originality, 44, 251
 theories of, 44
 critical thinking, 6, 15, 68, 168–172, 228, 303. See also reflective judgement
 assessment of, 42, 168
 definition of, 168
 Paul and Elder Model (CLA), 169
 Cross Domain Transfer, 63
 culture, 122
 influence on assessment, 7
 curriculum, 11, 13, 22, 129
 alternative for engineering, 42
 and assessment, 283, 290
 drift, 41, 52
 general education, 272
 curriculum assessment, 7
 curriculum-assessment-instruction-learning process, 12, 26, 76–77
 alignment, 77, 79
 curriculum process, 5, 26, 76–78
 Curtin University Graduate Competencies, 256–257
 Dasein, 279
 deep learning (processing), 24, 164
 Denham’s model of higher education, 295
 Department of Industry (UK), 101
 DES (Department of Education (UK), 115, 131
 design
 collaboration in, 230
 creativity, 229
 notebooks, 228
 process of, 229
 synthesis in, 121
 teaching of, 43, 118, 272
 digital humanities, 271
 Diploma in Technology, 35, 37–38, 218
 status of, 41
 discovery (inquiry) learning, 41
 Discrete Mathematics program, 137
 drop-out, see attrition, non-completion, wastage
 Educational Testing Service (ETS), 9, 14, 28
 effective teaching, 181
Eindhoven Technological University, 90
emotional intelligence, 161, 189, 191–192, 229
Employment Department (UK), 115, 122, 304, 306
engineering
complexity of the activity, 105, 114
knowledge, 103–105
knowledge distribution in an organization, 104
outcomes based education, 142–147
practice, 142, 248
rationalistic approach to education, 278
social study of, 271
engineering educators, 2–3, 6, 10–11, 23, 27, 79, 82, 114
Engineering Industries Training Board, 90, 96, 100, 107
engineering knowledge, 103–105
social dimension, 223
engineering profession, 3, 10–11
engineering science (A level), 65, 85, 168, 251, 258, 303
attitudes, interests, 71
coursework, 65–67
and creativity/originality, 113, 219
equivalence with physics, 63
evaluation, 66, 307
organization for curriculum development, 63
philosophy of, 62–63
project outline, 63, 68, 73
structure of assessment, 64
syllabus and notes, 311
and teachers, 251
engineers
categorizing work tasks, 95
critical incidents for the design of assessment, 80
and organizational structure, 36
polymer technologist at work, 271
as socio-technical systems, 104
stratification between technicians and technologists, 95
ways of thinking of, 61
at work (Engineering practice), 36–37
English Electric Co., 105, 122
staff training centre, 101
entering characteristics, 6
Enterprise in Higher Education Initiative (EHEI), 118, 122–125, 130, 135, 304
areas of learning, 127
Epistemological Beliefs Assessment for Engineering, 249
Ernst and Young, 16
essay examinations (tests), 13, 16
European credit transfer System, 252
European Higher Education Area (AHEA), 135, 246
evaluation, 7, 307
assessment, 7
examinations, see also assessment, question design
assumptions(myths) about, 12–16
comprehensive, 85
electrical engineering, 137
essay questions, 16
limitations of written, 63
motivation, 3, 200
multi-dimensional case study, 79–83
multiple (mixed) techniques, 16–17
non-traditional, 46
objective items (questions), 16
open-book, 16
power test, 46
and stress, 16
time constraints, 17
what they test, 48–49, 139, 152
Expectancy-Value Theory, 249
experience, 2, 4
and attitudes to training, 94
of higher education, 2
experiential learning, 217, 245–246
taxonomy of, 246
expertise, 227
extravert engineering students, 22–24, 48, 235
Eysenck Personality Inventory, 23–24
Feilden report on Engineering Design, 44
Felder-Solomon learning style index, 162, 167
Five Factor Personality Inventory, 23, 27
formative assessment, 6, 8, 30, 151, 199, 202, 278. See also diagnosis, self-assessment
frontiers of manufacturing technology, 104
SUBJECT INDEX

General Certificate of Education (GCE):
 Advanced level, 85
General Certificate of Education (GCE):
 Ordinary level, 85
General Certificate of Secondary Education
 (GCSE), 85
General National Vocational Qualifications
 (GNVQ) (UK), 115–116
equivalence with GCE, 115
General Practice-assessment of, 79–83
 philosophy of, 80
 soft skills, 80, 135, 252, 254
German dual system of education and
 training, 91
goals, see aims
 grade
 grading/grades, 1, 2, 7, 227, 251, 284
 norm referenced, 2
 student involvement in, 196
 graduates and workplace, 287–288
 group technology, 224
 group work (cooperative learning), 45
hidden curriculum, 268
Higher Education Achievement Report
 (HEAR), 115
Higher National Certificate in Engineering
 (UK), 66, 204
Higher National Diploma (UK), 84
higher order thinking skills (HOTS), 303
holistic development, 267
Imperial College, 200
industrial training, 38
Industrial Training Performance
 Questionnaire, 38–39
industry
 ABET, 295
criticism of programmes, 84
 professional development, 289
 responsibilities, 293–294
 responsibilities in education, 211
informal organization, 94, 287
information gathering, 81
innovation, 227–228, 271
insight, 166
Institution of Mechanical Engineers, 106
Institution of Professional Engineers of New
 Zealand, 135
Integrated Design Engineering Assessment
 and learning System, 288
intellectual development, 165–168
intelligence, 128–129, 196
 emotional, 190–192
 practical, 191
Intermediate Certificate Examination
 (Ireland), 74, 86, 280
International Technology Education
 Association (ITEA), 116–117
internship, 287
interpersonal skills, 225, 229–230, 254–256,
 296. See also personal transferable
 skills
introvert engineering students, 22–24, 48
Investment Theory of Creativity, 47
Iowa State University Competency Studies,
 244–246
job analysis
 limitations of job descriptions, 92
 organizational structure, 106
 role in career development, 99
 technique of, 92–93
Joint Matriculation Board, 62–63, 72, 86
Keller Plan, 148–149, 151
Kern Entrepreneurship Education Network
 (KEEN), 146
Khulna University, Bangladesh, 163
King and Kitchener’s model of cognitive
development, 40, 158
knowledge
 epistemological beliefs of students, 249
 epistemology related to practice, 287
 procedural, 191
tacit, 191
Kolb’s learning theory, 161, 176, 287
learning styles, 161–162, 206
laboratory practicals (aims and assessment),
 69–70
labor arenas, 96–97, 295
lateral thinking, 46
learners
 active, 167, 277
 reflective, 167
learning
to argue, 170
journal, 118, 176, 179
organizational, 289
perceptual, 170
work practice, 221
learning (and)
adaptive, 151
assessment led, 119–121
deep, 24
and engineering identity, 220
experiential, 217
journals, 206
orientations to, 164
outcomes, see outcomes
reflective, 118
responsibility for, 118, 149, 161, 182
rich, 141
styles, 161–163
surface, 24
transfer of, 296. See also personal
transferable skills
transformative, 220
unintended, 305
learning-how-to-learn, 209–210, 277
Learning Styles Inventory, 161
lifelong education, 293–294
Lucas Aerospace, 90, 92, 105
job analysis, 90
as a learning organization, 95, 106
limitations of job descriptions, 92
qualifications of personnel, 92, 193,
105–106
Management Charter Initiative, 123–124
management, skill of, 94
managers, survey of, 96, 101
marker event(s), 167
mastery learning, assessment of, 147
mathematics, 137–138
McMaster University, 46
Michigan Technological University, 199
MIT, 247
model eliciting activities (MEA), 169, 174
modified essay question (MEQ), 82
moral purpose, 284, 286
motivation (of students), 166, 200
Multidisciplinary Interaction Survey, 223
multiple choice questions (MCQ), 64, 82–83
multiple objective examination, 65
multiple strategy assessment and learning,
307
Myers Briggs Indicator (MBTI), 76, 146
National Academy of Engineering, 272
National Association of Teachers of
Mathematics, 115
National Board for Prices and Incomes, 25
National Council for Technological Awards,
37, 41
National Council for Vocational
Qualifications (NCVQ), 112–114, 242,
244
system, 135
National Governors Association, 293
National Record of Achievement, 115
National Research Council (US), 74, 83, 120
National Union of Students, 13, 31
National Vocational Qualifications
(NVQ/NCVQ-UK), 112, 242
norm referenced testing, 306
objectives, 301. See also outcomes,
taxonomies
behavioral, 202–203
for engineers, 43
expressive, 305
focusing, 304
instructional, 303
Meuwese’s study of curriculum objectives
for engineering, 91
non-behavioral, 302, 305
versus outcomes, 301–302
program, 304
teacher determination of, 52
occupational transfer gap, 293–294
Olin College (US), 219
Omnibus Personality Inventory, 23
operational philosophy, 248
oral examination, 233–234
Organization for Economic and Cultural
Development (OECD), 292
Organization’s Knowledge, 104
counter vailing thesis to Vincent, 107
Outcome Measures Program, 125
outcomes (based) assessment, 304
business ethics, 148
expressive, 268
SUBJECT INDEX

intended/unintended, 305
length of lists, 190
reductionist lists, 243, 259, 286
surveys, 146

peer assessment (student), 200–205
comparisons with self-assessment, 201
fairness of, 205
methods of, 202
in teams, 204
peer review, 205
peer tutoring, 200–201
role of teacher, 201
Pennsylvania State University, 166
perceptions of outcomes, 66
of work, 270
Percy Committee on Higher Technological Education, 37, 51, 57
performance and competence, 119, 120–123, 128
and creativity, 44
effects of organizational structure on, 36, 37, 91
factors contributing to, 35–52, 91
at work, 113, 114
performance (based education), 38, 90–94, 99, 103, 105, 221, 242, 249, 267, 270, 288
self assessment of, 104
personal competence model, 124
personal construct interviewing, 92
personalized instruction, 147–150
personal transferable skills, 23, 96, 102–103, 112, 118, 124, 296
and continuous assessment, 150
Physics B (A level), 68
Piaget’s, 160, 165
portfolios (and Assessment), 207–208, 252–253, 290, 295
career based, 99
e-portfolios, 207, 245, 252
purpose of, 208
Prairie View A & M University, 46
Problem Based Learning (PBL), 40, 42, 75, 78, 123, 196
problem finding, 45–46, 68, 80
problem solving, 30, 39–40, 45–46, 63–64, 69, 78, 80, 91, 135, 271, 305
set mechanization, 45, 57, 164, 186
professional development, 105
professional skills, 62, 84, 135, 152, 206, 252, 254, 288
projects (project work), 39
assessment of/rubrics, 41, 218, 221
group projects, 41
individual projects, 41
industry projects, 39–40
interdisciplinary, 219
peer contributions to, 222
project management, 39
and teaching design, 41
transdisciplinary, 217
what is measured, 72
psychomotor domain, taxonomy of, 53
Purdue University, 196
Queens University, Belfast, 150
question of the day, 210
questions (questioning)
assumptions, 170
for creativity, 46
design of, 46, 143, 171
higher order, 152
long answer (written), 63, 171
modified essay, 82
objective types, 16
prior notice, 139
reflective, 222
short answer (written), 63
structured essay, 151
wicked (ill-structured), 48, 63, 167, 171, 271, 286
records of achievement, 115, 245. See also HEAR
reductive statements, 226
reflection (reflective thinking), 159–160, 175, 207
and analysis, 178
levels of, 177
reflection in/on action, 174, 229
reflection for action, 175
self-assessment as, 177–178
Reflection Depth Rubric, 178
Reflective Judgement Interview, 173–174
reflective learning, 118
reflective practice (practitioner), 174–180
 course design, 179
 creativity activity, 180
 Schon's model, 174
 training for, 179
 reliability, 12–14, 16, 193, 201, 234, 236, 284–285
 retention, 219. See also attrition,
 non-completion, wastage
Royal Academy of Engineering, 130
Royal College of General Practitioners, 80, 82
Royal Commission on Medical Education, 79
Royal Society, 115, 132
Royal Society for the Encouragement of the
 Arts, Manufacture and Commerce (RSA), 111
sandwich course, see cooperative courses
SCANS report, 124–125, 127–128
 competencies, 128
 and intelligence (Sternberg), 128
 key skills, 125
 perceptions of, 144–145
Schizophrenic Engineer, 49
Scholastic Aptitude Test (SAT), 16, 74
Scottish school examinations, 116
Self-Assessment of Problem Strategies
 (SAPP), 200
Self and Peer Assessment Resource Kit, 205
 self-assessment, 193–199, 245, 278
 collaborative assessment, 194–195
 of investigative and problem solving skills, 194
 of organizational skills, 195
 a self-assessment schedule, 197–198
 in teams, 196–198
self-efficacy, 273, 290
semi-criterion referenced scales, 306
set mechanization, 45, 57, 164, 186
Socratic method, 228
soft skills, 62, 132, 152, 290
 in medicine, 80
Something About Myself questionnaire, 47
 spatial ability (reasoning), 49
standard error, 13–14
 standards, 116–117, 248–250
 movement, 116
 in technological literacy, 116
STEM, 53, 279, 286
Stockholm Royal Institute of Technology, 201
 student variability, 7
 student’s motivation, 24
 study habit inventories, 24
 study habits, 163–165
 surface learning, 24, 164
 survey methods, 227
taxonomies
 of engineering design Tasks, 288
 experiential, 246
 Fink, 140–141, 304
 Humbles taxonomy of industrial objectives,
 99
 for the outcomes of engineering education
 (Carter), 114, 304
 of outcomes for engineering education, 114
 psychomotor, 53
 for teaching engineering practice, 288
The Taxonomy of Educational Objectives, 26,
 50, 53, 89, 94–95, 120, 134–135,
 137–140, 206, 209, 248, 284, 301
 adaptation of, 135
 affective domain, 285
 the analysis of jobs, 91–96
 application to computer science, 137
 cognitive developmental psychology
 cognitive domain, 50, 53
 and complex learning, 140
 comprehension, category of, 50
 and creativity, 136
 psychomotor domain, 53
 revised taxonomy, 53, 136–137
 synthesis category of, 290, 304
 and values, 53
 teachers’ beliefs, 279
 teaching, 12
 team effectiveness, 227, 228, 234
 assignments, 233
 competencies, 255
 teamwork (teams), 225–227
 assessment of, 230–232
 diversity in, 227–228
 formative assessment of, 103, 106
 in interdisciplinary projects, 221
 personality, 230
 teaching of, 229, 232
 technical collaboration (coordination-liaison),
 103–104, 233
SUBJECT INDEX

| Technical Vocational Education Initiative (TVEI), 115 |
| Tennessee Technological University, 170 |
| The Times, 16, 32 |
| Trinity College Dublin, 176 |
| Universidade de las Americas Puebla (Mexico), 47 |

| University of Texas at Austin, 146 |
| University of Texas–Tyler, 47 |
| University of Uppsala (Sweden), 168, 256 |
| University of Valencia (Spain), 252 |
| University of Washington, Seattle, 179 |
| US Committee on Foundations of Assessment, 74 |
| US Department of Labor, 112 |
| US Federal Department of Education, 307 |

| validation, 3, 8–9, 13–14, 16, 19, 152, 168, 234, 236, 284–286 |
| predictive, 11 |
| validity, types of, 19–20 |
| values, 295 |
| Virginia University, 46 |
| volunteer assessors, 291 |
| Volvo, 269, 295 |

| Wales and Stager’s Method of Guided Design, 40 |
| Washington Accord, 135, 247 |
| Washington State University, 141 |
| wastage (attrition, drop-out, retention), 40 |
| Wechsler Adult Intelligence test, 85 |
| withdrawal, 2. See also wastage |
| Wissenschaft, 106 |
| Woollacott’s, 248 |
| workforce |

| emerging technologies, 292 |
| employment/unemployment, 292, 294 |
| patterns of, 291–292 |
| and universities, 294 |
| World Health Organization, 82 |

| zone of proximal development, 275, 279 |