CONTENTS

Preface xv
Illustration Credits xix

1 Foundations of Experimental Design 1
Introduction, 1
What is Experimental Research? 2
Design of Experiment and its Principles, 3
Randomization, 3
Replication, 4
Blocking, 4
Statistical Designs, 5
Completely Randomized Design, 5
Randomized Block Design, 6
Matched Pairs Design, 8
Latin Square designs, 8
Factorial Experiment, 9
Terminologies in Design of Experiment, 10
Subject, 11
Experimental Unit, 11
Factor and Treatment, 11
Criterion Variable, 12
Variation and Variance, 12
Experimental Error, 12
External Validity, 13
2 Analysis of Variance and Repeated Measures Design

Introduction, 21
Understanding Variance and Sum of Squares, 22
One Way Analysis of Variance for Independent Measures Design, 24
Assumptions, 24
Illustration I, 25
 Partitioning of Total Variation in the Design, 26
 Computation, 26
 Explanation, 27
 Partitioning of SS and Degrees of Freedom, 27
 Computation, 27
Results, 29
Post-Hoc Analysis, 29
Means Plot, 31
Repeated Measures Design, 31
When to Use Repeated Measures ANOVA, 32
Assumptions, 32
Solving Repeated Measures Design with One-Way ANOVA, 33
Illustration II, 34
Hypothesis Construction, 34
Layout Design, 35
One-Way Repeated Measures ANOVA Model, 36
Computation in Repeated Measures Design with One-Way
 ANOVA, 36
Explanation, 37
 Computation, 37
Testing Sphericity Assumption, 39
 Correcting for Degrees of Freedom, 41
Results, 43
Pair-Wise Comparison of Means, 43
Bonferroni Correction, 44
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect Size, 45</td>
<td></td>
</tr>
<tr>
<td>Exercise, 46</td>
<td></td>
</tr>
<tr>
<td>Assignment, 47</td>
<td></td>
</tr>
<tr>
<td>Bibliography, 48</td>
<td></td>
</tr>
<tr>
<td>3 Testing Assumptions in Repeated Measures Design Using SPSS</td>
<td>51</td>
</tr>
<tr>
<td>Introduction, 51</td>
<td></td>
</tr>
<tr>
<td>First Step in Using SPSS, 52</td>
<td></td>
</tr>
<tr>
<td>Assumptions, 54</td>
<td></td>
</tr>
<tr>
<td>Testing Normality, 54</td>
<td></td>
</tr>
<tr>
<td>Test of Normality, 57</td>
<td></td>
</tr>
<tr>
<td>Q–Q Plot for Normality, 57</td>
<td></td>
</tr>
<tr>
<td>Box-plot for Identifying Outliers, 57</td>
<td></td>
</tr>
<tr>
<td>Testing Sphericity, 59</td>
<td></td>
</tr>
<tr>
<td>Remedial Measures When Assumption Fails, 62</td>
<td></td>
</tr>
<tr>
<td>Transforming Nonnormal Data into Normal, 62</td>
<td></td>
</tr>
<tr>
<td>Choice of Design and Sphericity, 63</td>
<td></td>
</tr>
<tr>
<td>Sample Size Determination, 64</td>
<td></td>
</tr>
<tr>
<td>Important Terms, 64</td>
<td></td>
</tr>
<tr>
<td>Confidence Interval, 64</td>
<td></td>
</tr>
<tr>
<td>Confidence Level, 65</td>
<td></td>
</tr>
<tr>
<td>Power of the Test, 66</td>
<td></td>
</tr>
<tr>
<td>Sample Size Determination on the Basis of Cost, 67</td>
<td></td>
</tr>
<tr>
<td>Sample Size Determination on the Basis of Accuracy Factor, 67</td>
<td></td>
</tr>
<tr>
<td>Sample Size in Estimating Mean, 67</td>
<td></td>
</tr>
<tr>
<td>Sample Size in Hypothesis Testing, 68</td>
<td></td>
</tr>
<tr>
<td>Exercise, 68</td>
<td></td>
</tr>
<tr>
<td>Assignment, 69</td>
<td></td>
</tr>
<tr>
<td>Bibliography, 70</td>
<td></td>
</tr>
<tr>
<td>4 One-Way Repeated Measures Design</td>
<td>73</td>
</tr>
<tr>
<td>Introduction to Design, 73</td>
<td></td>
</tr>
<tr>
<td>Advantage of One-Way Repeated Measures Design, 74</td>
<td></td>
</tr>
<tr>
<td>Weakness of Repeated Measures Design, 74</td>
<td></td>
</tr>
<tr>
<td>Application, 74</td>
<td></td>
</tr>
<tr>
<td>Layout Design, 75</td>
<td></td>
</tr>
<tr>
<td>Case I: When the Levels of Within-Subjects Variable are Different Treatments, 75</td>
<td></td>
</tr>
<tr>
<td>Case II: When the Levels of Within-Subjects Variable are Different Time Durations, 76</td>
<td></td>
</tr>
<tr>
<td>Steps in Solving One-Way Repeated Measures Design, 77</td>
<td></td>
</tr>
<tr>
<td>Illustration, 77</td>
<td></td>
</tr>
<tr>
<td>Testing Assumptions, 77</td>
<td></td>
</tr>
<tr>
<td>Layout Design, 78</td>
<td></td>
</tr>
<tr>
<td>Distribution of Variation and Degrees of Freedom, 79</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

Hypothesis Construction, 80
Level of Significance, 80
Solving One-Way Repeated Measures Design Using SPSS, 81
SPSS Output and Interpretation, 83
 Descriptive Statistics, 83
 Testing Sphericity, 84
 Testing Significance of Within-Subjects Effect, 86
How to Report the Findings, 88
Inference, 88
Exercise, 88
Assignment, 89
Bibliography, 90

5 Two-Way Repeated Measures Design 91

Introduction, 91
Advantages of Using Two-Way Repeated Measures Design, 92
Assumptions, 92
Layout Design, 93
 Case I: When Levels of Within-Subjects Variable are Different
 Treatment, 93
 Case II: When the Levels of the Within-Subjects Variable are Different
 Time Durations, 94
Application, 94
Steps in Solving Two-Way Repeated Measures Design, 95
Illustration, 97
 Layout Design, 97
 Distribution of Variation and Degrees of Freedom, 98
 Research Questions, 100
 Hypotheses Construction, 100
 Level of Significance, 101
Solving Repeated Measures Design with Two-Way ANOVA Using
 SPSS, 101
 SPSS Output and Interpretation, 104
Testing Assumptions, 105
 Data Type, 106
 Independence of Measurement, 106
 Normality, 106
 Sphericity, 106
Descriptive Statistics, 106
Testing Main Effect of Music (Within-Subjects), 106
 Pairwise Comparison of Marginal Means of Music Groups, 108
 Means Plot of Music, 108
Testing Main Effect of Environment (Within-Subjects), 108
Testing Significance of Interaction (Environment × Music), 108
 Type I Error for Simple Effect, 110
6 Two-Way Mixed Design 125

Introduction, 125
Advantages of Two-Way Mixed Design, 127
Assumptions, 127
Application, 128
Layout Design, 129
Case I: When Levels of the Within-Subjects Factor are Different
 Treatment, 129
Case II: When Levels of the Within-Subjects Factor are Different
 Time Durations, 130
Steps in Solving Mixed Design with Two-Way ANOVA, 131
Illustration, 132
 Layout Design, 132
Distribution of Variation and Degrees of Freedom, 134
Research Questions, 135
Hypothesis Construction, 136
Level of Significance, 136
Solving Mixed Design with Two-Way ANOVA using SPSS, 137
SPSS Outputs and Interpretation, 140
Testing Assumptions, 141
 Assumption of Normality, 141
 Homogeneity of Variance Covariance Matrices, 142
 Homogeneity of Variance, 142
 Sphericity Assumption, 142
Descriptive Statistics, 143
Testing Main Effect of Movie (within-Subjects), 144
 Pair-Wise Comparison of Marginal Means of Movie Groups, 144
 Means Plot of Movie, 145
Testing Main Effect of Age (between-Subjects), 145
 Pair-Wise Comparison of Marginal Means of Age Groups, 146
 Means Plot of Age, 146
Testing Significance of Interaction (Movie × Age), 147
 Simple Effect of Movie (within-Subjects), 147
 Simple Effect of Age (between-Subjects), 151
7 One-Way Repeated Measures MANOVA

Introduction, 161
When to Use Repeated Measures MANOVA? 162
Why to Use Repeated Measures MANOVA? 162
Assumptions, 163
Application, 164
Layout Design, 165
Case I: When Levels of Within-Subjects Factor are Different
 Treatment, 165
Case II: When Levels of Within-Subjects Factor are Different
 Time Durations, 166
Steps in Solving One-Way Repeated Measures MANOVA, 166
Illustration, 167
 Layout Design, 167
 Research Questions, 168
 Hypotheses Construction, 168
 Level of Significance, 170
 Solving One-Way Repeated Measures MANOVA Design
 with SPSS, 170
 SPSS Output and Interpretation, 173
 Descriptive Statistics, 174
 Testing Assumptions, 174
 Testing Correlation, 174
 Testing Normality, 176
 Testing Outliers, 176
 Multivariate Testing, 178
 Univariate Testing, 181
 Testing Sphericity, 181
 Pair-Wise Comparison of Marginal Means, 181
 Means Plot of Maths, 181
 Means Plot of English, 182
 Means Plot of Reasoning, 182
 How to Report the Findings, 183
 Assumptions, 183
 Testing Multivariate Effect, 183
 Testing Univariate Effect, 184
8 Mixed Design with Two-Way MANOVA

Introduction, 189
What Happens in MANOVA Experiment, 190
Assumptions, 191
Multivariate Analysis, 191
Univariate Analysis, 192
Layout Design, 192
Case I: When the Levels of Within-Subjects Factor are Different
Treatment, 192
Case II: When the Levels of the Within-Subjects Factor are Different
Time Durations, 193
Application, 193
Steps in Solving Mixed Design with Two-Way MANOVA, 194
Illustration, 196
Layout Design, 196
Research Questions, 198
Hypotheses Construction, 198
Level of Significance, 200
Solving Mixed Design with Two-Way MANOVA Using SPSS, 200
SPSS Output and Interpretation, 204
Multivariate Outcome, 205
Main Effect of Each Dependent Variable, 205
Simple Effect of Each Dependent Variable, 205
Testing Assumptions, 205
Data Type, 205
Testing Correlations, 206
Testing Normality, 207
Testing Outliers, 210
Homogeneity of Variances, 211
Homogeneity of Variance Covariance Matrices, 211
Sphericity Assumption for Within-Subjects Conditions, 211
Multivariate Testing, 211
Univariate Testing, 213
Main Effect of Between-Subjects Factor (Sex), 215
Main Effect of Within-Subjects Factor (Chocolate), 215
Level of Significance for Simple Effect, 219
Simple Effect on Taste, 219
Simple Effect on Crunchiness, 226
Simple Effect on Flavor, 230
Means Plots (Sex × Chocolate), 232
How to Report Findings, 234
Assumptions, 234
Multivariate Effects, 236
Univariate Main Effects, 236
Univariate Simple Effects, 237
Inference, 237
Exercise, 238
Assignment, 238
Bibliography, 240

Appendix 243

Index 255