An easy way to help your students learn, collaborate, and grow.

Diagnose Early
Educators assess the real-time proficiency of each student to inform teaching decisions. Students always know what they need to work on.

Facilitate Engagement
Educators can quickly organize learning activities, manage student collaboration, and customize their course. Students can collaborate and have meaningful discussions on concepts they are learning.

Measure Outcomes
With visual reports, it’s easy for both educators and students to gauge problem areas and act on what’s most important.

Instructor Benefits
- Assign activities and add your own materials
- Guide students through what’s important in the interactive e-textbook by easily assigning specific content
- Set up and monitor collaborative learning groups
- Assess learner engagement
- Gain immediate insights to help inform teaching

Student Benefits
- Instantly know what you need to work on
- Create a personal study plan
- Assess progress along the way
- Participate in class discussions
- Remember what you have learned because you have made deeper connections to the content

www.wileypluslearningspace.com
Preface

Today, companies are competing in a very different environment than they were only a few years ago. Rapid changes such as global competition, e-business, the Internet, and advances in technology have required businesses to adapt their standard practices. Operations management (OM) is the critical function through which companies can succeed in this competitive landscape.

Operations management concepts are not confined to one department. Rather, they are far-reaching, affecting every functional aspect of the organization. Whether studying accounting, finance, human resources, information technology, management, marketing, or purchasing, students need to understand the critical impact operations management has on any business.

We each have more than 25 years of teaching experience and understand the challenges inherent in teaching and taking the introductory OM course. The vast majority of students taking this course are not majoring in operations management. Rather, classes are typically composed of students from various business disciplines or students who are undecided about their major and have little knowledge of operations management. The challenge is not only to teach the foundation of the field, but also to help students understand the impact operations management has on the business as a whole and the close relationship of operations management with other business functions.

We were motivated to write this book to help students understand operations management and to make it easier for faculty to teach the introductory operations management course. We continue to have three major goals for this book.

Goals of the Book

1. **Provide a Solid Foundation of Operations Management**

 Our book provides a solid foundation of OM concepts and techniques, but also covers the latest on emerging topics such as e-business, supply chain management, enterprise resource planning (ERP), and information technology. We give equal time to strategic and tactical decisions and provide coverage of both service and manufacturing organizations. We look closely at some of the unique challenges faced by service operations.

2. **Provide an Integrated Approach to Operations Management**

 While several excellent textbooks provide appropriate foundation coverage, we believe that few provide sufficient motivation for students. We are aware that a major teaching challenge in OM is that students aren’t motivated to study OM because they don’t understand its relevance to their majors. We think the course textbook can greatly support the professor in this area; therefore, a chief goal of this book is to integrate coverage of why and
how OM is integral to all organizations. Interfunctional coordination and decision making have become the norm in today’s business environment. Throughout each chapter we discuss information flow between business functions and the role of each function in the organization.

The text also illustrates the linkages and integration between the various OM topics. Our end-of-chapter feature entitled “Within OM: How It All Fits Together” describes how the chapter topic is related to other OM decisions. It addresses the issue that OM topics are linked and interdependent, not independent of one another.

As supply chain management (SCM) has taken on an increasingly important role, the end-of-chapter section titled “The Supply Chain Link” explains the relationships between the specific chapter topic covered and supply chain management.

3. Help Students to Understand the Concepts

This course remains challenging for students to take and professors to teach. Students often have no prior exposure to operations concepts and little real business experience. They have a broad spectrum of quantitative sophistication and often find the math in the course extremely challenging. Therefore, a chief goal of the text and supplement package is to help students with these concepts. We begin each chapter with an example from everyday life, often a consumer or personal example, to help students intuitively understand what the chapter will be about. Then we explain each concept clearly and carefully, with enough depth for non-majors. Sustainability in operations is highlighted at the end of each chapter.

The new edition is focused on helping students by offering problem-solving hints and tips as part of the solution to most examples and solved problems throughout the entire text. Two unique supplements support student comprehension. A “Quantitative Survival Guide,” available as an optional supplement packaged with the text, provides “help with the math” for all chapters. WileyPLUS Learning Space (available on-line via a password in an optional package with the book) provides plenty of homework practice, feedback for students, an e-book, and much more. In addition, algorithmic homework problems have been designed for each chapter in order to provide unlimited practice opportunity.

Organization and Content of the Book

We have arranged the topics in the book in progressive order from strategic to tactical. Early in the book we cover operations topics that require a strategic perspective and a cultural change within the organization, such as supply chain management, total quality management, and just-in-time systems. Progressively we move to more tactical issues, such as work management, inventory management, and scheduling concerns. We recognize that most faculty will select the chapters relevant to their needs. To make it easier for students and faculty, each chapter can stand alone. Any specific knowledge needed for a chapter is summarized at the beginning of each chapter, with specific topic and page references for easy review.

Balanced Coverage of Quantitative and Qualitative Topics

We have tried to find a balance between the quantitative and qualitative treatment and coverage of OM topics. To meet students’ needs, this text presents the application of OM concepts through the extensive use of practical and relevant business examples. We eliminated from the printed book coverage of topics less frequently covered at the introductory level.
However, complete supplementary chapters on spreadsheet modeling, optimization, master production scheduling, rough-cut capacity planning, and waiting line models are available on the book’s Web site (www.wiley.com/college/reid).

Integrated Technology Perspective

Advances in e-commerce and the Internet are transforming the business environment, and we integrate these concepts in every chapter. We discuss a range of topics from enterprise resource planning (ERP) and electronic data interchange (EDI) to quality issues of buying goods on-line.

Changes to this Edition

We have made a number of changes to this edition in order to make the text as current, user-friendly, and relevant as possible. In particular we have updated company examples, technology, big data analytics, and added some supply chain management issues.

Company Examples: Since our last edition we have observed many changes in organizations that we had used as examples. Some companies have gone out of business while others, such as Amazon.com and Dell Computer Corporation, have changed their strategies. In order to offer the most current text we have made updates in company examples across all chapters.

Technology: One of the biggest changes we are witnessing relates to changes in technology. We have updated discussions with regard to the latest technologies that impact operations management. This includes discussions of 3D Printing, new generation robotics and automation, and advancements in radio frequency identification (RFID) in Chapter 3.

Big Data Analytics: Big data analytics is having a tremendous impact on digitizing operations. We have incorporated the latest on big data analytics in Chapters 1 and 3. In Chapter 8 we have added an entire section on predictive analytics and forecasting.

Supply Chain Management Issues: Since our last edition the proposed new shipping facility in Mexico has been canceled, while the Panama Canal is currently being widened. We discuss the ramifications on materials being shipped from Asia to the United States in Chapter 4.

In addition, several chapters have been reorganized to facilitate a better flow. During the past five editions, we have added many new topics. This sixth edition better integrates those topics into the chapters. We continue to emphasize inter-functional coordination and decision making, and have updated a number of features as shown below.

Before You Begin. In order to help students when solving quantitative problems, the feature called “Before You Begin,” placed immediately prior to the solution of most in-chapter example problems and end-of-chapter solved problems. Emphasizing our focus on strong pedagogy, this feature provides problem-solving tips and hints that the student should consider before proceeding to solve the problem.

Supply Chain Link. To emphasize the increasingly important role of supply chain management, there is a section on supply chain management and expanded coverage of supply chain and services in every chapter.

Sustainability Link. In order to address the latest challenges facing business, we have included “The Sustainability Link” feature. This feature discusses how the subject of the chapter directly ties to today’s sustainability concerns and challenges, providing specific business examples that illustrate the issues.
Problem Solving. While our goal is to provide balanced coverage of quantitative and qualitative topics, the new edition further emphasizes and integrates problem solving to help students experience the course more successfully. We provide algorithmic homework problems for every chapter of the text (via WileyPLUS Learning Space) for unlimited practice opportunities, include problem-solving help in the book (“Before You Begin”) and on-line via WileyPLUS Learning Space, and provide step-by-step solved problems in the book and on-line. We also provide “help with math” as needed via WileyPLUS Learning Space. We believe that these changes to the new edition greatly enhance student learning.

Features of the Book

We have developed our pedagogical features to implement and reinforce the goals discussed previously and address the many challenges in this course.

Pedagogy that Provides an Integrated Approach

Chapter Opening Vignettes and Within OM: How It All Fits Together To help students intuitively understand the topic, each chapter begins with a description of a personal problem that can be solved using the concepts discussed in the chapter. Our objective is to attract the attention of students by starting with a personal example to which they can relate. We demonstrate that OM is not just about operating a plant or a business, but that it is relevant in everything that we do. An end-of-chapter section titled “Within OM: How It All Fits Together” describes how the chapter topic is related to other OM decisions. It emphasizes the point that OM decisions are not made independently of one another, but that they are linked together and are dependent on one another.

Links to Practice Other OM texts have many boxes and sidebars, which make it difficult for students to understand what they need to know. Furthermore, the many examples frequently interrupt the flow of the text and make a chapter difficult to read and assimilate. We recognize the importance of including “real-world” examples, but believe they should be integrated into the stream of the text instead of interrupting the text. Therefore, we have developed embedded boxes titled “Links to Practice,” which provide brief examples from actual companies in every chapter. Embedded by both content and design into the general text discussion, each provides a concise and relevant example without interrupting the flow of the text.

Current textbooks typically do not use business examples to which students can relate. The typical examples provided are from large corporations such as General Motors, IBM, or Xerox. Primarily using these types of examples creates the impression for students that this is a field that is either beyond their reach or irrelevant to their needs. We have found that students understand the concepts better when these concepts are also presented in a context that is smaller in scale. The examples chosen range from large multinational organizations to small local businesses.
OM across the Organization and Cross-Functional Icons Unique to this book is an end-of-chapter summary titled "OM across the Organization" that highlights the relationship between OM and key business functions, such as accounting, finance, human resources, information technology, management, marketing, and purchasing. This section is designed to help students understand the close relationship of operations management with other business functions and appreciate the critical impact OM has on other business functions. In addition, a cross-functional icon is used throughout the text to highlight sections in the text where the relationships between OM and other key business functions are discussed.

Cases Each chapter ends with four cases that reinforce the issues and topics discussed in the chapter. The first two cases are within the text, while the other two are on-line cases. The cases can provide the basis for group discussion or can be assigned as individual exercises for students. Many cases conclude with a list of questions for students to answer.

In addition, each chapter offers a unique interactive learning exercise titled “Internet Challenge” where students are provided with a short case and given specific Internet assignments.

Interactive Cases There are two Web-based cases for this edition. The first case features an Internet site for a simulated cruise company that has hired a student intern to help solve operations problems. The second case features an Internet site for a simulated consulting company that works in the medical industry that has hired a student to help solve operations problems. In both cases, the students are given assignments that require them to use information provided at the book Web site to develop solutions. These exercises offer students hands-on experience in the areas of supply chain management, statistical quality control, forecasting, just-in-time, aggregate planning, inventory management, scheduling, and project management, and help tie all the topics in the book together in a service environment.

Pedagogy to Help Students Master the Course

Learning Objectives At the beginning of each chapter, students are provided with a short statement of what they need to either know or review from previous chapters, referring students to specific topic information. This enables students to review previous material necessary to understand the topic being covered.

Before You Go On Sections strategically placed within every chapter summarize key material the student should know before continuing. Often the material in chapters can be overwhelming. We felt that breaking up the chapter with a brief summary of key material is highly beneficial in aiding learning and comprehension.

Key Terms and Definitions Key terms and concepts are highlighted in boldface when they are first explained in the text, are defined in the margin next to their discussion in the text, and are listed at the end of the chapter with page references.
Before You Begin Most example problems within the chapters, and end-of-chapter solved problems, have a feature called "Before You Begin." The feature provides students with problem-solving tips and hints they need to consider before solving the problem. The purpose is to help students with their problem-solving ability.

Solved Problems Numerous solved problems are provided, complete with step-by-step explanations to ensure students understand the process and why the problem is solved in a particular way. Where appropriate, we provide a series of steps for problem solving and offer problem-solving tips.

Teaching and Learning Resources

Our supporting material has been designed to make learning OM easier for students and teaching OM easier for faculty.

Book Companion Site www.wiley.com/college/reid

An extensive Web site has been developed in support of Operations Management. The site is available at www.wiley.com/college/reid, and offers a range of information for instructors and students.

For Instructors

- Instructor’s Manual: Includes a suggested course outline, teaching tips and strategies, war stories, answers to all end-of-chapter material, brief description of the additional resources referenced in the Interactive Learning box, additional in-class exercises, and tips on integrating the theory of constraints.

- Solutions Manual: A complete set of detailed solutions is provided for all problems.

- Virtual Company Cases Instructor’s Materials: Include accompanying Instructor’s Manual with answers to exercises and Excel solutions.

- Test Bank: A comprehensive Test Bank comprised of approximately 1700 questions that consist of multiple choice, true-false, essay questions, and open-ended problems for each chapter. The Test Bank is also available in a computerized version that allows instructors to customize their exams.

- PowerPoint Lecture Slides: PowerPoint Slides are available for use in class. Full-color slides highlight key figures from the text as well as many additional lecture outlines, concepts, and diagrams. Together, these provide a versatile opportunity to add high-quality visual support to lectures.

- Operations Management Video Series: The video package, including Wiley’s own Student OM Videos, offers video selections that tie directly to the theme of operations management and bring to life many of the examples used in the text. Videos can be viewed within WileyPLUS Learning Space.
For Students

- **Supplemental Chapters:** The supplement chapters include Supplement A: Spreadsheet Modeling: An Introduction; Supplement B: Introduction to Optimization; Supplement C: Waiting Line Models; Supplement D: Master Scheduling and Rough-Cut Capacity Planning.

- **Excel Spreadsheets:** Templates are provided so that students can model and solve problems presented in the textbook. A spreadsheet icon appears next to those examples and problems in the textbook that have an accompanying Excel template available on the student Web site. Step-by-step directions are provided. Directions prompt students as they work through each spreadsheet. Expected outcomes and questions are also given.

WileyPLUS Learning Space

What is WileyPLUS Learning Space? It is a place where students can learn, collaborate, and grow. Through a personalized experience, students create their own study guide while they interact with course content and work on learning activities.

WileyPLUS Learning Space combines adaptive learning functionality with a dynamic new e-textbook for your course—giving you tools to quickly organize learning activities, manage student collaboration, and customize your course so that you have full control over content as well as the amount of interactivity between students.

You can:

- Assign activities and add your own materials
- Guide students through what is important in the e-textbook by easily assigning specific content
- Set up and monitor collaborative learning groups
- Assess student engagement
- Benefit from a sophisticated set of reporting and diagnostic tools that give greater insight into class activity

Learn more at www.wileypluslearningspace.com. If you have questions, please contact your Wiley representative.

Acknowledgments

Operations Management, Sixth Edition, benefits from insights provided by a dedicated group of operations management educators from around the globe who carefully read and critiqued draft chapters of this and previous editions. We are pleased to express our appreciation to the following colleagues for their contributions:

Charles Foley, Columbus State Community College; Nicholas C. Georgantas, Fordham University Business Schools; Gregory A. Graman, Michigan Technological University; Roger Dean Iles, The University of Memphis; Tony R. Johns, Clarion University of Pennsylvania; Anita Lee-Post, University of Kentucky; Douglas Schneiderheinze, Lewis and Clark Community College; Yossi Aviv, Washington University in St. Louis; Kevin Caskey, SUNY New Paltz; Scott T. Crino, United States Military Academy; Phillip C. Fry, Boise State University; Thomas F. Gattiker, Boise State University; Christian Grandzol, Bloomsburg University; Samuel Hazen, Tarleton State University; James He, Fairfield University; John Jensen, University of Southern Maine; Mark Kesh, University of Texas at El Paso; Anita Lee-Post, University of Kentucky;
Winston T. Lin, SUNY Buffalo;Jaideep Motwani, Grand Valley State University; Fariborz Y. Partovi, Drexel University; Tamara Reid, Seattle University; Dmitriy Shaltayev, Christopher Newport University; Marilyn Smith, Winthrop University; Robert J. Vokurka, Texas A&M University–Corpus Christi; Pamaela J. Zelbst, Sam Houston State University.

Dennis Agboh, Morgan State University; Karen Eboch, Bowling Green State University; Greg Graman, Michigan Technological University; GG Hegde, University of Pittsburgh; Seung-Lae Kim, Drexel University; John Kros, East Carolina University; Anita Lee-Post, University of Kentucky; David Little, High Point University; Robert Vokurka, Texas A&M University; John Wang, Montclair State University.

Ajay Aggarwal, Millsaps College; Nezih Altay, University of Richmond; Suad Alway, Chicago State University; Robert Amundsen, New York Institute of Technology; Gordon Bagot, California State University, Los Angeles; Cliff Barber, California Polytechnic State University, San Luis Obispo; Hooshang Beheshti, Radford University; Prashanth Bharadwaj, Indiana University of Pennsylvania; Joe Biggs, California Polytechnic State University; Debra Bishop, Drake University; Vincent Calluzzo, Iona College; James Campbell, University of Missouri–St. Louis; Kevin Caskey, SUNY New Paltz; Sohail Chaudhry, Villanova University; Chin-Sheng Chen, Florida International University; Kathy Dhanda, University of Portland; Barb Downey, University of Missouri–Columbia; Joe Felan, University of Arkansas at Little Rock; Wade Ferguson, Western Kentucky University; Teresa Friel, Butler University; Daniel Heiser, DePaul University; Lewis Hofmann, The College of New Jersey; Lisa Houts, California State University, Fullerton; Tony Inman, Louisiana Tech University; Richard Insinga, SUNY Oneonta; Tim Ireland, Oklahoma State University; Mehdi Kaighobadi, Florida Atlantic University; Hale Kaynak, The University of Texas–Pan American; William Coty Keller, St. Joseph’s College; Robert Kenmore, Keller Graduate School of Management; Jennifer Kohn, Montclair State University; Dennis Krumwiede, Idaho State University; Kevin Lewis, University of Wyoming; Ardeshir Lohrasbi, University of Illinois at Springfield; Chris McDermott, Rensselaer Polytechnic Institute; John Miller, Mercer University; Ajay Mishra, SUNY Binghamton; Ken Murphy, Florida International University; Abraham Nahm, University of Wisconsin–Eau Claire; Len Nass, New Jersey City University; Joao Neves, The College of New Jersey; Susan Norman, Northern Arizona University; Muhammad Obeidat, Southern Polytechnic State University; Barbara Osyk, The University of Akron; Taeho Park, San Jose State University; Eddy Patuwo, Kent State University; Carl Poch, Northern Illinois University; Leonard Presby, William Paterson University; Will Price, University of the Pacific; Randy Rosenberger, Juniata College; George Schneller, Baruch College–CUNY; LW Schell, Nicholls State University; Kaushik Sengupta, Hofstra University; William Sherrard, San Diego State University; Samia Siha, Kennesaw State University; Susan Slotnick, Cleveland State University; Ramesh Soni, Indiana University of Pennsylvania; Ted Stafford, University of Alabama in Huntsville; Peter Sutanto, Prairie View A&M University; Fataneh Taghban-i-Dutta, University of Michigan–Flint; Nabil Tamimi, University of Scranton; John Visich, Bryant College; Tom Wilder, California State University, Chico; Peter Zhang, Georgia State University; Faye X. Zhu, Rowan University.

David Alexander, Angelo State University; Stephen L. Allen, Truman State University; Jerry Allison, University of Central Oklahoma; Suad Alway, Chicago State University; Tony Arreola-Risa, Texas A&M University; Gordon F. Bagot, California State University–Los Angeles; Brent Bandy, University of Wisconsin–Oshkosh; Joseph R. Biggs, California Polytechnic State University at San Luis Obispo; Jean-Marie Bourjolly, Concordia University; Ken Boyer, DePaul University; Karen L. Brown, Southwest Missouri State University; Linda D. Brown, Middle Tennessee State University; James F. Campbell, University of Missouri–St. Louis; Cem Canel, University of North Carolina at Wilmington; Chin-Sheng Chen, Florida International University;
Louis Chin, Bentley College; Sidhartha R. Das, George Mason University; Greg Dobson, University of Rochester; Ceasar Douglas, Grand Valley State University; Shad Dowlatshahi, University of Missouri–Kansas City; L. Paul Dreyfus, Athens State University; Lisa Ferguson, Hofstra University; Mark Gershon, Temple University; William Giauque, Brigham Young University; Greg Graman, Wright State University; Jatinder N.D. Gupta, Ball State University; Peter Haug, Western Washington University; Daniel Heiser, DePaul University; Ted Helmer, F. Theodore Helmer and Associates, Inc.; Lew Hofmann, The College of New Jersey; Lisa Houts, California State University–Fresno; Tim C. Ireland, Oklahoma State University; Peter T. Ittig, University of Massachusetts–Boston; Jayanth Jayaram, University of Oregon; Robert E. Johnson, University of Connecticut; Mehdi Kaighobadi, Florida Atlantic University; Yunus Kathawala, Eastern Illinois University; Basheer Khumawala, University of Houston; Thomas A. Kratzer, Malone College; Ashok Kumar, Grand Valley State University; Cynthia Lawless, Baylor University; Raymond P. Lutz, University of Texas at Dallas; Satish Mehra, University of Memphis; Brad C. Meyer, Drake University; Abdel-Aziz M. Mohamed, California State University–Northridge; Charles L. Munson, Washington State University; Kenneth E. Murphy, Florida International University; Jay Nathan, St. Johns University; Harvey N. Nye, University of Central Oklahoma; Susan E. Pariseau, Merrimack College; Carl J. Poch, Northern Illinois University; Claudia H. Pragman, Minnesota State University; Willard Price, University of the Pacific; Feraidoon Raafat, San Diego State University; William D. Raffield, University of St. Thomas; Ranga Ramasesh, Texas Christian University; Paul H. Randolph, Texas Tech University; Robert M. Saltzman, San Francisco State University; George O. Schneller IV, Baruch College–CUNY; A. Kimbrough Sherman, Loyola College in Maryland; William R. Sherrard, San Diego State University; Chwen Sheu, Kansas State University; Sue Perrott Siferd, Arizona State University; Samia M. Siha, Kennesaw State University; Natalie Simpson, SUNY Buffalo; Barbara Smith, Niagara College; Victor E. Sower, Sam Houston State University; Linda L. Stanley, Our Lady of the Lake University; Donna H. Stewart, University of Wisconsin–Stout; Manouchehr Tabatabaei, University of Tampa; Nabil Tamimi, University of Scranton; Larry Taube, University of North Carolina–Greensboro; Giri K. Tayi, SUNY Albany; Charles J. Teplitz, University of San Diego; Timothy L. Urban, The University of Tulsa; Michael L. Vineyard, Memphis State University; John Visich, University of Houston; Robert Vokurka, Texas A&M University; George Walker, Sam Houston State University; John Wang, Montclair State University; Theresa Wells, University of Wisconsin–Eau Claire; T. J. Wharton, Oakland University; Barbara Withers, University of San Diego; Steven A. Yourstone, University of New Mexico.

Special Thanks

We would also like to personally thank and acknowledge the work of our supplements authors, who worked diligently to create a variety of support materials for both instructors and students. We would also like to express our appreciation to Mark Sullivan, AIA, NCARB, of Mark Sullivan Architects, and Susan O’Hara, RN, MPH, of O’Hara HealthCare Consultants, who generously contributed a simulation showing the before and after designs of an ambulatory surgery unit. A working example of the Extend simulation they used to optimize the design of the renovated facility is available on the Web site.

We would like to offer special acknowledgment to the publishing team at Wiley for their creativity, talent, and hard work. Their great personalities and team spirit have made working on the book a pleasure. Special thanks go to Lisé Johnson, Executive Editor; Jennifer...
Manias, Sponsoring Editor; and Suzie Pfister, Senior Production Editor, for all their efforts. We could not have done it without you.

Other Wiley staff who contributed to the text and media include: Allison Morris, Product Design Manager; Tom Nery, Senior Designer; Billy Ray, Senior Photo Editor; and Amanda Dallas, Market Solutions Assistant.
About the Authors

R. Dan Reid is Associate Professor Emeritus of Operations Management at the Whitemore School of Business and Economics at the University of New Hampshire. He holds a Ph.D. in Operations Management from The Ohio State University, an M.B.A. from Angelo State University, and a B.A. in Business Management from the University of Maryland. During the past twenty years, he has taught at The Ohio State University, Ohio University, Bowling Green State University, Otterbein College, and the University of New Hampshire.

Dr. Reid’s research publications have appeared in numerous journals such as the Production and Inventory Management Journal, Mid-American Journal of Business, Cornell Hotel and Restaurant Administration Quarterly, Hospitality Research and Education Journal, Target, and the OM Review. His research interests include manufacturing planning and control systems, quality in services, purchasing, and supply chain management. He has worked for, or consulted with, organizations in the telecommunications, consumer electronics, defense, hospitality, and capital equipment industries. Dr. Reid has served as Program Chair and President of the Northeast Region of the Decision Sciences Institute (NEDSI) and as Associate Program Chair and Proceedings Editor of the First International DSI Conference, and held numerous positions within DSI. He has been the Program Chair and Chair of the Operations Management Division of the Academy of Management. Dr. Reid has also served as President of the Granite State Chapter of the American Production and Inventory Control Society. He has been a board member of the Operations Management Association and the Manchester Manufacturing Management Center. Dr. Reid is a past Editor of the OM Review.

Dr. Reid has designed and taught courses for undergraduates, graduates, and executives on topics such as resource management, manufacturing management, introduction to operations management, purchasing management, and manufacturing planning and control systems. In 2002 Dr. Reid received a University of New Hampshire Excellence in Teaching Award.

Nada R. Sanders is Distinguished Professor of Supply Chain Management at the D’Amore-McKim School of Business at Northeastern University. She holds a Ph.D. in Operations Management from The Ohio State University, an M.B.A. from The Ohio State University, and a B.S. degree in Mechanical Engineering from Franklin University. She has taught for more than twenty-five years at a variety of academic institutions including The Ohio State University, Wright State University, Texas Christian University, and Lehigh University, in addition to lecturing to various industry groups. She has designed and taught classes for undergraduates, graduates, and executives on topics such as operations management, operations strategy, forecasting, and supply chain management. She has received a number of teaching awards and is a Fellow of the Decision Sciences Institute.

Dr. Sanders has extensive research experience and has published in numerous journals such as Decisions Sciences, Journal of Operations Management, Sloan Management Review, Omega, Interfaces, Journal of Behavioral Decision Making, Journal of Applied Business Research, and Production & Inventory Management Journal. She has authored chapters in books and encyclopedias such as the Forecasting Principles Handbook (Kluwer Academic Publishers), Encyclopedia of Production and Manufacturing Management (Kluwer Academic Publishers), and the Encyclopedia of Electrical and Electronics Engineering (John Wiley & Sons). Dr. Sanders has served as Vice President of Decision Sciences Institute (DSI), President of the Midwest Decision Sciences Institute, and has held numerous other positions within the Institute. In addition to DSI, Dr. Sanders is active in the Production Operations Management Society (POMS), APICS, INFORMS, Council of Supply Chain Management Professionals (CSCMP), and the International Institute of Forecasters (IIF). She has served on review boards and/or as a reviewer for numerous journals including Decision Sciences, Journal of Business Logistics, Production Operations Management, International Journal of Production Research, Omega, and others. In addition, Dr. Sanders has worked and/or consulted for companies in the telecommunications, pharmaceutical, steel, automotive, warehousing, retail, and publishing industries, and is frequently called upon to serve as an expert witness.
Preface v
About the Authors xv

CHAPTER 1
Introduction to Operations Management 1
What is Operations Management? 2
Differences between Manufacturing and Service Organizations 5
Operations Management Decisions 6
Historical Development 10
Why OM? 10
Historical Milestones 10
The Industrial Revolution 10
Scientific Management 12
The Human Relations Movement 12
Management Science 13
The Computer Age 13
Just-in-Time 14
Total Quality Management 14
Business Process Reengineering 14
Flexibility 14
Time-Based Competition 15
Supply Chain Management 15
Global Marketplace 16
Sustainability and Green Operations 17
Electronic Commerce 17
Outsourcing and Flattening of the World 17
Big Data Analytics 18
Today’s OM Environment 18
Operations Management in Practice 19
Within OM: How It All Fits Together 20
OM Across the Organization 20
CHAPTER 2
Operations Strategy and Competitiveness 28
The Role of Operations Strategy 29
The Importance of Operations Strategy 30
Developing a Business Strategy 30
Mission 30
Environmental Scanning 31
Core Competencies 32
Putting It Together 33
Developing an Operations Strategy 34
Competitive Priorities 35
The Need for Trade-Offs 38
Order Winners and Qualifiers 38
Translating Competitive Priorities into Production Requirements 39
Strategic Role of Technology 40
Types of Technologies 40
Technology as a Tool for Competitive Advantage 41
Productivity 41
Measuring Productivity 41
Interpreting Productivity Measures 44
Productivity and Competitiveness 44
Productivity and the Service Sector 45
Operations Strategy Within OM: How It All Fits Together 45
Operations Strategy Across the Organization 46
The SUPPLY CHAIN LINK 46
The SUSTAINABILITY LINK 47
Chapter Highlights 47
Key Terms 47
Formula Review 48
Solved Problems 48
Discussion Questions 49
Problems 49
CASE: Prime Bank of Massachusetts 50
CASE: Boseman Oil and Petroleum (BOP) 51
INTERACTIVE CASE: Virtual Company 52
INTERNET CHALLENGE: Understanding Strategic Differences 52
Selected Bibliography 53

Internet Challenge: Demonstrating Your Knowledge of OM 26
Selected Bibliography 26
CHAPTER 3
Product Design and Process Selection 54

Product Design 55
 Design of Services versus Goods 55
The Product Design Process 56
 Idea Development 56
 Product Screening 58
 Preliminary Design and Testing 59
 Final Design 60
Factors Impacting Product Design 60
 Design for Manufacture 60
 Product Life Cycle 61
 Concurrent Engineering 62
 Remanufacturing 64
Process Selection 64
 Types of Processes 64
Designing Processes 67
Process Performance Metrics 69
Linking Product Design and Process Selection 72
 Product Design Decisions 72
 Competitive Priorities 74
 Facility Layout 74
 Product and Service Strategy 76
 Degree of Vertical Integration 76
Technology Decisions 77
 Information Technology 77
 Automation 78
 E-manufacturing 80
Designing Services 82
 How Are Services Different from Manufacturing? 82
 How Are Services Classified? 83
 The Service Package 84
 Differing Service Designs 84
Product Design and Process Selection Within OM: How It All Fits Together 86
Product Design and Process Selection Across the Organization 87

CHAPTER 4
Supply Chain Management 98

Basic Supply Chains 99
 Components of a Supply Chain for a Manufacturer 100
 A Supply Chain for a Service Organization 102
 The Bullwhip Effect 104
Issues Affecting Supply Chain Management 106
 E-commerce and Supply Chains 106
 Consumer Expectations and Competition Resulting from E-commerce 108
 Globalization 110
 Infrastructure Issues 111
 Government Regulation and E-commerce 113
 Green Supply Chain Management 113
The Role of Purchasing 116
 Traditional Purchasing and E-purchasing 116
Sourcing Decisions 120
 Insourcing versus Outsourcing Decisions 121
 Developing Supplier Relationships 123
 How Many Suppliers? 124
 Developing Partnerships 125
 Supplier Management Ethics 129
The Role of Warehouses 130
 Crossdocking 132
 Radio Frequency Identification Technology (RFID) 134
 Third-Party Service Providers 135
Implementing Supply Chain Management 135
 Strategies for Leveraging Supply Chain Management 136
 Supply Chain Performance Metrics 137
Supply Chain Management Within OM: How It All Fits Together 139
SCM Across the Organization 140
CHAPTER 5
Total Quality Management 151

Defining Quality 152
 Differences between Manufacturing and Service Organizations 153
Cost of Quality 154
The Evolution of Total Quality Management (TQM) 156
 Quality Gurus 156
The Philosophy of TQM 160
 Customer Focus 160
 Continuous Improvement 160
 Employee Empowerment 162
 Use of Quality Tools 163
 Product Design 166
 Process Management 170
 Managing Supplier Quality 171
Quality Awards and Standards 171
 The Malcolm Baldrige National Quality Award (MBNQA) 171
 The Deming Prize 172
 ISO 9000 Standards 173
 ISO Standards for Sustainability Reporting 174
Why TQM Efforts Fail 174
Total Quality Management (TQM) Within OM: How It All Fits Together 175
Total Quality Management (TQM) Across the Organization 175
 THE SUPPLY CHAIN LINK 176
 THE SUSTAINABILITY LINK 176
 Chapter Highlights 177
 Key Terms 177
 Formula Review 178
 Solved Problems 178
 Discussion Questions 179
 Problems 179
CASE: Gold Coast Advertising (GCA) 180
CASE: Delta Plastics, Inc. (A) 181
INTERACTIVE CASE: Virtual Company 182
INTERNET CHALLENGE: Snyder Bakeries 183
Selected Bibliography 183

CHAPTER 6
Statistical Quality Control 185
What Is Statistical Quality Control? 186
Sources of Variation: Common andAssignable Causes 187
Descriptive Statistics 187
 The Mean 188
 The Range and Standard Deviation 188
 Distribution of Data 188
Statistical Process Control Methods 189
 Developing Control Charts 189
 Types of Control Charts 190
Control Charts for Variables 191
 Mean (x-Bar) Charts 191
 Range (R) Charts 194
 Using Mean and Range Charts Together 196
Control Charts for Attributes 197
 p-Charts 198
 c-Charts 201
Process Capability 203
 Measuring Process Capability 203
Six Sigma Quality 208
Acceptance Sampling 210
 Sampling Plans 210
 Operating Characteristic (OC) Curves 211
 Developing OC Curves 213
 Average Outgoing Quality 214
Implications for Managers 216
 How Much and How Often to Inspect 216
 Where to Inspect 217
 Which Tools to Use 217
Statistical Quality Control in Services 217
Statistical Quality Control (SQC) Within OM: How It All Fits Together 219
Statistical Quality Control (SQC) Across the Organization 219
 THE SUPPLY CHAIN LINK 220
 THE SUSTAINABILITY LINK 220
 Chapter Highlights 221
 Key Terms 221
 Formula Review 222
 Solved Problems 222
 Discussion Questions 227
 Problems 227
CASE: Scharadin Hotels 230
CASE: Delta Plastics, Inc. (B) 231
INTERACTIVE CASE: Virtual Company 232
INTERNET CHALLENGE: Safe-Air 232
Selected Bibliography 233

CHAPTER 7
Just-in-Time and Lean Systems 234
The Philosophy of JIT 235
 Eliminate Waste 235
 A Broad View of Operations 236
 Simplicity 236
CHAPTER 8
Forecasting 267

Principles of Forecasting 268
Steps in the Forecasting Process 268
Types of Forecasting Methods 269

Time Series Models 272
Forecasting Level or Horizontal Pattern 275
Forecasting Trend 283
Forecasting Seasonality 286

Causal Models 289
Linear Regression 289
Multiple Regression 293

Measuring Forecast Accuracy 293
Forecast Accuracy Measures 293
Tracking Signal 295

Selecting the Right Forecasting Model 296
Forecasting Software 297
Predictive Analytics and Forecasting 298
Combining Forecasting 299

Collaborative Planning, Forecasting, and Replenishment (CPFR) 299
Forecasting Within OM: How It All Fits Together 300
Forecasting Across the Organization 301

CHAPTER 9
Capacity Planning and Facility Location 316

Capacity Planning 317
Why Is Capacity Planning Important? 317
Measuring Capacity 318
Capacity Considerations 320
Making Capacity Planning Decisions 323
 Identify Capacity Requirements 324
 Develop Capacity Alternatives 325
 Evaluate Capacity Alternatives 325

Decision Trees 325

Location Analysis 328
 What Is Facility Location? 328
 Factors Affecting Location Decisions 329
 Globalization 331

Making Location Decisions 332
 Procedure for Making Location Decisions 332
 Procedures for Evaluating Location Alternatives 333

Capacity Planning and Facility Location Within OM: How It All Fits Together 343

Capacity Planning and Facility Location Across the Organization 343

THE SUPPLY CHAIN LINK 344
THE SUSTAINABILITY LINK 344

Chapter Highlights 344
Key Terms 345
Formula Review 345
Solved Problems 345
Discussion Questions 348
Problems 348
CASE: Data Tech, Inc. 351
CASE: The Emergency Room (ER) At Northwest General (B) 352
INTERACTIVE CASE: Virtual Company 353
INTERNET CHALLENGE: EDS Office Supplies, Inc. 354
Selected Bibliography 354

CHAPTER 10
Facility Layout 355

What Is Layout Planning? 356
Types of Layouts 356
 Process Layouts 356
 Product Layouts 358
 Hybrid Layouts 359
 Fixed-Position Layouts 359

Designing Process Layouts 360
 Step 1: Gather Information 360
 Step 2: Develop a Block Plan 363
 Step 3: Develop a Detailed Layout 366

Special Cases of Process Layout 366
 Warehouse Layouts 366
 Office Layouts 369

Designing Product Layouts 370
 Step 1: Identify Tasks and Their Immediate Predecessors 370
 Step 2: Determine Output Rate 372
 Step 3: Determine Cycle Time 372
 Step 4: Compute the Theoretical Minimum Number of Stations 374
 Step 5: Assign Tasks to Workstations (Balance the Line) 374
 Step 6: Compute Efficiency, Idle Time, and Balance Delay 375
 Other Considerations 376

Group Technology (Cell) Layouts 377

Facility Layout Within the Organization 378

THE SUPPLY CHAIN LINK 379
THE SUSTAINABILITY LINK 379

Chapter Highlights 380
Key Terms 380
Formula Review 380
Solved Problems 381
Discussion Questions 383
Problems 384
CASE: Sawhill Athletic Club (A) 388
CASE: Sawhill Athletic Club (B) 389
INTERACTIVE CASE: Virtual Company 390
INTERNET CHALLENGE: DJ and Associates, Inc. 391
Selected Bibliography 391

CHAPTER 11
Work System Design 392

Work System Design 393
Job Design 393
 Job Design 393
 Machines or People? 395
 Level of Labor Specialization 395
 Eliminating Employee Boredom 396
 Team Approaches to Job Design 397
 The Alternative Workplace 398
 The Work Environment 400
 Methods Analysis 400

Work Measurement 402
 Developing Standards 404
 Developing a Standard Work Sampling 411
 Learning Curve Theory 414

Compensation 415
 Group Incentive Plans 417
 Incentive Plan Trends 417

Work System Design Within OM: How It All Fits Together 418

Work System Design Across the Organization 418

THE SUPPLY CHAIN LINK 419
THE SUSTAINABILITY LINK 419

Chapter Highlights 420
Resource Planning Across the Organization 540

THE SUPPLY CHAIN LINK 541
THE SUSTAINABILITY LINK 541

Chapter Highlights 542
Key Terms 542
Formula Review 543
Solved Problems 543
Discussion Questions 546
Problems 547
CASE: Newmarket International Manufacturing Company (B) 549
CASE: Desserts By J.B. 551
INTERACTIVE CASE: Virtual Company 551

INTERNET CHALLENGE: The Gourmet Dinner 552
Selected Bibliography 552

CHAPTER 15
Scheduling 553

Basic Scheduling Concepts 554
Scheduling High-Volume Operations 554
Scheduling Low-Volume Operations 555
Shop Loading Methods 556

Developing a Schedule of Operations 560
Scheduling Performance Measures 561
Using Different Priority Rules 564
Sequencing Jobs through Two Work Centers 567

Optimized Production Technology 569
Scheduling Bottlenecks 569
Theory of Constraints 571

Scheduling Issues for Service Organizations 572
Scheduling Techniques for Service Organizations 572
Scheduling Employees 573
Developing a Workforce Schedule 574

Scheduling Within OM: Putting It All Together 576

Scheduling Across the Organization 576

INTERACTIVE CASE: Virtual Company 587
INTERNET CHALLENGE: Batter Up 587
Selected Bibliography 588

CHAPTER 16
Project Management 589

The Project Life Cycle 590
Project Management Concepts 591
Step 1: Describe the Project 592
Step 2: Diagram the Network 593
Step 3: Estimate the Project’s Completion Time 595
Step 3 (a): Deterministic Time Estimates 595
Step 3 (b): Probabilistic Time Estimates 598
Step 4: Monitor the Project’s Progression 603

Estimating the Probability of Completion Dates 604
Reducing Project Completion Time 606
Crashing Projects 606

The Critical Chain Approach 609
Adding Safety Time 609
Wasting Safety Time 609

Project Management Within OM: How It All Fits Together 611
Project Management OM Across the Organization 611

INTERACTIVE CASE: Virtual Company 623
INTERNET CHALLENGE: Creating Memories 623
Selected Bibliography 624

Appendix A
Solutions to Odd-Numbered Problems 625

Appendix B
The Standard Normal Distribution 647

Appendix C
p-Chart 648

NAME INDEX 651
SUBJECT INDEX 654
To view Supplemental Chapters A-D, please visit www.wiley.com/college/reid or your WileyPLUS Learning Space course.

SUPPLEMENT A
Spreadsheet Modeling: An Introduction A1

What Are Models? A2
The Spreadsheet Modeling Process A3
Evaluating the Spreadsheet Model A4
Constructing the Model A6
Assessing Our Model A8
Using the Model for Analysis A10
Using Data Tables A13
Graphing the Model Results A16
Multiple-Criteria Decision Making A17
Relative and Absolute Cell Referencing A19
Entering Formulas in the Model A20
Useful Spreadsheet Tips A25
Important Excel Formulas A25
Spreadsheet Modeling Within OM: How It All Fits Together A27
Supplement Highlights A27
Key Terms A28
Discussion Questions A28
Problems A28
CASE: Diet Planning A30
Selected Bibliography A31

SUPPLEMENT B
Introduction to Optimization B1

Optimization B2
Algebraic Formulation B3
Examining the Formulation B6
Spreadsheet Model Development B7
Testing the Model B8
Solver Basics B8
Setting Up and Running Solver B9
Solving the Problem B12
Interpreting the Solution B13
Solver Solution Reports B14
Outcomes of Linear Programming Problems B16
Optimization Within OM: How It All Fits Together B17
Supplement Highlights B18
Key Terms B18
Solved Problems B18
Discussion Questions B23
Problems B24
CASE: Exeter Enterprises B25
Selected Bibliography B26

SUPPLEMENT C
Waiting Line Models C1

Elements of Waiting Lines C2
Links to Practice: Waiting for Fast Food C2
The Customer Population C3
The Service System C3
Arrival and Service Patterns C5
Waiting Line Priority Rules C5
Waiting Line Performance Measures C6
Single-Server Waiting Line Model C6
Multiserver Waiting Line Model C9
Changing Operational Characteristics C12
Larger-Scale Waiting Line Systems C13
Waiting Line Models Within OM: How It All Fits Together C14
Supplement Highlights C14
Key Terms C15
Discussion Questions C18
Problems C18
CASE: The Copy Center Holdup C19
Selected Bibliography C19

SUPPLEMENT D
Master Scheduling and Rough-Cut Capacity Planning D1

Master Production Scheduling D2
MPS as a Basis of Communication D2
Objectives of Master Scheduling D3
Developing an MPS D4
Rough-Cut Capacity Planning D5
Evaluating and Accepting the MPS D8
Using the MPS D9
Stabilizing the MPS D12
Master Production Scheduling and Rough-Cut Capacity Planning within OM: How It All Fits Together D14
Supplement Highlights D14
Key Terms D15
Discussion Questions D20
Problems D20
CASE: Newmarket International Manufacturing Company (C) D22