CONTENTS

CHAPTER 1
INTRODUCTION 1
1.1 The Block Diagram of a Communication System 4
1.2 Channel Characteristics 5
 1.2.1 Noise Sources 5
 1.2.2 Types of Transmission Channels 7
1.3 Summary of Systems-Analysis Techniques 13
 1.3.1 Time and Frequency-Domain Analyses 13
 1.3.2 Modulation and Communication Theories 13
1.4 Probabilistic Approaches to System Optimization 14
 1.4.1 Statistical Signal Detection and Estimation Theory 14
 1.4.2 Information Theory and Coding 15
 1.4.3 Recent Advances 16
1.5 Preview of This Book 16
Further Reading 16

CHAPTER 2
SIGNAL AND LINEAR SYSTEM ANALYSIS 17
2.1 Signal Models 17
 2.1.1 Deterministic and Random Signals 17
 2.1.2 Periodic and Aperiodic Signals 18
 2.1.3 Phasor Signals and Spectra 18
 2.1.4 Singularity Functions 21
2.2 Signal Classifications 24
2.3 Fourier Series 26
 2.3.1 Complex Exponential Fourier Series 26
 2.3.2 Symmetry Properties of the Fourier Coefficients 27
 2.3.3 Trigonometric Form of the Fourier Series 28
 2.3.4 Parseval’s Theorem 28
 2.3.5 Examples of Fourier Series 29
 2.3.6 Line Spectra 30
2.4 The Fourier Transform 34
 2.4.1 Amplitude and Phase Spectra 35
 2.4.2 Symmetry Properties 36
 2.4.3 Energy Spectral Density 37
 2.4.4 Convolution 38
 2.4.5 Transform Theorems: Proofs and Applications 40
 2.4.6 Fourier Transforms of Periodic Signals 48
 2.4.7 Poisson Sum Formula 50
2.5 Power Spectral Density and Correlation 50
 2.5.1 The Time-Average Autocorrelation Function 51
 2.5.2 Properties of R(r) 52
2.6 Signals and Linear Systems 55
 2.6.1 Definition of a Linear Time-Invariant System 56
 2.6.2 Impulse Response and the Superposition Integral 56
 2.6.3 Stability 58
 2.6.4 Transfer (Frequency Response) Function 58
 2.6.5 Causality 58
 2.6.6 Symmetry Properties of H(f) 59
 2.6.7 Input-Output Relationships for Spectral Densities 62
 2.6.8 Response to Periodic Inputs 62
 2.6.9 Distortionless Transmission 64
 2.6.10 Group and Phase Delay 64
 2.6.11 Nonlinear Distortion 67
 2.6.12 Ideal Filters 68
 2.6.13 Approximation of Ideal Lowpass Filters by Realizable Filters 70
 2.6.14 Relationship of Pulse Resolution and Risetime to Bandwidth 75
2.7 Sampling Theory 78
2.8 The Hilbert Transform 82
 2.8.1 Definition 82
 2.8.2 Properties 83
 2.8.3 Analytic Signals 85
 2.8.4 Complex Envelope Representation of Bandpass Signals 87
 2.8.5 Complex Envelope Representation of Bandpass Systems 89
2.9 The Discrete Fourier Transform and Fast Fourier Transform 91
Further Reading 95
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.6</td>
<td>Tree Diagrams</td>
<td>257</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Some More General Relationships</td>
<td>259</td>
</tr>
</tbody>
</table>

6.2	Random Variables and Related Functions	260
6.2.1	Random Variables	260
6.2.2	Probability (Cumulative) Distribution Functions	262
6.2.3	Probability-Density Function	263
6.2.4	Joint cdfs and pdfs	265
6.2.5	Transformation of Random Variables	270

6.3	Statistical Averages	274
6.3.1	Average of a Discrete Random Variable	274
6.3.2	Average of a Continuous Random Variable	275
6.3.3	Average of a Function of a Random Variable	275
6.3.4	Average of a Function of More Than One Random Variable	277
6.3.5	Variance of a Random Variable	279
6.3.6	Average of a Linear Combination of Random Variables	280
6.3.7	Variance of a Linear Combination of Independent Random Variables	281
6.3.8	Another Special Average—The Characteristic Function	282
6.3.9	The pdf of the Sum of Two Independent Random Variables	283
6.3.10	Covariance and the Correlation Coefficient	285

6.4	Some Useful pdfs	286
6.4.1	Binomial Distribution	286
6.4.2	Laplace Approximation to the Binomial Distribution	288
6.4.3	Poisson Distribution and Poisson Approximation to the Binomial Distribution	289
6.4.4	Geometric Distribution	290
6.4.5	Gaussian Distribution	291
6.4.6	Gaussian Q-Function	295
6.4.7	Chebyshev’s Inequality	296
6.4.8	Collection of Probability Functions and Their Means and Variances	296

Further Reading	298
Summary	298
Drill Problems	300
Problems	301
Computer Exercises	307

Chapter 7	RANDOM SIGNALS AND NOISE	308
7.1	A Relative-Frequency Description of Random Processes	308
7.2	Some Terminology of Random Processes	310
7.2.1	Sample Functions and Ensembles	310
7.2.2	Description of Random Processes in Terms of Joint pdfs	311
7.2.3	Stationarity	311
7.2.4	Partial Description of Random Processes: Ergodicity	312
7.2.5	Meanings of Various Averages for Ergodic Processes	315

Chapter 8	NOISE IN MODULATION SYSTEMS	349
8.1	Signal-to-Noise Ratios	350
8.1.1	Baseband Systems	350
8.1.2	Double-Sideband Systems	351
8.1.3	Single-Sideband Systems	353
8.1.4	Amplitude Modulation Systems	355
8.1.5	An Estimator for Signal-to-Noise Ratios	361
8.2	Noise and Phase Errors in Coherent Systems	366
8.3	Noise in Angle Modulation	370
8.3.1	The Effect of Noise on the Receiver Input	370
8.3.2	Demodulation of PM	371
8.3.3	Demodulation of FM: Above Threshold Operation	372
8.3.4	Performance Enhancement through the Use of De-emphasis	374
8.4	Threshold Effect in FM Demodulation	376
8.4.1	Threshold Effects in FM Demodulators	376
CHAPTER 8
8.5 Noise in Pulse-Code Modulation 384
8.5.1 Postdetection SNR 384
8.5.2 Comanding 387
Further Reading 389
Summary 389
Drill Problems 391
Problems 391
Computer Exercises 394

CHAPTER 9
PRINCIPLES OF DIGITAL DATA TRANSMISSION IN NOISE 396
9.1 Baseband Data Transmission in White Gaussian Noise 398
9.2 Binary Synchronous Data Transmission with Arbitrary Signal Shapes 404
9.2.1 Receiver Structure and Error Probability 404
9.2.2 The Matched Filter 407
9.2.3 Error Probability for the Matched-Filter Receiver 410
9.2.4 Correlator Implementation of the Matched-Filter Receiver 413
9.2.5 Optimum Threshold 414
9.2.6 Nonwhite (Colored) Noise Backgrounds 414
9.2.7 Receiver Implementation Imperfections 415
9.2.8 Error Probabilities for Coherent Binary Signaling 415
9.3 Modulation Schemes not Requiring Coherent References 421
9.3.1 Differential Phase-Shift Keying (DPSK) 422
9.3.2 Differential Encoding and Decoding of Data 427
9.3.3 Noncoherent FSK 429
9.4 M-ary Pulse-Amplitude Modulation (PAM) 431
9.5 Comparison of Digital Modulation Systems 435
9.6 Noise Performance of Zero-ISI Digital Data Transmission Systems 438
9.7 Multipath Interference 443
9.8 Fading Channels 449
9.8.1 Basic Channel Models 449
9.8.2 Flat-Fading Channel Statistics and Error Probabilities 450
9.9 Equalization 455
9.9.1 Equalization by Zero-Forcing 455
9.9.2 Equalization by MMSE 459
9.9.3 Tap Weight Adjustment 463
Further Reading 466
Summary 466
Drill Problems 468
Problems 469
Computer Exercises 476

CHAPTER 10
ADVANCED DATA COMMUNICATIONS TOPICS 477
10.1 M-ary Data Communications Systems 477
10.1.1 M-ary Schemes Based on Quadrature Multiplexing 477
10.1.2 OQPSK Systems 481
10.1.3 MSK Systems 482
10.1.4 M-ary Data Transmission in Terms of Signal Space 489
10.1.5 QPSK in Terms of Signal Space 491
10.1.6 M-ary Phase-Shift Keying 493
10.1.7 Quadrature-Amplitude Modulation (QAM) 495
10.1.8 Coherent FSK 497
10.1.9 Noncoherent FSK 498
10.1.10 Differentially Coherent Phase-Shift Keying 502
10.1.11 Bit Error Probability from Symbol Error Probability 503
10.1.12 Comparison of M-ary Communications Systems on the Basis of Bit Error Probability 505
10.1.13 Comparison of M-ary Communications Systems on the Basis of Bandwidth Efficiency 508
10.2 Power Spectra for Digital Modulation 510
10.2.1 Quadrature Modulation Techniques 510
10.2.2 FSK Modulation 514
10.2.3 Summary 516
10.3 Synchronization 516
10.3.1 Carrier Synchronization 517
10.3.2 Symbol Synchronization 520
10.3.3 Word Synchronization 521
10.3.4 Pseudo-Noise (PN) Sequences 524
10.4 Spread-Spectrum Communication Systems 528
10.4.1 Direct-Sequence Spread Spectrum 530
10.4.2 Performance of DSSS in CW Interference Environments 532
10.4.3 Performance of Spread Spectrum in Multiple User Environments 533
10.4.4 Frequency-Hop Spread Spectrum 536
10.4.5 Code Synchronization 537
10.4.6 Conclusion 539
10.5 Multicarrier Modulation and Orthogonal Frequency-Division Multiplexing 540
10.6 Cellular Radio Communication Systems 545
10.6.1 Basic Principles of Cellular Radio 546
10.6.2 Channel Perturbations in Cellular Radio 550
10.6.3 Multiple-Input Multiple-Output (MIMO) Systems—Protection Against Fading 551
10.6.4 Characteristics of 1G and 2G Cellular Systems 553
CHAPTER 10
W-CDMA 553
Migration to 4G 555
Further Reading 556
Summary 556
Drill Problems 557
Problems 558
Computer Exercises 563

CHAPTER 11
OPTIMUM RECEIVERS AND SIGNAL-SPACE CONCEPTS 564
11.1 Bayes Optimization 564
11.1.1 Signal Detection versus Estimation 564
11.1.2 Optimization Criteria 565
11.1.3 Bayes Detectors 565
11.1.4 Performance of Bayes Detectors 569
11.1.5 The Neyman-Pearson Detector 572
11.1.6 Minimum Probability of Error Detectors 573
11.1.7 The Maximum a Posteriori (MAP) Detector 573
11.1.8 Minimax Detectors 573
11.1.9 The M-ary Hypothesis Case 573
11.1.10 Decisions Based on Vector Observations 574
11.2 Vector Space Representation of Signals 574
11.2.1 Structure of Signal Space 575
11.2.2 Scalar Product 575
11.2.3 Norm 576
11.2.4 Schwarz’s Inequality 576
11.2.5 Scalar Product of Two Signals in Terms of Fourier Coefficients 578
11.2.6 Choice of Basis Function Sets—The Gram–Schmidt Procedure 579
11.2.7 Signal Dimensionality as a Function of Signal Duration 581
11.3 Map Receiver for Digital Data Transmission 583
11.3.1 Decision Criteria for Coherent Systems in Terms of Signal Space 583
11.3.2 Sufficient Statistics 589
11.3.3 Detection of M-ary Orthogonal Signals 590
11.3.4 A Noncoherent Case 592
11.4 Estimation Theory 596
11.4.1 Bayes Estimation 596
11.4.2 Maximum-Likelihood Estimation 598
11.4.3 Estimates Based on Multiple Observations 599
11.4.4 Other Properties of ML Estimates 601
11.4.5 Asymptotic Qualities of ML Estimates 602
11.5 Applications of Estimation Theory to Communications 602
11.5.1 Pulse-Amplitude Modulation (PAM) 603

CHAPTER 12
INFORMATION THEORY AND CODING 615
12.1 Basic Concepts 616
12.1.1 Information 616
12.1.2 Entropy 617
12.1.3 Discrete Channel Models 618
12.1.4 Joint and Conditional Entropy 621
12.1.5 Channel Capacity 622
12.2 Source Coding 626
12.2.1 An Example of Source Coding 627
12.2.2 Several Definitions 630
12.2.3 Entropy of an Extended Binary Source 631
12.2.4 Shannon–Fano Source Coding 632
12.2.5 Huffman Source Coding 632
12.3 Communication in Noisy Environments: Basic Ideas 634
12.4 Communication in Noisy Channels: Block Codes 636
12.4.1 Hamming Distances and Error Correction 637
12.4.2 Single-Parity-Check Codes 638
12.4.3 Repetition Codes 639
12.4.4 Parity-Check Codes for Single Error Correction 640
12.4.5 Hamming Codes 644
12.4.6 Cyclic Codes 645
12.4.7 The Golay Code 647
12.4.8 Bose–Chaudhuri–Hocquenghem (BCH) Codes and Reed Solomon Codes 648
12.4.9 Performance Comparison Techniques 648
12.4.10 Block Code Examples 650
12.5 Communication in Noisy Channels: Convolutional Codes 657
12.5.1 Tree and Trellis Diagrams 659
12.5.2 The Viterbi Algorithm 661
12.5.3 Performance Comparisons for Convolutional Codes 664
12.6 Bandwidth and Power Efficient Modulation (TCM) 668
12.7 Feedback Channels 672
12.8 Modulation and Bandwidth Efficiency 676
12.8.1 Bandwidth and SNR 677
12.8.2 Comparison of Modulation Systems 678