Contents at a Glance

Introduction

Introduction

Part I Technology and Components

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Data Cabling</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Cabling Specifications and Standards</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>Choosing the Correct Cabling</td>
<td>115</td>
</tr>
<tr>
<td>4</td>
<td>Cable System and Infrastructure Constraints</td>
<td>151</td>
</tr>
<tr>
<td>5</td>
<td>Cabling System Components</td>
<td>177</td>
</tr>
<tr>
<td>6</td>
<td>Tools of the Trade</td>
<td>203</td>
</tr>
</tbody>
</table>

Part II Network Media and Connectors

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Copper Cable Media</td>
<td>237</td>
</tr>
<tr>
<td>8</td>
<td>Wall Plates</td>
<td>279</td>
</tr>
<tr>
<td>9</td>
<td>Connectors</td>
<td>299</td>
</tr>
<tr>
<td>10</td>
<td>Fiber-Optic Media</td>
<td>325</td>
</tr>
<tr>
<td>11</td>
<td>Unbounded (Wireless) Media</td>
<td>349</td>
</tr>
</tbody>
</table>

Part III Cabling Design and Installation

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Cabling-System Design and Installation</td>
<td>375</td>
</tr>
<tr>
<td>13</td>
<td>Cable-Connector Installation</td>
<td>411</td>
</tr>
<tr>
<td>14</td>
<td>Cable-System Testing and Troubleshooting</td>
<td>445</td>
</tr>
<tr>
<td>15</td>
<td>Creating a Request for Proposal (RFP)</td>
<td>481</td>
</tr>
<tr>
<td>16</td>
<td>Cabling @ Work: Experience from the Field</td>
<td>509</td>
</tr>
</tbody>
</table>

Glossary

527
Appendices

Appendix A: Cabling Resources
Appendix B: Registered Communications Distribution Designer (RCDD) Certification
Appendix C: Home Cabling: Wiring Your Home for Now and the Future
Appendix D: Overview of IEEE 1394 and USB Networking
Appendix E: The Electronics Technicians Association, International (ETA) Certifications

Index
Contents

Introduction

Part I

Technology and Components

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Introduction to Data Cabling</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>The Golden Rules of Data Cabling</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>The Importance of Reliable Cabling</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>The Cost of Poor Cabling</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Is the Cabling to Blame?</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>You’ve Come a Long Way, Baby: The Legacy of Proprietary Cabling Systems</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Proprietary Cabling Is a ‘Thing of the Past’</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Cabling and the Need for Speed</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Types of Communications Media</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Cable Design</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Plenum</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Riser</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>General Purpose</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Limited Use</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Cable Jackets</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Wire Insulation</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Twists</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Solid Conductors versus Stranded Conductors</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Data Communications 101</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Bandwidth, Frequency, and Data Rate</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>What a Difference a dB Makes!</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Speed Bumps: What Slows Down Your Data</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Hindrances to High-Speed Data Transfer</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Attenuation (Loss of Signal)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Noise (Signal Interference)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Near-End Crosstalk (NEXT)</td>
<td>52</td>
</tr>
</tbody>
</table>
Far End Crosstalk (FEXT) 53
Equal-Level Far-End Crosstalk (ELFEXT) 53
Pair-to-Pair Crosstalk 54
Power-Sum Crosstalk 54
External Interference 56
Attenuation-to-Crosstalk Ratio (ACR) 57
Propagation Delay 58
Delay Skew 58
The Future of Cabling Performance 59

Chapter 2 Cabling Specifications and Standards 61
Structured Cabling and Standardization 62
 Standards and Specifying Organizations 64
ANSI/TIA/EIA-568-B Cabling Standard 73
 ANSI/TIA/EIA-568-B Purpose and Scope 75
 Subsystems of a Structured Cabling System 76
 Media and Connecting Hardware Performance 92
ANSI/TIA/EIA-569-A 95
ANSI/TIA/EIA-607 102
ANSI/TIA/EIA-570-A 103
Other TIA/EIA Standards and Bulletins 104
ISO/IEC 11801 105
 Classification of Applications and Links 106
Anixter Cable Performance Levels Program 106
 Anixter Levels: Looking Forward 108
 What About Components? 108
Other Cabling Technologies 109
 The IBM Cabling System 109
 Avaya SYSTIMAX SCS Cabling System 112
 Digital Equipment Corporation DECconnect 112
 NORDX/CDT Integrated Building Distribution System 113

Chapter 3 Choosing the Correct Cabling 115
Topologies 116
 Star Topology 117
 Bus Topology 118
 Ring Topology 119
Contents

UTP, Optical Fiber, and Future-Proofing 120
Network Architectures 121
 Ethernet 121
 Token Ring 133
 Fiber Distributed Data Interface (FDDI) 136
 Asynchronous Transfer Mode (ATM) 137
 100VG-AnyLAN 139
Network-Connectivity Devices 140
 Repeaters 140
 Hubs 141
 Bridges 144
 Switches 147
 Routers 147

Chapter 4 Cable System and Infrastructure Constraints 151

Where Do Codes Come From? 152
 The United States Federal Communications Commission 152
 The National Fire Protection Association 153
 Underwriters Laboratories 155
 Codes and the Law 157
The National Electrical Code 159
 NEC Chapter 1 General Requirements 159
 NEC Chapter 2 Wiring and Protection 160
 NEC Chapter 3 Wiring Methods and Materials 164
 NEC Chapter 5 Special Occupancy 166
 NEC Chapter 7 Special Conditions 166
 NEC Chapter 8 Communications Systems 169
Knowing and Following the Codes 176

Chapter 5 Cabling System Components 177

The Cable 178
 Horizontal and Backbone Cables 178
 Modular Patch Cables 180
 Pick the Right Cable for the Job 180
Wall Plates and Connectors 181
Cabling Pathways 183
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduit</td>
<td>183</td>
</tr>
<tr>
<td>Cable Trays</td>
<td>183</td>
</tr>
<tr>
<td>Raceways</td>
<td>185</td>
</tr>
<tr>
<td>Fiber-Protection Systems</td>
<td>186</td>
</tr>
<tr>
<td>Wiring Closets</td>
<td>187</td>
</tr>
<tr>
<td>TIA/EIA Recommendations for Wiring Closets</td>
<td>188</td>
</tr>
<tr>
<td>Cabling Racks and Enclosures</td>
<td>190</td>
</tr>
<tr>
<td>Cross-Connect Devices</td>
<td>196</td>
</tr>
<tr>
<td>Administration Standards</td>
<td>200</td>
</tr>
<tr>
<td>Chapter 6 Tools of the Trade</td>
<td>203</td>
</tr>
<tr>
<td>Building a Cabling Tool Kit</td>
<td>204</td>
</tr>
<tr>
<td>Common Cabling Tools</td>
<td>205</td>
</tr>
<tr>
<td>Wire Strippers</td>
<td>206</td>
</tr>
<tr>
<td>Wire Cutters</td>
<td>209</td>
</tr>
<tr>
<td>Cable Crimpers</td>
<td>210</td>
</tr>
<tr>
<td>Punch-Down Tools</td>
<td>213</td>
</tr>
<tr>
<td>Fish Tapes</td>
<td>216</td>
</tr>
<tr>
<td>Voltage Meter</td>
<td>218</td>
</tr>
<tr>
<td>Cable Testing</td>
<td>218</td>
</tr>
<tr>
<td>A Cable-Toning Tool</td>
<td>218</td>
</tr>
<tr>
<td>Twisted-Pair Continuity Tester</td>
<td>219</td>
</tr>
<tr>
<td>Coaxial Tester</td>
<td>220</td>
</tr>
<tr>
<td>Optical-Fiber Testers</td>
<td>221</td>
</tr>
<tr>
<td>Cabling Supplies and Tools</td>
<td>223</td>
</tr>
<tr>
<td>Cable-Pulling Tools</td>
<td>223</td>
</tr>
<tr>
<td>Wire-Pulling Lubricant</td>
<td>228</td>
</tr>
<tr>
<td>Cable-Marking Supplies</td>
<td>229</td>
</tr>
<tr>
<td>Tools That a Smart Data-Cable Technician Carries</td>
<td>231</td>
</tr>
<tr>
<td>A Preassembled Kit Could Be It</td>
<td>232</td>
</tr>
<tr>
<td>Part II Network Media and Connectors</td>
<td>235</td>
</tr>
<tr>
<td>Chapter 7 Copper Cable Media</td>
<td>237</td>
</tr>
<tr>
<td>Types of Copper Cabling</td>
<td>238</td>
</tr>
<tr>
<td>Major Cable Types Found Today</td>
<td>238</td>
</tr>
</tbody>
</table>
Contents

- Picking the Right Patch Cables 247
- Why Pick Copper Cabling? 249
- Best Practices for Copper Installation 250
 - Following Standards 250
 - Planning 253
 - Installing Copper Cable 255
- Copper Cable for Data Applications 260
 - 110-Blocks 260
 - Sample Data Installations 263
- Copper Cable for Voice Applications 266
 - 66-Blocks 266
 - Sample Voice Installations 270
- Testing 274
 - Tone Generators and Amplifier Probes 275
 - Continuity Testing 275
 - Wire-Map Testers 276
 - Cable Certification 276
 - Common Problems with Copper Cabling 276

Chapter 8 Wall Plates 279

- Wall-Plate Design and Installation Issues 280
 - Manufacturer System 280
 - Wall-Plate Location 281
 - Wall-Plate Mounting System 283
 - Fixed-Design or Modular Plate 287
- Fixed-Design Wall Plates 289
 - Number of Jacks 289
 - Types of Jacks 290
 - Labeling 291
- Modular Wall Plates 291
 - Number of Jacks 292
 - Wall-Plate Jack Considerations 292
 - Labeling 296
- Biscuit Jacks 296
 - Types of Biscuit Jacks 297
 - Advantages of Biscuit Jacks 297
 - Disadvantages of Biscuit Jacks 298
<table>
<thead>
<tr>
<th>Chapter 9 Connectors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Twisted-Pair Cable Connectors</td>
<td>300</td>
</tr>
<tr>
<td>Patch-Panel Terminations</td>
<td>300</td>
</tr>
<tr>
<td>Modular Jacks and Plugs</td>
<td>302</td>
</tr>
<tr>
<td>Shielded Twisted-Pair Connectors</td>
<td>316</td>
</tr>
<tr>
<td>Coaxial Cable Connectors</td>
<td>317</td>
</tr>
<tr>
<td>F-Series Coaxial Connectors</td>
<td>318</td>
</tr>
<tr>
<td>N-Series Coaxial Connectors</td>
<td>318</td>
</tr>
<tr>
<td>The BNC Connector</td>
<td>319</td>
</tr>
<tr>
<td>Fiber-Optic Cable Connectors</td>
<td>320</td>
</tr>
<tr>
<td>Fiber-Optic Connector Types</td>
<td>320</td>
</tr>
<tr>
<td>Installing Fiber-Optic Connectors</td>
<td>323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10 Fiber-Optic Media</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Fiber-Optic Transmission</td>
<td>326</td>
</tr>
<tr>
<td>Advantages of Fiber-Optic Cabling</td>
<td>327</td>
</tr>
<tr>
<td>Immunity to Electromagnetic Interference (EMI)</td>
<td>328</td>
</tr>
<tr>
<td>Higher Possible Data Rates</td>
<td>328</td>
</tr>
<tr>
<td>Longer Maximum Distances</td>
<td>328</td>
</tr>
<tr>
<td>Better Security</td>
<td>329</td>
</tr>
<tr>
<td>Disadvantages of Fiber-Optic Cabling</td>
<td>329</td>
</tr>
<tr>
<td>Higher Cost</td>
<td>329</td>
</tr>
<tr>
<td>Difficult to Install</td>
<td>330</td>
</tr>
<tr>
<td>Types of Fiber-Optic Cables</td>
<td>331</td>
</tr>
<tr>
<td>Composition of a Fiber-Optic Cable</td>
<td>331</td>
</tr>
<tr>
<td>Additional Designations of Fiber-Optic Cables</td>
<td>337</td>
</tr>
<tr>
<td>Fiber Installation Issues</td>
<td>342</td>
</tr>
<tr>
<td>Components of a Typical Installation</td>
<td>343</td>
</tr>
<tr>
<td>Fiber-Optic Performance Factors</td>
<td>345</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11 Unbounded (Wireless) Media</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared Transmissions</td>
<td>350</td>
</tr>
<tr>
<td>How Infrared Transmissions Work</td>
<td>350</td>
</tr>
<tr>
<td>Advantages of Infrared</td>
<td>354</td>
</tr>
<tr>
<td>Disadvantages of Infrared</td>
<td>355</td>
</tr>
<tr>
<td>Examples of Infrared Transmissions</td>
<td>356</td>
</tr>
</tbody>
</table>
Radio-Frequency (RF) Systems 357
 How RF Works 358
 Advantages of RF 363
 Disadvantages of RF 363
 Examples of RF 364
Microwave Communications 366
 How Microwave Communication Works 367
 Advantages of Microwave Communications 370
 Disadvantages of Microwave Communications 371
 Examples of Microwave Communications 371

Part III Cabling Design and Installation 373

Chapter 12 Cabling-System Design and Installation 375
 Elements of a Successful Cabling Installation 376
 Proper Design 376
 Quality Materials 378
 Good Workmanship 379
 Cabling Topologies 379
 Bus Topology 379
 Star Topology 380
 Ring Topology 380
 Mesh Topology 381
 Backbones and Segments 381
 Selecting the Right Topology 383
 Cabling Plant Uses 383
 Telephone 384
 Television 385
 Fire-Detection and Security Cabling 385
 Choice of Media 386
 Telecommunications Rooms 386
 LAN Wiring 387
 Telephone Wiring 388
 Power Requirements 391
 HVAC Considerations 391
Cabling Management 392
Physical Protection 392
Electrical Protection (Spike Protection) 394
Fire Protection 396
Data and Cabling Security 397
EM (Electromagnetic) Transmission Regulation 397
Tapping Prevention 398
Cabling Installation Procedures 398
Design the Cabling System 398
Schedule the Installation 399
Install the Cabling 399
Terminate the Cable 406
Test the Installation 409

Chapter 13 Cable-Connector Installation 411
Twisted-Pair Cable-Connector Installation 412
Types of Connectors 412
Conductor Arrangement 414
Connector Crimping Procedures 415
Coaxial Cable-Connector Installation 421
Types of Connectors 421
Connector Crimping Procedures 422
Fiber-Optic Cable-Connector Installation 426
Connector Types 426
Connectorizing Methods 426
Connector Installation Procedures 427

Chapter 14 Cable-System Testing and Troubleshooting 445
Installation Testing 446
Copper-Cable Tests 446
Fiber-Optic Tests 455
Cable-Plant Certification 458
Creating a Testing Regimen 459
Copper-Cable Certification 460
Fiber-Optic Certification 462
Third-Party Certification 463
Cable-Testing Tools 464
 Wire-Map Testers 464
 Continuity Testers 465
 Tone Generators 465
 Time Domain Reflectometers (TDR) 466
 Fiber-Optic Power Meters 468
 Fiber-Optic Test Sources 469
 Optical Loss Test Sets and Test Kits 469
 Optical Time Domain Reflectometers (OTDRs) 470
 Fiber-Optic Inspection Microscopes 471
 Visual Fault Locators 472
 Multifunction Cable Scanners 472
Troubleshooting Cabling Problems 474
 Establishing a Baseline 474
 Locating the Problem 475
 Resolving Specific Problems 476

Chapter 15 Creating a Request for Proposal (RFP) 481
What Is a Request for Proposal? 482
 What Do We Want in Life? 483
Developing a Request for Proposal 484
 The Needs Analysis 484
 Designing the Project for the RFP 488
 Writing the RFP 496
Distributing the RFP and Managing the Vendor-Selection Process 498
 Distributing RFPs to Prospective Vendors 498
 Vendor Selection 499
Project Administration 500
 Cutover 500
Technology Network Infrastructure Request for Proposal
 (A Sample RFP) 501
 General 502
 Purpose of This RFP 502
 Cable Plant 504
Chapter 16 Cabling @ Work: Experience from the Field 509

- Hints and Guidelines 510
 - Know What You Are Doing 510
 - Plan the Installation 511
 - Have the Right Equipment 512
 - Test and Document 513
 - Train Your Crew 513
 - Work Safely 514
 - Make It Pretty 514
 - Look Good Yourself 515
 - Plan for Contingencies 515
 - Match Your Work to the Job 517
 - Waste Not, Want Not 518

- Case Studies 518
 - A Small Job 519
 - A Large Job 521
 - A Peculiar Job 523
 - An Inside Job 524

Glossary 527

Part IV 605

Appendix A Cabling Resources 607

- Informational Internet Resources 608
 - wiring.com 608
 - comp.dcom.cabling 608
 - The Cabling News Group FAQ 608
 - Whatis 609
 - TIA Online 609
 - TechFest 609
 - TechEncyclopedia 609
 - Global Technologies, Inc. 609
 - cabletesting.com 609
National Electrical Code Internet Connection 609
Charles Spurgeon’s Ethernet Website 610
American National Standard T1.523-2001: Glossary of Telecommunications Terms 610
Protocols.com 610
Webopedia: Online Computer Dictionary for Internet Terms and Technical Support 610
Books, Publications, and Videos 610
 Cabling Business Magazine 610
 Cabling Installation and Maintenance 611
 Cabling Installation and Maintenance Tips and Videos 611
 Newton’s Telecom Dictionary by Harry Newton 611
 Premises Network Online 611
 Building Your Own High-Tech Small Office by Robert Richardson 611
 BICSI’s Telecommunications Distribution Methods and Cabling Installation Manuals 612
 Understanding the National Electrical Code (3rd Edition) by Mike Holt and Charles Michael Holt 612
 ANSI/TIA/EIA-568-B Commercial Building Telecommunication Cabling Standard 612
Vendors and Manufacturers 612
 The Siemon Company 612
 MilesTek, Inc. 613
 IDEAL DataComm 613
 Ortronics 613
 Superior Essex 613
 Jensen Tools 613
 Labor Saving Devices, Inc. 613
 Erico 614
 Berk-Tek 614
 Microtest 614
 Fluke 614
 Panduit 614
 Anixter 614
Appendix B Registered Communications Distribution Designer (RCDD) Certification 615
Apply and Be Accepted as a Candidate for the Designation of RCDD 617
Successfully Pass the Stringent RCDD Exam 617
Maintain Your Accreditation through Continuing Membership and Education 620
Check Out BICSI and the RCDD Program for Yourself 621

Appendix C Home Cabling: Wiring Your Home for Now and the Future 623
Home-Cabling Facts and Trends 624
Structured Residential Cabling 626
Picking Cabling Equipment for Home Cabling 628
Thinking Forward 630

Appendix D Overview of IEEE 1394 and USB Networking 631
IEEE 1394 633
USB 635
References 637

Appendix E The Electronics Technicians Association, International (ETA) Certifications 639
Data Cabling Installer Certification (DCIC) 2004 Competency Requirements 640
1.0 BASIC ELECTRICITY 640
2.0 DATA COMMUNICATIONS BASICS 641
3.0 DEFINITIONS, SYMBOLS, AND ABBREVIATIONS 641
4.0 CABLE CONSTRUCTION 641
5.0 CABLE PERFORMANCE CHARACTERISTICS 642
6.0 CABLING STANDARDS 642
7.0 BASIC NETWORK TOPOLOGIES 642
8.0 BASIC NETWORK ARCHITECTURES 642
9.0 NATIONAL ELECTRIC CODE - NEC and UL requirements 642
10.0 CBLING SYSTEM COMPONENTS 643
11.0 DCIC INSTALLATION TOOLS 643
12.0 CONNECTORS AND OUTLETS 643
13.0 Cabling System Design 644
14.0 Cabling Installation 644
15.0 Connector Installation 644
16.0 CABLING TESTING AND CERTIFICATION 645
17.0 CABLING TROUBLESHOOTING 645
18.0 DOCUMENTATION 645
Certified Fiber Optics Installer (CFOI) 2004 Competency Requirements 645
1.0 HISTORY OF FIBER OPTIC CABLING 645
2.0 PRINCIPLES OF FIBER OPTIC TRANSMISSION 646
3.0 FIBER OPTIC CABLING SAFETY 646
4.0 BASIC PRINCIPLES OF LIGHT 646
5.0 OPTICAL FIBER CONSTRUCTION AND THEORY 646
6.0 OPTICAL FIBER CHARACTERISTICS 647
7.0 ADVANTAGES OF FIBER OVER COPPER 647
8.0 OPTICAL CABLES 647
9.0 LIGHT SOURCES 648
10.0 DETECTORS 648
11.0 CONNECTORS 648
12.0 PASSIVE COMPONENTS 649
13.0 TYPES OF SPLICING 649
 13.1 Mechanical Splicing 649
 13.2 Fusion Splicing 649
14.0 CABLE INSTALLATION AND HARDWARE 649
15.0 FIBER OPTIC LINK 650
16.0 OPTICAL FIBER TEST EQUIPMENT 650
17.0 OPTICAL FIBER MEASUREMENT AND TESTING 650
Fiber Optic Technician (FOT) 2004 Competency Requirements 651
1.0 PRINCIPLES OF FIBER OPTIC TRANSMISSION 651
2.0 BASIC PRINCIPLES OF LIGHT 651
3.0 OPTICAL FIBER CONSTRUCTION AND THEORY 652
4.0 OPTICAL FIBER CHARACTERISTICS 652
5.0 ADVANTAGES OF FIBER OVER COPPER 652
6.0 FIBER OPTIC CABLES 652
7.0 SOURCES 653
8.0 DETECTORS 654
9.0 CONNECTORS 654
10.0 PASSIVE COMPONENTS 655
11.0 TYPES OF SPLICING 655
 11.1 Mechanical Splicing 655
Contents

11.2 Fusion Splicing 655
12.0 CABLE INSTALLATION AND HARDWARE 655
13.0 FIBER OPTIC LINK 656
14.0 OPTICAL FIBER MEASUREMENT AND TESTING 656
15.0 LINK AND CABLE TESTING 656

Index 659