Index

Academy of Architecture for Health (AAH), 78, 265
Accessibility, 207, 392
Acoustics:
and control alcoves, 241
and control rooms, 245
and MRIs, 114, 282, 285, 324–326, 428
and privacy, 158
reading room, 260–261
to soften technology, 159, 160
ACR, see American College of Radiology
ACR-NEMA Digital Imaging and Communications Standards Committee, 141
Activity clusters, 223, 225–226
Activity spaces, 178, 179, 222, 223
ADA, see Americans with Disabilities Act
Adjacencies:
in design development phase, 60 between emergency department/radiology, 195 functional, 58, 534, 335
for hospital-based imaging department, 185 optimal, 339
and radiation protection, 303–306
Administrative spaces, 178, 179, 222, 223
Advanced Multimodality Image-Guided Operating Room (AMIGO), 370–371, 418–419
Advanced robotic surgery, 375–377
AIA, see American Institute of Architects
Air-conditioning systems, 8, 293, 336
Aluminum, 309
Ambient lighting, 259–260
Ambulatory care facilities, 14, 25, 396–399
American College of Cardiology, 383
American College of Radiology (ACR):
appropriateness criteria of, 344, 345
and interventional cardiac imaging, 381
and standardization, 140–141
American Institute of Architects (AIA), 78, 265, 455–458
B141: Standard Form of Agreement Between Owner and Architect, 51, 52, 72
American National Standards Institute (ANSI), 261
Americans with Disabilities Act (ADA):
and control alcoves, 241
and control rooms, 245
and mobile installations, 391
and renovation, 332, 337
and RF floors, 311
and room sizes, 231
AMIGO, see Advanced Multimodality Image-Guided Operating Room
Anesthesia equipment, 100, 107
Angiography, 18, 380, 453–456
ANSI (American National Standards Institute), 261
ANSI-HFS Standard 100-1988, 261
Application service providers (ASPs), 174, 214, 252
Architects:
and budget development, 37
and design/planning process, xv
and formal written approval, 55
language of, xv
roles/responsibilities of, 49–52, 63
Architectural design, 22–25
Architectural implications:
of image processing/quality review, 199
of need for exam workflow, 195
for patient received in imaging department, 197
for patient’s record preparation, 196
for scheduling an appointment, 198
for transmission/reporting/storage of results, 200
Architectural planning, 71, 374
Architectural team, 4, 46–47
Backup power, 138, 146
Baltimore Veterans Affairs Medical Center, 22
Barium sulfate, 89, 90, 92
Benchmarking of medical imaging, 57
Berners-Lee, Tim, 137
Berry, Leonard, 21, 158–159
BGSF, see Building gross square feet
BIM (Building Information Models), 55
Biobehavioral waste, 202
Biomagnetics/biomagnetic imaging, 121–122
Biopsy devices, 95, 96
Bloch, Felix, 112
Block diagrams, 38–39
Blood vessels, 92–93, 109, 118
Blue Cross and Blue Shield Association, 238
Body interventional rooms, 93
Brain imaging, 104
Bingham and Women’s Hospital, 566
Bogdalon, B. G., 190
Budgets:
aligning, 45
architect role and, 52
develop working, 37–52
and equipment, 55, 74, 75, 77–78
form for estimating, 66
project, 66–68
and project scope, 46
Building codes, for outpatient facilities, 256
Building gross area, 177, 178
Building gross square feet (BGSF), 24, 55
Building Information Models (BIM), 55
Building permit, 299
Cables, 146, 265
CAD, see Computer-aided detection:
Coronary artery disease
Cancer, 93, 94
Oncology
Cancer center, 384, 387
Capital budget, preliminary, 57
Cardiac catheterization, process of, 99–100
Cardiac catheterization lab (Cath Lab):
building/licensing requirements for, 275–276
core rooms for, 245, 246
equipment needed for, 100
and Health Guidelines for Design and Construction of Hospital and Healthcare Facilities, 457
and interventional cardiac imaging, 381–382
key space generators for, 221
procedure rooms for, 271–277, 372
Cardiac nuclear medicine, 125, 579, 380
Cardiology:
and Health Guidelines for Design and Construction of Hospital and Healthcare Facilities, 457
and imaging, 379–385
and interventional cardiac imaging, 381–385
and interventional radiology, 97, 99
and noninvasive cardiac imaging, 579–581
specialized imaging equipment for, 344
and ultrasound, 111, 112
Cardiovascular imaging, 101
C-arms, portable, see Portable imaging equipment
CAS (computer-assisted surgery), 361
Case studies, 408–419
Brigham and Women's Hospital Advanced Multimodal Image Guided Operating Room Suite (AMIGO), 418–419
Foothills Medical Center–Intraoperative Magnetic Resonance Imaging, 417
UCLA Medical Center, 409–415
UCLA Westwood Replacement Hospital–Interventional Floor, 413–416
UCLA Westwood Replacement Hospital Non-Invasive Radiology Department, 408–409
Cath Lab, see Cardiac catheterization lab
Ceilings, 159, 160, 249, 260–261, 267
Ceiling-mounted displays, 364, 365
Ceiling-mounted radiation shields, 364
Center for Health Design (CHD), 20, 21, 153–154
Centra Health, 348
Centralized imaging departments, 209–216
Central staff zone, 212–215
Certificate of occupancy, 299
Certificate of substantial completion, 63
Chang, Paul, 184
CHD, see Center for Health Design
CHER (Coalition for Health Care Research), 154
Chest, 228
Children, designing for, 164–167
Childs, Blair, 24
Cholangiopancreatography (CP), 119
Circulation, 190–193, see also Work flow and concept plans, 45
and corridors/exitways, 200–201
for image-only facilities, 186
and inpatient departmental needs, 188
patterns in, 58, 60
public, 157
routes, 207
“Civic value” of a facility, 165
Classifications of equipment, 75–78
Claustrophobia, 160–161, 282, 283, 324, 326
Clean-core concept, 373
Clinical devices, 72
Cluster configurations, 216–218
Coalition for Health Care Research (CHER), 154
Codes, 25, 201, 236, 331
Code compliance, 61, 63, 352, 356–357
Coile, R., 21
Cold lab, 202
Collaborative relationships, 344
Color flow Doppler, 109–110, 380
Columbia-Presbyterian Hospital, 361
Communication, 35–35, 64
Communications systems, 9, 175–175
Complex motion tomography, 103
Computed radiography (CR): and emergency medicine, 550, 351 and ECUs, 356
image management for, 252 and patient throughput, 221 plates in, 85–89
Computed tomography (CT), 105–107 advantages of, 18 control rooms for, 246 design/planning considerations for, 277–279, 292–295 and emergency departments, 347, 349, 352 and ICUs, 354, 356
interventional suite for, 107 and noninvasive cardiac imaging, 579, 380 and oncology, 390 and PET/CT hybrid, 384–385 portable scanners for, 348, 355 and radionuclide imaging, 125 simulation, 387 and technology docks, 390 and vascular imaging, 101
Computed tomography angiography (CTA), 18, 380
Computers, see also Information systems:
information technology (IT); Internet; Web browsers
and managing radiology department, 346–347 networks of, 157, 139, 146
personal, 144
server cabinets for, 374 and surgery, 365–364
Computer-aided detection (CAD), 96
Computer-assisted surgery (CAS), 561
Computerized physician order entry (CPOE), 145
Computer on wheels (COWs), 364
Computer rooms, 139
Computer server cabinets, 374
Concept design phase, 58, 59
Concept diagram, 45, 46
Concept plan, 45–46
Conceptual cost model, 68
Confidential discussions, 158
Configuration:
centralized vs. decentralized, 209–210
for freestanding facilities, 207–208
and functional zone concept, 210–214
plan typologies for, 214–218
for reading room, 262
and renovation vs. new construction decision, 335–335
Connectivity for reading rooms, 265
Consoles, independent, 140
Construction. See also Construction costs; Renovation and contingency, 37
key questions for approach to, 330–335
and radiation barriers, 306–307
renovation vs. new, 329–339
strategies for, 329–330
total direct cost of, 69
Construction budget, 55
Construction codes, 23
Construction costs:
direct, 66
estimate, 59, 68–69
hidden, 338–339
indirect, 66, 68
initial, 175
and medical equipment/IT costs, 72
and quality design, 25
and radiation protection, 305
COSY
Construction escalation cost factor, 35
Consultants, 46, 47, 30–52, 71–75
Contingency figures, 37–38
Contract, 45
Contract documents, 65, 76–77, 305
Contract documents phase, 55, 61–62, 69
Contractors, 49, 52, 61–65
Contractor items, 61
Contrast agents, 93, 101, 118, 120, 381
Control alcoves, 212, 213, 224, 259–244, 306
Control areas:
and control alcoves, 259–244
and control corridors, 259 and control rooms, 244–247 and mammography, 244
and radiation protection, 306
room design for, 237–247
and ultrasound, 244
zoning of, 211, 212
Control corridors, 212, 213, 239, 306
Control rooms:
for CT, 246
for interventional imaging, 245, 246, 275–277
for MRI, 138, 247, 326
room design for, 244–247
shared, 278
space guide lines for, 224
surgical imaging, 360, 361
well-designed, 7
Control windows, 310–311
Convenience, 134–158, 306, 392
Copper, 309
Core configurations, 216, 217
Cormack, Allan M., 103
Coronary artery disease (CAD), 379, 380
Corridors, 200–201, 212, 213, 234–255, 259, 366
Cost(s). See also Construction costs alignment of, with quality/quantity, 52, 53
and budget, 66
and economic value, 175–180
for emergency departments, 344
equipment, 25, 35
of equipment, 35
and equipment classification, 75 escalating healthcare, 14, 175
and feasibility study, 55
hidden, 331, 358–359
labor, 69
of labor, 69
life-cycle, 176, 338
and machine utilization, 145
maintenance, 175
operational, 176, 339
of PET facility, 127
project development, 68
of quality design, 25
and radiation protection, 305, 306 and renovation, 350, 331, 334, 338–339
rising healthcare, 24
and site selection, 36
and space, 219
of staffing, 175, 176
unit, 35, 34, 35, 69
and universal room design, 250
and weight of equipment, 25
Cost consultants, 37
Cost containment, 23
Cost escalation contingency, 35, 69
Cost estimates, 32, 34, 61, 62, 68–69
COWs (computer on wheels), 364
Coye, Molly Joel, 357–358
CP (cholangiopancreatography), 119
CPOE (computerized physician order entry), 145
CR, see Computed radiography
Critical path, 64, 65
Crossing the Quality Chasm (Institutes of Medicine of the National Academies), 400
Cryobiolysis, 590
Cryogenic venting, 284, 323–325, 429
CT, see Computed tomography
CTA, see Computed tomography angiography
Cystoscopy procedures, 569
Damadian, Raymond, 112
Data and communications systems, see Information systems
Database software, 137
Data centers (hospital), 138
Data sheets, 60–61
Data storage, requirements for, 175–177
Daylight, 205, 206, 217, 267, 520
Decentralized imaging departments, 22, 209–210
Demand for services, 34–35
Departmental gross area, 177, 178
Departmental gross square feet (DGSF), 54–55
Departments and space programming, 220
Design, viii, xv–xvi. See also Design concepts; Physical properties; Room design
architectural, 22–25
balancing with equipment selection, 79
challenges in, 26–27
and change, 9–27
and circulation, 185
considerations for, 1–8
and cost of construction/value of quality facility, 25–26
of early X-ray facilities, 12
and efficient operations, 23
and electronic information management, 14–15
and enterprise-wide imaging, 398
evidence-based, 20–21, 131
flexibility in, xv, 59, 167–173, 233, 250, 262
human factors in, 26, 266–267, 271
Index

442

Haskin, Marvin, 153, 144
Hazard Checklist for MRI Personnel, 454
Hazardous materials, 356
Healthcare, 9–17
Healthcare architecture, 1, 11–12, 20–24
Healthcare professionals, xv–xvi, xxi, 4. See also Staff/faculty; specific headings, e.g., radiologists
Health Guidelines for Design and Construction of Hospital and Healthcare Facilities (AIA Academy of Architecture), 78, 265, 435–458
Health Information Management Systems Society (HIMSS), 142
Health Insurance Portability and Accountability Act (HIPAA), 6, 146, 147, 158
Health Technology Center, 357
Heating, 355–356
Heating, ventilating, and air-conditioning (HVAC): and computer requirements, 146 costs of, 176 of floor-to-floor heights, 25 for interventional imaging, 256 and MRI shielding, 315, 315, 321 for procedure rooms, 253 reserve capacity for, 172–173 during schematic design phase, 69 and universal room design, 251
Hedge, Alan, 260–261
Heulat, Barbara, 156
HFS (Human Factors Society), 261
IHHE (Intensive care unit), 291
IBS (Integrated building system), 157
IBS, see Integrated building system
ICU, see Intensive care unit
IEE 802, 141
IGRT, see Image-guided radiation therapy
IGS, see Image-guide surgery
IHEA, see Integrating the Health Enterprise
IMACS, see Image management and communication systems
Image interpretation, work flow for, 199–200
Image management and communication systems (IMACS), 9, 173
Image management systems, 135–137. See also Imaging technologies; Picture archiving and communications systems (PACS)
development of, 138–140 and function of PACS, 139–145 and ICUs, 356 and information security, 146–147 integrated systems, 145–147 planning considerations for, 145–146 radiology information systems, 14, 155–158, 142–145 Image processing, work flow for, 198–199
Image reconstruction, 363
Imaging departments, 185–187, 196–197, 205–218
Imaging facilities:
for successful, 26–27 equipment needs in, 8 location consideration for free-standing, 206–209 patients needs in, 5–7 size of, 226–225 and space, 219–251 staff/faculty needs in, 7–8 systematic design approach for, 266–267
Imaging facilities design, see Design Imaging facilities development, see Equipment planning; Managing imaging facility development; Organization of medical imaging project Imaging procedure areas, see Procedure areas Imaging procedures, steps in, 193, 194 Imaging suite, 455 Imaging techniques, 128–129. See also Image management systems; Image reconstruction; Imaging technologies; Picture archiving and communication systems
Interradialarcus, 435
Interventional cardiac, 381–385 and intracranial aneurysm-clips, 429–430 Intracranial urography, 102, 105
Intraoperative cardiac, 14, 135–138, 142–145 Information technology (IT), 72, 398 Infrastructure capacity upgrades, 55 In-house architects, 46 Initial cost of space, 173, 176 Injection room, 291 Inpatient rooms, 163, 164, 210, 398 In-place renovation, 357–358 Institutes of Medicine of the National Academies, 400
Integrated building system (IBS), 169–172
Internet, 137, 146 Interoperable electronic health records, 175, 354, 356–357 Interooperative cardiac, 381–385 Interventional imaging, 97–101 and blurred boundaries between radiology/surgery, 98, 360, 371–373 and minimally invasive surgery, 375 and turf issues, 374
UCLA Westwood Replacement Hospital—Interventional Floor case study, 413–416 Interventional oncology, 389–390 Interventional radiology (IR):
use of fluoroscopy in, 93 and work flow, 184
Intouch Health, 358 Intracranial aneurysm-clips, 429–430 Intrarectal work flow, 188–189 Interoperative magnetic resonance imaging, 578, 417
Intravenous urography, 102, 105 IR, see Interventional radiology
ISPRAD (International Symposium on Planning of Radiological Departments), 210
IT, see Information technology
bioimagnetics/biomagnetic imaging, 121–122
and circulation/traffic, 191–192, 197
control rooms for, 158, 247, 326
and corridors/exits/ways, 201
and emergency medicine, 349
functional requirements for,
280–282
and gamma cameras, 291
and Health Guidelines for Design
and Construction of Hospital
and Healthcare Facilities, 324,
and HVAC, 513, 515, 521
and ICUs, 374
intraoperative, 569–570, 378, 417
lighting for, 282, 285, 326
and magnetic contamination, 522
and magnetic interactions, 314–321
and noninvasive cardiac imaging,
579
and nuclear magnetic resonance
imaging, 112–113, 192
and oncology, 390
and patient stress/ fear, 5, 160–161,
524–526
pediatric, 164–167
planning/design considerations for,
280–289
and RF interartions, 508–514
rooms for, 158, 247, 280–289, 326,
378
shielding for, 285, 285, 307–311,
315, 315, 321–322
siting considerations, 286
space requirements for, 307
and surgery, 569–571, 377–378
and technology docks, 590,
392–393
and ultrasound, 366
and vascular imaging, 410
zoning for, 191–192, 247, 287,
425–427, 431
Magnetic resonance therapy (MRT),
569
Magnetocardiography, 122
Maintenance costs, 175
Major movable equipment, 73–78
Mammography:
as an imaging technique, 93–97
clustering rooms for, 164
and control areas, 244
design/planning considerations for,
270–271
diagnostic, 95, 97, 384
and oncology, 385–386
and radiation protection, 271, 305
reading room lighting for, 259
screening, 94, 97, 384
Mammography Quality Standards
Act (MQSA), 259
Management:
and architects responsibilities,
51–52
of equipment transportation,
202
of images, see Image management
systems of information, see Information
systems of transport systems, 201, 202
wire, 265
Managing imaging facility development,
49–69. See also Organization
of medical imaging
project alignment of expectations in,
52–53
bidding/negotiation phase, 61
budgets, 66–68
communications in, 53–55
construction cost estimates, 68–69
construction phase, 55, 65
contract documents phase, 55,
61–62, 69
design phase development, 59–61,
design phase, 55, 58–61, 69
duration of, 64
negotiation phase, 61
programming phase, 43, 52, 53,
57–58, 68, 79
project phases in, 53–65, 68–69
project schedule, 65–69
regulatory agency review, 65
represented in medical terms, 53–55
schematic design phase, 57, 59, 60,
69, 79, 179, 180
Mansfield, Sir Peter, 112
Market analysis, 34–35
Master plan, 52, 45, 329. See also
Strategic planning/master
planning
Material management transport systems,
307
Maximum operating potential of im-
aging equipment, 504
Maximum permissible dose (MPD),
501
Mechanical energy, 107, 108
Mechanical waveguides lines, see
Waveguide lines, mechanical
Medical equipment consultants, 37,
300–302, 304, 365, 368, 389
Medical record, 143, 175, 196, 375,
576, 598
Medical schools, 9, 10
Medical specialists, see Specialists
medical
Memorial Sloan-Kettering Cancer
Center, 583
Metal detectors, 287
Metallic objects, 117
Milestones (project), 64
Minimally invasive equipment, 75, 76, 78
MIS, see Minimally invasive surgery
Mobile technology, 173, 590–595
Modality zones, 217, 218
Modular planning, 210
Molecular imaging, 399–400
Moore, Gordon, 139
“Moore’s Law,” 159
Movable equipment, 74–76
MPD (maximum permissible dose),
501
MQSA (Mammography Quality
Standards Act), 259
MRA (MR angiography), 118
MR angiography (MRA), 118
MR-compatible, 288
MR Hazard Checklist, 435
MRI, see Magnetic resonance imaging
MRI-guided surgery, 369–371
MR-safe, 289
MRI (magnetic resonance therapy),
369
Multidetector CT scanner, 347
National Council on Radiation
Protection and Measurement (NCRP),
301, 302, 401
NCRP, see National Council on Radia-
tion Protection and Measure-
ment
Negotiation of competitive prices,
75–74
Negotiation phase, 61
Net assignable area, 176–178
Net square feet (NSF), 54, 55
Networks (computer), 137, 139, 146
Neuroradiology, 97–99
NFs, see Net square feet
Nighthawk, 521
NMRI imaging, see Nuclear magnetic
resonance imaging
Noninvasive cardiac imaging,
579–583
Noninvasive radiology, 408–409
Nuclear magnetic resonance (NMRI)
imaging, 112–113, 192
Nuclear medicine, 6, 122–129, 202,
289–292, 457–458
Nursing units, 187
Observation of patients, see Visibility
of patients
Occupancy, certificate of, 299
Occupancy factor, 305
Offices, sizing of, 221
On-site storage, 146
Off-stage zones, 191
Of-Owner (owner-furnished-owner-
installed), 61
Of-VI, see Owner-furnished-vendor-
installed
Oncology, 303–390
O’Neil, J.D., 21
On-stage zones, 191
Operating budget, 37
Operating room (OR), 112, 560, 561,
563, 566, 567–569
Operational boundaries, 398
Operational costs, 176, 359
Operational efficiency, 178, 179
Operational inefficiencies, 559
OR, see Operating room
Organization of medical imaging
project, 51–47
align scope/budget for, 45
devolving functional/space
programs for, 40–44
devolving project schedule for,
39–40
developing working budget for,
57–58
establishing goals/evaluation cri-
tera for, 53–54
master plan/concept plan for,
45–46
perform market analyses/feasibil-
ity studies for, 54–56
project team selection for,
46–47
Surgical Instrument Server, 561
Sustainability, 57, 176, 402
TCP/IP (transmission control protocol
/Internet protocol), 141
Technical issues:
for computed tomography, 279, 295
in fluoroscopy room design, 270
for interventional radiology/car
diology, 276–277
for magnetic resonance imaging (MRI), 283–287
for mammography room design, 271
for nuclear medicine, 291–292
for positron emission tomogra
phy, 294–295
in procedure room design, 267, 268
for radiography/fluoroscopy, 270
Technologists, 134, 135, 185, 188
Technology. See also Computers; In
formation systems; specific headings, e.g., Magnetic reso
nance imaging (MRI)
change in, 167
emphasizing, 161–162
era of information management systems, 14–15
flexibility for future, 8, 172–175
impact on work flow of, 183–184
neutralizing, 162
selecting the latest, 79
softening of, 159–161
and work flow, 184
Technology docks, 173, 353, 390–395
Telediagnosis, 531
Thomson, Henrick, 351
S-D ultrasound, 110
Thyroid, 123–124
Timeline for equipment selection, 78–80
To Error Is Human (Institutes of Medi
cine of the National Academe)s, 400
Toilet rooms, 6, 107, 111, 224, 264
Total-body scanning, 575, 576
Total direct cost of construction, 69
Toors of medical imaging facilities, 74
Trade shows, 75
Traditional design/bid/build
method, 65
Traffic, see Circulation
Transcriptionist, 135
Transmission control protocol/Intern
et protocol (TCP/IP), 141
Transmission of results, 200
Transportation of patients, 21–22,
346, 355, 359
Trauma bays, 546, 547
Tye, V. L., 167
UCLA Center for Health Sciences
Westwood Hospital, 365
UCLA Medical Center case study, 409–413
UCLA Westwood Replacement Hos
al case studies:
Interventional Floor, 413–416
Non-Invasive Radiology Depart
ment, 408–409
Ultrasound, 107–112
clustering rooms for, 164
and control areas, 244
design/planning considerations
for, 279–280
and emergency medicine, 348–349
high-intensity focused ultra
sound, 566, 390
human factors in, 280
and ICUs, 334–335
and interventional radiology, 99
and noninvasive cardiac imaging, 380–381
and oncology, 390
and radiation protection, 306
waiting areas for, 6
Ultrasonound-guided surgery, 99, 366
Unit construction costs (preliminary),
55
Unit cost per square foot, 55, 69
Unit costs, 55, 54, 55, 69
U.S. Green Building Council, 176
Unit rate estimate, 69
Universal bed model, 358–359
Universal room design, 80, 172, 239,
247–251
University of Washington State MRI
suite, 165–166
Unplanned partial demolition, 298
Uptake room, 291–292
Usable area, 207
Use factor or beam direction factor, 305
User groups, 51, 56, 220–221
Utilities, 313–315, 395
VA, see Veterans Affairs (VA), Depart
ment of
Vannier, Michael, 371
Vascular radiologists, 97
“Vaulc” 127
Vendor-installed equipment, 61–62
Vertical clearance, 231, 237
Veterans Administration Maryland
Health Care System, 258
Veterans Affairs (VA), Department of,
169–170
Video-based imaging technology,
562
“Virtual fly-by” models, 53
Virtual telepresence surgery, 375–377
Visibility of patients, 235, 238, 241,
245, 281
“Visioning” process, 57
Waiting areas, 6, 95, 197, 224, 264–265
Wall construction, 257
Wall-mounted displays, 364, 365
Wanchoo, G., 173, 174
Waste, 400–402
Waveguide lines, mechanical, 513–515
Wayfinding, 59, 135–137
Weber, Joe, 522
Weekly design exposure rate, 305
Weight of equipment, 25, 297–299
Wireless communications, 175, 398
Wire management, 265
Women’s health areas/centers, 164,
165, 191, 384
Wood core modular floor system,
510
Work costs, 559
Work flow, 183–202
activity matrix for, 194
block diagram, 58
and circulation, 45, 56, 60, 157, 166,
180–185, 200–201, 207
and corridors/exitways, 200–201
for determining need for exam,
194–195
for the exam, 197–198
for follow-up/treatment, 200
for image interpretation/diagno
sis, 199–200
for image processing, 198–199
between imaging department/emergency
department, 186
between imaging department/nursing units,
187
between imaging department/outpatient
services, 185–186
between imaging department/surgery,
186–187
impact of technology on, 183–184
interdepartmental, 184–185
intradepartmental, 188–189
and material management trans
port systems, 201
for patient received in imaging
department, 196–197
for patient’s record preparation, 196
for quality review, 198–199
and room design, 253
for scheduling an appointment,
195
for staff areas, 8
for transmission/reporting/
storage of results, 200
variables in, 195–200
Workload (for radiation protection),
303
Workload analysis, 428–431
X-ray:
application of, 10
design of early facilities for, 12
and health guidelines, 456
and ICUs, 356
portable units for, 86, 87, 550, 355,
367–368
Roentgen’s discovery of, 10
rooms per annual visits, 346
source of, 84
universal rooms for, 248
Zoning (zones):
examination, 211–212
and freestanding imaging facili
ties, 208
functional, 170, 171, 192–193,
210–214
of ICU rooms, 358
image archive, 213–214
inpatient vs. outpatient, 163, 164
modality, 217, 218
for MRI, 191–192, 247, 287, 423–427,
451
off-stage/on-stage, 191
service, 170, 171
for staff, 7, 212–213
in surgical suites, 378
Sterile environment, 187, 202, 364
Stevens, Edward F., 11–12
Storage:
archive space, 174, 252
component of PACS, 143–146
data, 175–174
for devices, 100
and image archive zone, 213–214
for radiology departments, 139
requirements for data, 175–174
of results, 200
“soft” office, 179
Strategic planning/master planning,
31–45
align scope/budget/schedule step in,
45
develop functional/space pro
grams step in, 40–44
develop project schedule in, 59–40
develop working budget step in,
37–58
establish goals/evaluation criteria
step in, 35–55
perform market analyses/feasibility
studies step in, 34–36
site/facility evaluation studies
step in, 36
site/facility master plan/concept
plan step in, 45–46
Stress (patient/staff), 5, 153, 157,
160–161. See also Fear
Structural reinforcing, 207
Structural systems, 235, 298, 299
Studs, heavy-gauge metal, 298
Substantial completion, certificate of,
63
Subsystems estimate, 69
Super-con ducting core, 116
Superconducting magnetic systems,
117
Superconducting quantum interfer
ence detector (SQUID),
121–122
Supplemental task lighting, 259, 260
Supplies, managing transport of, 202
Support spaces, 8, 178, 179, 222–225,
265, 355, 356
Support systems, 298, 299
Surgeons, 560, 365, 364
Surgery:
advanced robotic, 375–377
blurring boundaries intervention
al radiology and, 98,
560, 371–375
cognition, 360–366
and cystoscopy/endoscopy proce
dures, 369
future trends in imaging and,
575–577
image-guide, 360–566
and imaging, 15, 18–19, 360–579
and intraoperative
radiography/fluoroscopy,
367–369
minimally invasive, 19, 97,
560–366, 573
and MRI, 369–571, 377–378
ultrasound-guided, 99, 366
virtual telepresence, 357–357
work flow between imaging de
partment and, 186–187
Surgical imaging facilities, 377–379
Surgical information technologists,
360