Active power during faults, 17
Analog signals, 8
Analysis objective, 4
Apparent impedance, 90
Arc-over at voltage peak, 44–48
Asymmetrical faults, 41–44

Bolted fault, 52–53
Broken delta connection, 60
Bulk power system, 465
Bushing potential devise, 144–145

Cable pothead failure, 607–613
Capacitor bank
 closing transient, 147
 opening transient, 146
 out rush, 149

Causes of system disturbances, 39–40
Circuit breaker failure
 back feeding, 652–653
 closing resistor, 538–539
 dc schematic, 619–620, 648
 delayed reclosing, 154
 dual CB failures, 634–640
 failure clearing, 621–633
 fault record play back, 633
 high speed reclosing, 155
 local clearing, 640
 non-zero crossing, 112–113
 opening resistor, 133
 pole disagreement, 132, 676–678
 primary clearing, 644
 remote backup clearing, 634, 640,
 644, 645
 setting philosophy, 624–626
 simultaneous CB failures, 634–640
 time chart, 619
 two breakers in series, 682–683
 undesired operation, 495, 502, 539

Classification of shunt faults, 34–39
Conductor breakage, 535

Confirmation of system model, 24–30,
 600–603

COMTRADE format, 31, 633
Current reversal, 164
Current transformer CT
 circuit grounding, 502–512
 connection in differential circuits, 379, 515
 neutral formation, 586
 polarity, 586
 saturation, 138
 switching scheme, 502–504
 transient performance, 651

Current oscillation, 90, 97–98
CVT transient, 143

Current reversal, 164

Data display manipulation, 17–19
Decayed energy, 110

Digital fault recorder DFR
 accuracy, 21
 data manipulation, 17
 equipment description, 6
 fault location, 19
 frequency response, 11
 information needed, 7
 phasor analysis, 13
 RMS calculation, 15
 sampling rate, 11
 software analysis, 12
 verification of recording accuracy, 21
 validation of model, 515–519
Disturbance causes, 39
Double-phase-to-ground, 38
Duality principle, 464
DC offset, 41–44
Differential relay setting, 346, 358, 396, 435

Estimation of fault location, 519–523
Event inputs, 9
Event output, 365, 366, 400
Evolving faults, 48

Fault location, 363–370
Fault incident point, 40
Fault resistance, 54, 58, 529
Flash over at peak, 44
Fault clearing
delayed clearing, 71
local clearing, 617, 644
remote back up clearing, 644
self clearing, 69–70
sequential clearing, 72
step distance clearing, 74
sub-cycle clearing, 68
TOC clearing, 76
Ferranti effect, 166
Ferroresonance, 392

Generator
behavior during system faults, 91
calculation of neutral voltage, 257, 262
commissioning, 324
coupling of zero sequence to gen.
natural, 113
effect of capacitor on protection, 311
motoring, 91, 236–243
negative sequence current, 101, 186
phasing of a new unit, 324–326
rotor double frequency, 191–192
sequential shut down, 318–320
stator air gap, 202
stator ground fault, 260
stator phase-to-phase-g fault, 276
stator 95% protection, 262–265
stator 100% protection, 328
setting of 100% UV third harmonic, 327
synchronizing schemes, 214–314, 330
system back up protection, 330
terminal three phase faults, 265, 271
undesired trips, 231, 286, 314

Ground distance relay formula, 544–547
High resistance faults, 529
High resistance grounding, 262–265

Inadvertent energization
effect on rotor, 202
phenomenon, 193
protection, 202–203
Inrush current, 118
Insulation failure, 222
Ionized cloud, 447–451

Lightning strike, 471–478
Local backup, 616–626
Loss of excitation
phenomena, 108
protection, 208–210

Magnetic flux cancellation, 136, 644
Mis-synchronizing, 214
Mutual coupling
Effect on protection, 547
line out with ground chain, 552
mitigation, 552
overreach, 547
partial sharing, 550
phenomenon, 159
reach compensation by hardwire, 553
reach compensation by setting, 555
two parallel lines, 556
underreach, 548

Nonsinusoidal current, 162
Nonzero current crossing, 112
Numerical relay record, 365, 366, 400

Open delta connection, 373
Open wye connection, 373
Over scale of A/D, 174
Oscillation
current, 90, 97–98
impedance, 92
power, 94, 96, 239
voltage, 86, 240
Out of step condition, 91, 244

Phase angle change, 179
Phase shift, 127
Phase-to-ground fault, 37
Phase-to-phase fault, 36
Phasor analysis, 13
Pole disagreement, 132
Power oscillation, 86
Power system swing, 95
Problems, 685
Protection blind spots, 620
Protection criteria, 465

Reactive power during faults, 107
Reclosing
 automatic, 154
 high speed, 155
 onto faults, 154
 onto three-phase fault, 153
 unsuccessful, 536
Reference, 31, 83, 180, 334, 459, 570, 613, 684
Remote backup, 78
Re-strike, 130
RMS calculation, 15–17
Rotor
 angle, 86
 double frequency, 98
 oscillation, 87

Saturation of A/D, 174
Sequential clearing, 53
Sequential lightning faults, 172
Series unbalance, 39
Shunt faults, 34
Simultaneous faults, 51
Slow fault clearing, 78, 634
Solid faults, 52
Solidly grounded system, 478, 336–337
Spill over, 173
Symmetrical components, 20
Symmetric faults, 41
Sub-cycle clearing, 68
Subsidence current, 176
Switching transient, 630
Swing, 86–96

Third harmonic, 104–106
Tower footing resistance, 476–478

Tower vandalism, 485–489
Transformer
 ampere turns balance, 341–342
 auto transformer, 336
 basics of protection application, 341
 confirmation of faulted phase, 363, 375
 connection types, 336
 correction of phase shifts, 344
 current flow during faults, 339–346
 delta/wye, 342
 energization with a fault, 347
 evolving faults, 48
 failure due to ferroresance, 387–394
 faults caused by bird droppings, 434
 fault caused by animal contact, 451
 hard wired differential, 344
 internal winding L-g fault, 260
 lack of protection redundancy, 353
 mitigation of ferroresance, 393–394
 numerical protection, 345
 open delta connection, 373
 open wye connection, 373
 Yd1 connection, 342
 Yd11 connection, 343
 winding inter capacitance, 113
Trapped energy, 110
Three-phase fault, 35
Tree faults, 529–536
Trigger setting, 10
Trouble shooting using
 relay targets, 514, 595–601
Undesired operation of relays
 assertion of digital input, 457
 setting errors, 539–544
 wiring error, 320–324
 unrestraint inrush, 407, 411
Unfaulted phase current, 60
Ungrounded systems, 59
Unit swing, 654–660

Validation of system model, 515–519
Voltage oscillation, 86, 240
Voltage during loss of excitation, 412–413

Zero sequence source, 128
Zero sequence voltage coupling, 156