Contents

Preface

About the Authors

1 Smart Sensor Systems: Why? Where? How?

Johan H. Huijsing

1.1 Third Industrial Revolution 1

1.2 Definitions for Several Kinds of Sensors 3

1.2.1 Definition of Sensors 3

1.2.2 Definition of Smart Sensors 9

1.2.3 Definition of Integrated Smart Sensors 9

1.2.4 Definition of Integrated Smart Sensor Systems 11

1.3 Automated Production Machines 12

1.4 Automated Consumer Products 16

1.4.1 Smart Cars 16

1.4.2 Smart Homes 16

1.4.3 Smart Domestic Appliances 17

1.4.4 Smart Toys 19

1.5 Conclusion 21

References 21

2 Interface Electronics and Measurement Techniques for Smart Sensor Systems

Gerard C.M. Meijer

2.1 Introduction 23

2.2 Object-oriented Design of Sensor Systems 24

2.3 Sensing Elements and Their Parasitic Effects 25

2.3.1 Compatibility of Packaging 25

2.3.2 Effect of Cable and Wire Impedances 26

2.3.3 Parasitic and Cross-effects in Sensing Elements 27

2.3.4 Excitation Signals for Sensing Elements 29

2.4 Analog-to-digital Conversion 30

2.5 High Accuracy Over a Wide Dynamic Range 33

2.5.1 Systematic, Random and Multi-path Errors 33

2.5.2 Advanced Chopping Techniques 34

2.5.3 Autocalibration 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.4 Dynamic Amplification</td>
<td>37</td>
</tr>
<tr>
<td>2.5.5 Dynamic Division and Other Dynamic Signal-processing Techniques</td>
<td>40</td>
</tr>
<tr>
<td>2.6 A Universal Transducer Interface</td>
<td>41</td>
</tr>
<tr>
<td>2.6.1 Description of the Interface Chip and the Applied Measurement Techniques</td>
<td>41</td>
</tr>
<tr>
<td>2.6.2 Realization and Experimental Results</td>
<td>47</td>
</tr>
<tr>
<td>2.7 Summary and Future Trends</td>
<td>50</td>
</tr>
<tr>
<td>2.7.1 Summary</td>
<td>50</td>
</tr>
<tr>
<td>2.7.2 Future Trends</td>
<td>51</td>
</tr>
<tr>
<td>Problems</td>
<td>51</td>
</tr>
<tr>
<td>References</td>
<td>54</td>
</tr>
<tr>
<td>3 Silicon Sensors: An Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.2 Measurement and Control Systems</td>
<td>55</td>
</tr>
<tr>
<td>3.3 Transducers</td>
<td>57</td>
</tr>
<tr>
<td>3.3.1 Form of Signal-carrying Energy</td>
<td>57</td>
</tr>
<tr>
<td>3.3.2 Signal Conversion in Transducers</td>
<td>59</td>
</tr>
<tr>
<td>3.3.3 Smart Silicon Sensors</td>
<td>60</td>
</tr>
<tr>
<td>3.3.4 Self-generating and Modulating Transducers</td>
<td>63</td>
</tr>
<tr>
<td>3.4 Transducer Technologies</td>
<td>63</td>
</tr>
<tr>
<td>3.4.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>3.4.2 Generic Nonsilicon Technologies</td>
<td>64</td>
</tr>
<tr>
<td>3.4.3 Silicon</td>
<td>66</td>
</tr>
<tr>
<td>3.5 Examples of Silicon Sensors</td>
<td>68</td>
</tr>
<tr>
<td>3.5.1 Radiation Domain</td>
<td>68</td>
</tr>
<tr>
<td>3.5.2 Mechanical Domain</td>
<td>70</td>
</tr>
<tr>
<td>3.5.3 Thermal Domain</td>
<td>70</td>
</tr>
<tr>
<td>3.5.4 Magnetic Domain</td>
<td>72</td>
</tr>
<tr>
<td>3.5.5 Chemical Domain</td>
<td>74</td>
</tr>
<tr>
<td>3.6 Summary and Future Trends</td>
<td>75</td>
</tr>
<tr>
<td>3.6.1 Summary</td>
<td>75</td>
</tr>
<tr>
<td>3.6.2 Future Trends</td>
<td>75</td>
</tr>
<tr>
<td>References</td>
<td>76</td>
</tr>
<tr>
<td>4 Optical Sensors Based on Photon Detection</td>
<td>79</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>79</td>
</tr>
<tr>
<td>4.2 Photon Absorption in Silicon</td>
<td>81</td>
</tr>
<tr>
<td>4.3 The Interface: Photon Transmission Into Silicon</td>
<td>84</td>
</tr>
<tr>
<td>4.4 Photon Detection in Silicon Photoconductors</td>
<td>87</td>
</tr>
<tr>
<td>4.4.1 Photoconductors in Silicon: Operation and Static Performance</td>
<td>89</td>
</tr>
<tr>
<td>4.4.2 Photoconductors in Silicon: Dynamic Performance</td>
<td>93</td>
</tr>
<tr>
<td>4.5 Photon Detection in Silicon pn Junction</td>
<td>93</td>
</tr>
<tr>
<td>4.5.1 Defining the Depletion Layer at a pn Junction</td>
<td>94</td>
</tr>
<tr>
<td>4.5.2 Electron–hole Collection in the Depletion Layer</td>
<td>97</td>
</tr>
</tbody>
</table>
Contents

6 Thermal Sensors

Sander (A.W.) van Herwaarden

6.1 The Functional Principle of Thermal Sensors

- **6.1.1** Self-generating Thermal-power Sensors
- **6.1.2** Modulating Thermal-conductance Sensors

6.2 Heat Transfer Mechanisms

6.3 Thermal Structures

- **6.3.1** Modeling
- **6.3.2** Floating Membranes
- **6.3.3** Cantilever Beams and Bridges
- **6.3.4** Closed Membranes

6.4 Temperature-Difference Sensing Elements

- **6.4.1** Introduction
- **6.4.2** Thermocouples
- **6.4.3** Other Elements

6.5 Sensors Based on Thermal Measurements

- **6.5.1** Microcalorimeter
- **6.5.2** Psychrometer
- **6.5.3** Infrared Sensor
- **6.5.4** RMS Converter
- **6.5.5** EM Field Sensor
- **6.5.6** Flow Sensor
- **6.5.7** Vacuum Sensor
- **6.5.8** Thermal Conductivity Gauge
- **6.5.9** Acceleration Sensors
- **6.5.10** Nanocalorimeter

6.6 Summary and Future Trends

- **6.6.1** Summary
- **6.6.2** Future Trends

7 Smart Temperature Sensors and Temperature-Sensor Systems

Gerard C.M. Meijer

7.1 Introduction

7.2 Application-related Requirements and Problems of Temperature Sensors

- **7.2.1** Accuracy
- **7.2.2** Short-term and Long-term Stability
- **7.2.3** Noise and Resolution
- **7.2.4** Self-heating
- **7.2.5** Heat Leakage along the Connecting Wires
- **7.2.6** Dynamic Behavior

7.3 Resistive Temperature-sensing Elements

- **7.3.1** Practical Mathematical Models
- **7.3.2** Linearity and Linearization
Contents

7.4 Temperature-sensor Features of Transistors 200
 7.4.1 General Considerations 200
 7.4.2 Physical and Mathematical Models 201
 7.4.3 PTAT Temperature Sensors 203
 7.4.4 Temperature Sensors with an Intrinsic Voltage Reference 207
 7.4.5 Calibration and Trimming of Transistor Temperature Sensors 208
7.5 Smart Temperature Sensors and Systems 208
 7.5.1 A Smart Temperature Sensor with a Duty-cycle-modulated Output Signal 209
 7.5.2 Smart Temperature-sensor Systems with Discrete Elements 212
7.6 Case Studies of Smart-sensor Applications 212
 7.6.1 Thermal Detection of Micro-organisms with Smart Sensors 213
 7.6.2 Control of Substrate Temperature 217
7.7 Summary and Future Trends 220
 7.7.1 Summary 220
 7.7.2 Future Trends 221
Problems 222
References 223

8 Capacitive Sensors 225
 Xiujun Li and Gerard C.M. Meijer
8.1 Introduction 225
8.2 Basics of Capacitive Sensors 226
 8.2.1 Principles 226
 8.2.2 Precision of Capacitive Sensors 226
8.3 Examples of Capacitive Sensors 227
 8.3.1 Angular Encoders 228
 8.3.2 Humidity Sensors 229
 8.3.3 Liquid-level Gauges 230
8.4 The Design of Electrode Configurations 231
 8.4.1 EMI Effects 231
 8.4.2 Electric-field-bending Effects 232
 8.4.3 Active-guard Electrodes 232
 8.4.4 Floating Electrodes 233
 8.4.5 Contamination and Condensation 234
8.5 Reduction of Field-bending Effects: Segmentation 234
 8.5.1 Three-layered Electrode Structures 235
 8.5.2 A Model for the Electrostatic Field in Electrode Structures 236
 8.5.3 Influence of the Electric-field-bending Effects on Linearity 237
8.6 Selectivity for Electrical Signals and Electrical Parameters 237
 8.6.1 Selective Detection of Band-limited Frequencies 238
 8.6.2 Selective Detection of a Selected Parameter 239
 8.6.3 Measurement Techniques to Reduce the Effects of Shunting Conductances 240
8.7 Summary and Future Trends 246
Problems 246
References 247
9 Integrated Hall Magnetic Sensors

Radivoje S. Popović and Pavel Kejik

9.1 Introduction

9.2 Hall Effect and Hall Elements
- **9.2.1 The Hall Effect**
- **9.2.2 Hall Elements**
- **9.2.3 Characteristics of Hall Elements**
- **9.2.4 Integrated Horizontal Hall Plates**
- **9.2.5 Integrated Vertical Hall Plates**

9.3 Integrated Hall Sensor Systems
- **9.3.1 Biasing a Hall Device**
- **9.3.2 Reducing Offset and 1/f noise**
- **9.3.3 Amplifying the Hall Voltage**
- **9.3.4 Integrating Magnetic Functions**

9.4 Examples of Integrated Hall Magnetic Sensors
- **9.4.1 Magnetic Angular Position Sensor**
- **9.4.2 Fully Integrated Three-axis Hall Probe**
- **9.4.3 Integrated Hall Probe for Magnetic Microscopy**

Problems

References

10 Universal Asynchronous Sensor Interfaces

Gerard C.M. Meijer and Xiujun Li

10.1 Introduction

10.2 Universal Sensor Interfaces

10.3 Asynchronous Converters
- **10.3.1 Conversion of Sensor Signals to the Time Domain**
- **10.3.2 Wide-range Conversion of Sensor Signals to the Time Domain for Very Small or Very Large Signals**
- **10.3.3 Output Signals**
- **10.3.4 Quantization Noise of Sampled Time-modulated Signals**
- **10.3.5 A Comparison between Asynchronous Converters and Sigma–delta Converters**

10.4 Dealing with Problems of Low-cost Design of Universal Interface ICs

10.5 Front-end Circuits
- **10.5.1 Cross-effects and Interaction**
- **10.5.2 Interference**
- **10.5.3 Optimization of Components, Circuits and Wiring**

10.6 Case Studies
- **10.6.1 Front-end Circuits for Capacitive Sensors**
- **10.6.2 Front-end Circuits for Resistive Bridges**
- **10.6.3 A Front-end Circuit for a Thermocouple-voltage Processor**

10.7 Summary and Future Trends
- **10.7.1 Summary**
- **10.7.2 Future Trends**

Problems

References