Contents

Preface

Part 1 Generalities, Syntheses, Characterizations, and Physicochemical Properties

1 Syntheses of Dendrimers and Dendrons

Anne-Marie Caminade

1.1 Introduction: What Are Dendrimers and Dendrons?
1.2 Syntheses of Poly(propyleneimine) Dendrimers (PPI)
1.3 Synthesis of Poly(amidoamine) Dendrimers (PAMAM)
1.4 Syntheses of Poly(ether) Dendrimers
1.5 Syntheses of Poly(ester) Dendrimers
1.6 Synthesis of Poly(lysine) Dendrimers
1.7 Syntheses of Silicon-Containing Dendrimers
1.8 Syntheses of Phosphorus-Containing Dendrimers
1.9 Syntheses of Carbon-Based Dendrimers
1.10 Syntheses of Dendrimers Constituted of Nitrogen Heterocycles
1.11 Syntheses by Self-Assembly
1.12 Accelerated Syntheses
1.13 Conclusion

References

2 Methods of Characterization of Dendrimers

Anne-Marie Caminade

2.1 Introduction
2.2 Spectroscopy and Spectrometry
2.2.1 Nuclear Magnetic Resonance (NMR)
2.2.2 Mass Spectrometry
2.2.3 X-ray Diffraction
2.2.4 Infrared (IR) and Raman Spectroscopy
2.2.5 Ultraviolet–Visible (UV–vis) Spectroscopy
2.2.6 Fluorescence
2.2.7 Chirality, Optical Rotation, and Circular Dichroism (CD)
2.2.8 Electron Paramagnetic Resonance (EPR) 45
2.2.9 Electrochemistry 46
2.2.10 Magnetometry 46
2.2.11 Mössbauer Spectroscopy 46
2.2.12 X-ray Spectroscopies 47
2.3 Scattering Techniques 47
2.3.1 Laser Light Scattering (LLS) 47
2.3.2 Small-Angle Neutron Scattering (SANS) 47
2.3.3 Small-Angle X-ray Scattering (SAXS) and Wide-Angle X-ray Scattering (WAXS) 48
2.4 Microscopy 48
2.4.1 Transmission Electron Microscopy (TEM) 49
2.4.2 Atomic Force Microscopy (AFM) 49
2.4.3 Polarizing Optical Microscopy (POM) 50
2.5 Rheology and Physical Characterizations 50
2.5.1 Intrinsic Viscosity 50
2.5.2 Differential Scanning Calorimetry (DSC) 50
2.5.3 Dielectric Spectroscopy (DS) 51
2.5.4 Dipole Moments 51
2.6 Separation Techniques 52
2.6.1 Size Exclusion Chromatography 52
2.6.2 Electrophoresis 53
2.7 Conclusion 53
References 54

3 Luminescent Dendrimers 67
Anne-Marie Caminade

3.1 Introduction 67
3.2 Dendrimers with Fluorescent Terminal Groups 68
3.2.1 Fully Substituted Dendrimers 68
3.2.2 Partially Substituted Dendrimers 69
3.3 Luminescent Group at the Core of Dendrimers and Energy/Light-Harvesting Properties 74
3.3.1 Organic Fluorophores as Cores 74
3.3.2 Porphyrins and Phthalocyanines as Cores 77
3.3.3 Metallic Cores 78
3.4 Fluorescent Groups inside the Structure of Dendrimers 79
3.5 Intrinsically Fluorescent Dendrimers 81
3.5.1 Fluorescent Groups throughout the Dendrimeric Structure 81
3.5.2 Fluorescence of Dendrimers without Known Fluorophores 86
3.6 Two-Photon-Excited Fluorescence of Dendrimers 86
3.7 Conclusion 89
References 90
4 Stimuli-Responsive Dendrimers
Anne-Marie Caminade

4.1 Introduction 99
4.2 Photoresponsive Dendrimeric Structures 100
 4.2.1 Azobenzene-Containing Dendrimers and Dendrons 101
 4.2.2 Other Types of Photoresponsive Dendrimers 108
4.3 Thermoresponsive Dendrimeric Structures 110
 4.3.1 Thermoresponsive Properties of Dendrimers 110
 4.3.2 Thermoresponsive Properties of Dendrons and Dendronized Polymers 112
4.4 Dendrimers Responsive to Solution Media Changes 114
 4.4.1 pH-Responsive Dendrimers 114
 4.4.2 Dendrimers Disassembly 115
4.5 Conclusion 117
References 118

5 Liquid Crystalline Dendrimers
Anne-Marie Caminade

5.1 Introduction 125
5.2 Mesogenic Groups as Terminal Functions of Dendrons 126
5.3 Mesogenic Groups as Terminal Functions of Dendrimers 131
5.4 Mesogenic Groups as Branches of Dendrimers 134
5.5 Conclusion 135
References 136

6 Dendrimers and Nanoparticles
Cédric-Olivier Turrin and Anne-Marie Caminade

6.1 Introduction 141
6.2 Dendrimers or Dendrons for Coating Nanoparticles 142
 6.2.1 Dendronization of Nanoparticles by Ligand Exchange 142
 6.2.2 Direct Synthesis of Dendronized Nanoparticles 147
 6.2.3 Dendrimer Coated Nanoparticles 149
 6.2.4 Nanocomposites with Interdendrimer Nanoparticles 151
6.3 Dendrimers as Templates for the Synthesis of Dendrimer-Encapsulated Nanoparticles (DENs) 152
 6.3.1 Catalysis with Dendrimer-Encapsulated Nanoparticles 153
 6.3.2 Other Uses of Dendrimer-Encapsulated Nanoparticles 154
6.4 Conclusion and Perspectives 154
References 155

Part 2 Applications in Catalysis

7 Terminal Groups of Dendrimers as Catalysts for Homogeneous Catalysis
Armelle Ouali and Anne-Marie Caminade

7.1 Introduction 165
7.2 Dendrimers as Catalysts 166
 7.2.1 Catalysis with Homogeneous Dendrimers 166
 7.2.2 Catalysts with Heterogeneous Dendrimers 169
7.3 Conclusion 170
References 171
7.1 General Introduction 165
 7.1.1 The “Dendrimer Effect” 165
 7.1.2 Recycling the Catalysts 166
7.2 Catalytic Organometallic Sites as Catalysts for Homogeneous Catalysis 167
 7.2.1 Formation of C–X Bonds (X = C, N, O) 167
 7.2.2 Addition Reactions on a C=X Double Bond (X = C, O) 175
 7.2.3 Oxidation Reactions 177
7.3 Organocatalysis with Dendrimers 178
7.4 Conclusion 178
References 179

8 Catalytic Sites inside the Dendrimeric Structure for Homogeneous Catalysis 183
Armelle Ouali and Anne-Marie Caminade

 8.1 Introduction 183
 8.2 Catalytic Sites as the Core of Dendrimers 184
 8.2.1 Dendrimers Bearing a Transition-Metal-Based Complex at the Core 184
 8.2.2 Dendrimers Bearing an Organocatalyst at the Core 188
 8.3 Catalytic Sites inside the Branches of Dendrimers 191
 8.3.1 Formation of C–X Bonds (X = C, N, O) 191
 8.3.2 Addition Reactions on a C=C Double Bond: Olefin Hydrogenation 192
 8.4 Conclusion 192
References 193

9 Dendrimers as Homogeneous Enantioselective Catalysts 197
Armelle Ouali and Anne-Marie Caminade

 9.1 Introduction 197
 9.2 Catalytic Organometallic Sites as Catalysts for Homogeneous Catalysis 198
 9.2.1 Formation of C–X Bonds (X = C, N, O) 198
 9.2.2 Addition Reactions on a C=X Double Bond (X = C, O) 204
 9.3 Organocatalysis with Dendrimers 209
 9.3.1 Aldolizations 209
 9.3.2 Aza–Morita–Baylis–Hillmann Reactions 209
 9.3.3 Transaminations 210
 9.4 Conclusion 210
References 210

10 Catalysis with Dendrimers in Particular Media 215
Régis Laurent and Anne-Marie Caminade

 10.1 Introduction 215
 10.2 Two-Phase (Liquid–Liquid) Media 216
10.3 Catalysis in Ionic Liquids 219
10.4 Catalysis in Supercritical Media 220
10.5 Catalysis in Aqueous Media 221
10.6 Conclusion 234
References 234

11 Heterogeneous Catalysis with Dendrimers 239
Régis Laurent and Anne-Marie Caminade

11.1 Introduction 239
11.2 Catalysis with Dendrons Synthesized from a Solid Material 240
 11.2.1 Silica as an Inorganic Support 240
 11.2.2 Polymers and Resins as Organic Supports 248
11.3 Catalysis with Dendrons or Dendrimers Grafted on to a Solid Surface 254
11.4 Catalysis with Insoluble Dendrimers 257
11.5 Conclusion 260
References 261

Part 3 Applications for the Elaboration or Modification of Materials 267

12 Dendrimers inside Materials 269
Régis Laurent and Anne-Marie Caminade

12.1 Introduction 269
12.2 Dendrimers for the Elaboration of Gels 270
 12.2.1 Dendrimers for the Elaboration of Supramolecular Hyrogels 270
 12.2.2 Dendrimers for the Elaboration of Polymer-Type Hyrogels 273
 12.2.3 Dendrimers for the Elaboration of Organogels 276
12.3 Dendrimers inside Silica Gels 280
12.4 Dendrimers inside Other Types of Materials 285
12.5 Dendrimers for the Elaboration of OLEDs 288
 12.5.1 Fluorescent Dendrimers for the Elaboration of OLEDs 290
 12.5.2 Phosphorescent Dendrimers for the Elaboration of OLEDs 295
12.6 Conclusion 298
References 299

13 Self-Assembly of Dendrimers in Layers 313
Béatrice Delavaux-Nicot and Anne-Marie Caminade

13.1 Introduction 313
13.2 Langmuir–Blodgett Films of Dendrons and Dendrimers 314
 13.2.1 Poly(benzyl ether) Derivatives 316
 13.2.2 Poly(amidoamine) and Poly(propyleneimine) Derivatives 319
 13.2.3 Azobenzene Derivatives 320
13.2.4 Poly(carbosilane) Dendrimer Derivatives 321
13.2.5 Fullerene C₆₀ Derivatives 322
13.2.6 Other Examples 325

13.3 Assemblies of Dendrons and Dendrimers on Solid Surfaces 326
13.3.1 Assembly of Dendrons and Dendrimers on Gold Surfaces 327
13.3.2 Assembly of Dendrons and Dendrimers on Silicon Substrates or Related Substrates 330

13.4 Several Routes for the Formation of Dendron or Dendrimer Multilayers 334

13.5 Nanoimprinting with Dendrons and Dendrimers on Solid Surfaces 342
13.5.1 Dendrimer-Based Self-Assembled Monolayers as Resists for Scanning Probe Lithography 342
13.5.2 Microprinting, Transfer Printing, and Dip-Pen Nanolithography with Dendrimers 344

13.6 Conclusion 350
References 351

14 Dendrimers as Chemical Sensors 361
Anne-Marie Caminade
14.1 Introduction 361
14.2 Dendrimers as Chemical Sensors in Solution 362
14.2.1 Porphyrins and Other Macrocyclic Derivatives as the Core or Branches of Dendrimeric Sensors 362
14.2.2 Terminal Groups of Dendrimers as Sensors in Solution 363
14.3 Dendrimers as Electrochemical Sensors 365
14.4 Dendrimers on Modified Surfaces as Chemical Sensors 367
14.4.1 Dendrimers on Surfaces at the Interface with a Solution 367
14.4.2 Dendrimers on Surfaces at the Interface with a Vapor 368
14.5 Conclusion 370
References 370

15 Dendrimers as Biological Sensors 375
Anne-Marie Caminade
15.1 Introduction 375
15.2 Dendrimers as Sensors in Solutions of Biological Media 375
15.3 Detection by Electrochemical Methods 378
15.4 Dendrimers or Dendrons for DNA Microarrays 380
15.5 Dendrimers for Other Types of Biomicroarrays 383
15.6 Dendrimers on Other Types of Support 384
15.7 Dendrimers as Multiply Labeled Entities Connected to the Target 385
15.8 Conclusion 386
References 387
Part 4 Applications in Biology/Medicine 393

16 Dendrimers for Imaging 395
Cédric-Olivier Turrin and Anne-Marie Caminade

16.1 Introduction 395
16.2 Magnetic Resonance Imaging with Dendrimers 395
 16.2.1 Paramagnetic Dendrimer-Based Contrast Agents 398
 16.2.2 PARACEST Dendrimer-Based Contrast Agents 402
 16.2.3 Superparamagnetic Dendrimer-Based Contrast Agents 402
 16.2.4 Dendrimer-Based 129Xe HYPER-CEST MRI Contrast Agents 403
 16.2.5 19F Dendrimer-Based MRI Contrast Agents 403
16.3 Other Types of Imaging with Dendrimers 403
 16.3.1 Dendrimers for Optical Imaging 403
 16.3.2 Dendrimers for Nuclear Medicine (NM) Imaging and Computed Tomography X-Ray Imaging (CT) 405
16.4 Conclusion and Perspectives 407
References 407

17 Dendrimers as Transfection Agents 413
Cédric-Olivier Turrin and Anne-Marie Caminade

17.1 Introduction 413
17.2 Gene Transfection with PAMAM Dendrimers 415
 17.2.1 Pioneering Results 415
 17.2.2 Gene Transfection with Surface-Modified PAMAM 416
 17.2.3 Gene Transfection with Core-Modified PAMAM 418
 17.2.4 Gene Transfection with PAMAM-Functionalized Nanoparticles 419
 17.2.5 Gene Transfection with PAMAM-Like Hyperbranched Polymers 420
17.3 Gene Transfection with Other Dendrimers 421
 17.3.1 Gene Transfection with PPI Dendrimers 421
 17.3.2 Gene Transfection with Peptide-Based Dendrimers 422
 17.3.3 Gene Transfection with Phosphorus-Based Dendrimers 423
 17.3.4 Gene Transfection with Silane-Based Dendrimers 424
17.4 Conclusion and Perspective 426
References 426

18 Dendrimer Conjugates for Drug Delivery 437
Cédric-Olivier Turrin and Anne-Marie Caminade

18.1 Introduction 437
18.2 Improving Bioavailability with Dendrimers 438
18.3 Passive Targeting in Tumors with Dendrimer–Drug Conjugates 440
 18.3.1 Dendrimer–Drug Bioconjugates and the EPR Effect 440
 18.3.2 PEGylated Dendrimeric Scaffolds 442
18.4 Active Targeting with Site-Specific Dendrimer–Drug Conjugates

18.4.1 Addressing with Folic Acid (FA) 446
18.4.2 Addressing with Tumor-Homing Peptides 448
18.4.3 Addressing with Monoclonal Antibodies 449

18.5 Dendrimers for Photodynamic Therapy (PDT) 449
18.6 Dendrimers for Boron Neutron Capture Therapy (BNCT) 451
18.7 Conclusion and Perspectives 452

References 453

19 Encapsulation of Drugs inside Dendrimers

Cédric-Olivier Turrin and Anne-Marie Caminade

19.1 Introduction 463
19.2 From Dendritic Boxes to Dendrimer-Based Formulations 464
19.3 Improving Bioavailability with Dendrimers? 464
19.4 Toxicological Issues 465
19.5 Dendrimer-Based Formulations for Drug Delivery 466
19.5.1 Nontargeted Formulations 466
19.5.2 Supramolecular Assemblies Involving Surface Ionic Interactions 473
19.5.3 Targeted Formulations 475
19.6 Conclusion and Perspectives 477

References 477

20 Unexpected Biological Applications of Dendrimers and Specific Multivalency Activities

Cédric-Olivier Turrin and Anne-Marie Caminade

20.1 Introduction 485
20.2 Dendrimers and Multivalency 486
20.2.1 Multivalent Effects and Dendrimeric Effects 486
20.2.2 Glycodendrimers 487
20.3 Antimicrobial Dendrimers 488
20.3.1 Polycationic Dendrimers 489
20.3.2 Polyanionic Dendrimers 491
20.4 From Immunomodulation to Regenerative Medicine 494
20.4.1 Immunomodulation and Anti-Inflammation 494
20.4.2 Dendrimers and Regenerative Medicine 498
20.5 Conclusion and Perspectives 501

References 502

21 General Conclusions and Perspectives

Anne-Marie Caminade

Index 515