Contents

Series Preface xi
Preface xiii
Acknowledgments xv

1 Wood and Natural Fiber Composites: An Overview 1
 1.1 Introduction 1
 1.2 What Is Wood? 1
 1.3 Natural Fibers 2
 1.3.1 Fibers 2
 1.3.2 Lignocellulosic Materials 4
 1.3.3 Worldwide Lignocellulosic Fiber Resources 4
 1.3.4 Wood as a Teaching Example 5
 1.4 Composite Concept 6
 1.4.1 Composites Are Important Materials 6
 1.4.2 What Is a Composite? 7
 1.4.3 Taxonomy of Matrix Composites 7
 1.4.4 Laminar Composites 9
 1.4.5 Taxonomy of Wood and Natural Fiber Composites 10
 1.4.6 Composite Scale 12
 1.5 Cellular Solids 13
 1.5.1 Natural and Synthetic Cellular Solids 13
 1.5.2 Relative Density 14
 1.6 Objectives and Organization of This Book 15
 References 16

2 Lignocellulosic Materials 19
 2.1 Introduction 19
 2.2 Chemical Composition of Lignocellulosic Materials 19
 2.2.1 Polymers: Structure and Properties 19
 2.2.2 Lignocellulose 20
 2.2.3 Cellulose 21
Contents

2.2.4 Hemicelluloses 28
2.2.5 Pectins 30
2.2.6 Lignin 31
2.2.7 Extractives and Extraneous Materials 34

2.3 The Woody Cell Wall as a Multicomponent Polymer System 35
2.3.1 Skeletal Framework Polymers 35
2.3.2 Reinforced Matrix Theory 36
2.3.3 Cell Wall Ultrastructure 36
2.3.4 Cell Wall Structure Dictates Physical Properties 38
2.3.5 Cell Wall Structure from Molecular to Anatomic Level 39

2.4 Anatomical Structure of Representative Plants 40
2.4.1 Plant Cell Walls Are Not Solitary Entities 40
2.4.2 Structure of Grain Crop Stems 42
2.4.3 Structure of Herbaceous Biomass Crop Stems 45
2.4.4 Structure of Bast Fiber Stems 46
2.4.5 Structure of Woody Monocotyledons 49
2.4.6 Wood 52

2.5 Comparison of Representative Plant Stems 57
2.6 Cellular Solids Revisited 57

References 57

3 Wood as a Lignocellulose Exemplar 61

3.1 Introduction 61
3.2 Wood as a Representative Lignocellulosic Material: Important Physical Attributes 61

3.3 Moisture Interactions 61
3.3.1 Moisture Content 62
3.3.2 Hygroscopicity 63
3.3.3 States of Water in Wood 70
3.3.4 Capillary or Free Water 72
3.3.5 Shrinking and Swelling due to Moisture Flux 72

3.4 Density and Specific Gravity of Wood 74
3.4.1 Density of Wood 74
3.4.2 Specific Gravity of Wood 76

3.5 Wood: A Cellular Solid 79
3.5.1 Relative Density of Wood 79

3.6 Mechanical Properties 80
3.6.1 Compression Strength 80
3.6.2 Compression Strength of Wood versus Relative Density 82
3.6.3 Mechanical Properties in Context 83

3.7 Wood Is the Exemplar: Extending Principles to Other Plant Materials 83

References 83

4 Consolidation Behavior of Lignocellulosic Materials 85

4.1 Introduction 85
4.2 Synthetic Crystalline and Amorphous Polymers 85
4.2.1 Polyethylene 86
4.2.2 Polystyrene: Isotactic, Syndiotactic, and Atactic 86
Contents

7.8.2 Cement-Bonded Materials 227
7.8.3 Gypsum-Bonded Materials 233
References 234

8 Natural Fiber and Plastic Composites 237
8.1 Introduction 237
 8.1.1 Synthetic Petrochemical Polymers 237
 8.1.2 Bio-Based Polymers 240
8.2 Natural Fibers and Their Temperature-Related Performance 242
 8.2.1 Physical, Mechanical, and Chemical Properties 242
 8.2.2 Thermal Degradation 243
8.3 Plastic Composite Processing Technology 247
 8.3.1 Extrusion: A Fundamental Processing Platform 248
 8.3.2 Injection Molding 250
 8.3.3 Compression Molding 251
 8.3.4 Thermal Forming 252
8.4 Overcoming Incompatibility of Synthetic Polymers and Natural Fibers 252
 8.4.1 Introduction 252
 8.4.2 Coupling Agents: Definition 253
 8.4.3 Coupling Agents: Classification and Function 253
 8.4.4 Coupling Agents: Coupling Mechanism 256
8.5 Melt Compounding Natural Fibers and Thermoplastics 257
 8.5.1 Challenges for Melt Blending of Natural Fibers 257
 8.5.2 Compounding Processes 257
 8.5.3 Compounding Principle 258
 8.5.4 Melt Rheological Properties 259
 8.5.5 Industrial Compounding and Extrusion of WPC 262
8.6 Performance of Natural Fiber and Plastic Composites 263
 8.6.1 Mechanical Properties 264
 8.6.2 Thermal Expansion Properties 269
 8.6.3 Biological Resistance Properties 273
 8.6.4 UV Resistance Properties 276
References 280

Index 287