Contents

List of Contributors, xi
Acknowledgements, xiii

1 Metal resources, use and criticality, 1
T.E. Graedel, Gus Gunn and Luis Tercero Espinoza
The geology and technology of metals, 1
Key concepts, 1
Definitions and terminology, 3
Will we run out of minerals?, 5
Geological assessment, 6
Considerations of supply and demand, 6
Recycling and reuse of metals, 9
The concept of criticality, 10
Assessments of criticality, 11
Improving criticality assessment, 14
Implications of criticality for corporate and governmental policy, 16
Outlining this book, 16
Acknowledgements, 17
Note, 18
References, 18

2 The mining industry and the supply of critical minerals, 20
David Humphreys
Suppliers of minerals – miners and explorers, 21
Industry dynamics, 23
Constraints on mineral supply response, 27
Natural constraints, 27
Economic constraints, 29
Institutional constraints, 31
Critical minerals and the role of China, 34
Policy issues, 38
Notes, 39
References, 39

3 Recycling of [critical] metals, 41
Christian Hagelüken
Rationale and benefits, 41
The urban mine, 41
Recycling benefits, 43
Status and challenges of recycling critical metals, 45
The metals life cycle, 45
Waste and resource legislation, 47
The recycling value chain, 47
Recycling challenges, 48
The seven conditions for effective recycling, 50
Recycling technologies, 51
Collection and pre-processing, 52
Metallurgical recovery, 54
Status of recycling of the EU critical metals, 57
The significance of life-cycle structures, 58
Case study 1: Industrial PGM applications, 59
Case study 2: Automotive PGM applications, 60
Case study 3: Electronic PGM applications, 60
Global flows of old products, 60
Differences in recycling rates and pathways for improvement, 61
Conclusion and the way forward, 62
Innovation needs, 62
Resource security as a societal driver for recycling, 64
Mining and recycling as complementary systems, 64
Conclusions, 66
Notes, 66
References, 67

4 Antimony, 70
Ulrich Schwarz-Schampera
Introduction, 70
Definitions and characteristics, 70
Abundance in the Earth, 71
Mineralogy, 71
Major deposit classes, 72
Gold-antimony [epithermal] deposits, 74
Greenstone-hosted quartz-carbonate vein and carbonate replacement deposits, 77
Reduced magmatic gold systems, 78
Extraction methods and processing, 78
Mining, 78
Ore processing, beneficiation and conversion to metal, 79
Specifications, 82
Uses, 82
Antimony trioxide, 84
Sodium antimonate, 84
Other non-metallurgical uses, 85
Antimony metal, 85
Recycling, 85
Substitution, 86
Resources and reserves, 86
Production, 87
Projects under development, 90
World trade, 91
Prices, 92
Environmental aspects, 94
Outlook, 95
References, 96

5 Beryllium, 99
David L. Trueman and Phillip Sabey
Introduction, 99
Properties of beryllium, 99
Distribution and abundance in the Earth’s crust, 100
Uses of beryllium, 100
Alloys containing less than 2% beryllium, especially copper-beryllium, 101
Pure beryllium metal and alloys containing over 60% beryllium, 102
Beryllia (BeO) ceramics, 103
World production, 103
World trade, 105
World resources, 106
Mineralogy of beryllium, 106
Beryllium deposits, 107
Pegmatite deposits, 107
Hydrothermal deposits, 110
Mining and processing of beryllium, 110
Beryl ores, 110
Bertrandite ores, 110
Processing of beryl and bertrandite to beryllium hydroxide, 111
Production of metal and alloys from beryllium hydroxide, 113
Production of beryllium oxide from beryllium hydroxide, 113
Recycling, 115
Substitution, 116
Environmental aspects, 116
Prices, 118
Outlook, 118
Note, 119
References, 119

6 Cobalt, 122
Stephen Roberts and Gus Gunn
Introduction, 122
Physical and chemical properties, 122
Distribution and abundance in the Earth, 122
Mineralogy, 122
Deposit types, 123
Hydrothermal deposits, 123
Magmatic deposits, 129
Laterites, 130
Manganese nodules and cobalt-rich ferromanganese crusts on the seafloor, 132
Extraction, processing and refining, 134
Cobalt from nickel sulfide ores, 134
Cobalt from nickel laterite ores, 134
Cobalt from copper–cobalt ores in DRC and Zambia, 135
Other sources of cobalt, 136
World production and trade, 138
Resources and reserves, 139
Uses, 140
Recycling, 142
Substitution, 142
Environmental issues, 143
Prices, 144
Outlook, 144
Acknowledgements, 146
Notes, 146
References, 146

7 Gallium, 150
Thomas Butcher and Teresa Brown
Introduction, 150
Physical and chemical properties, 150
Mineralogy and distribution, 150
Sources of gallium, 151
Bauxite, 151
Sphalerite (ZnS), 151
Other geological settings, 152
Recovery methods and refining, 152
Primary recovery, 152
Secondary recovery, 153
Refining and purification, 155
Gallium in GaAs semiconductors, 155
Specifications and uses, 157
Gallium metal, 157
Gallium antimonide, 157
Gallium arsenide, 157
Gallium chemicals, 159
Gallium nitride, 160
Gallium phosphide, 162
Photovoltaics, 162
Substitution, 163
Environmental aspects, 163
World resources and production, 164
Production in 2010, 164
Future supplies, 166
World trade, 167
Prices, 167

8 Germanium, 177
Frank Melcher and Peter Buchholz
Introduction, 177
Physical and chemical properties, 177
Distribution and abundance in the Earth, 177
Mineralogy, 178
Deposit types, 179
Accumulation of germanium in sulfide deposits, 181
Enrichment of germanium in lignite and coal, 185
Extraction methods, processing and beneficiation, 186
Extraction, 186
Processing, 186
Specifications, 188
Germanium tetrachloride, GeCl₄, 188
Germanium dioxide, GeO₂, 188
First reduction metal, 188
Production of zone-refined metal [‘intrinsic’ metal], 188
Single crystals, 188
Uses, 189
Recycling, re-use and resource efficiency, 189
Substitution, 191
Environmental aspects of the life cycle of germanium and its products, 192
Resources and reserves, 192
Production, 194
Future supplies, 196
World trade, 197
Prices, 197
Outlook, 198
Supply challenges, 198
Demand drivers, 199
Supply and demand scenario, 200
Acknowledgements, 200
Notes, 200
References, 200
Contents

9 Indium, 204
 Ulrich Schwarz-Schampera
 Introduction, 204
 Physical and chemical properties, 204
 Abundance in the Earth’s crust, 205
 Mineralogy, 205
 Major deposit classes, 206
 Base-metal sulfide deposits, 209
 Polymetallic vein-type deposits, 209
 Base-metal-rich tin–tungsten and skarn deposits, 210
 Base-metal-rich epithermal deposits, 210
 Extraction methods and processing, 210
 Mining, 210
 Processing, beneficiation and conversion to metal, 212
 Indium production from copper ores, 213
 Indium production from tin ores, 214
 Indium recovery from secondary sources, 214
 Specifications and uses, 214
 Indium–tin oxide (ITO), 215
 Alloys and solders, 215
 Semiconductors, 216
 Others, 216
 Resources and reserves, 217
 Production, 218
 Production from residues and scrap, 220
 Projects under development, 221
 Abandoned production, 221
 World trade, 222
 Prices, 223
 Recycling and substitution, 224
 Environmental aspects, 225
 Outlook, 226
 References, 227

10 Lithium, 230
 Keith Evans
 Introduction, 230
 Properties and abundance in the Earth, 230
 Mineralogy and deposit types, 230
 Pegmatites, 232
 Continental brines, 232
 Geothermal brines, 234
 Oilfield brines, 234
 Hectorite, 234
 Jadarite, 235
 Extraction methods and processing, 236
 Specification and uses, 238
 Recycling, 240
 Substitution, 240
 Environmental factors, 241
 World resources and production, 241
 Reserves and resources, 241
 Production, 244
 Current producers, 245
 Production costs, 248
 Future supplies, 249
 Pegmatite-based projects, 249
 Continental brines, 250
 Geothermal brine, 251
 Oilfield brine, 251
 Hectorite, 252
 Jadarite, 253
 World trade, 253
 Prices, 254
 Outlook, 255
 Acknowledgements, 258
 Notes, 258
 References, 258

11 Magnesium, 261
 Neale R. Neelameggham and Bob Brown
 Introduction, 261
 Physical and chemical properties, 261
 Distribution and abundance in the Earth, 262
 Mineralogy, 262
 Deposit types, 263
 Extraction methods, processing and beneficiation, 263
 Nineteenth-century magnesium production processes, 266
 Commercial magnesium production processes of the twentieth century, 266
 Specifications and uses, 267
 Recycling, re-use and resource efficiency, 269
 Substitution, 271
 Environmental aspects, 272
 Non-greenhouse-gas regulations – electrolytic magnesium production, 272
 Non-greenhouse-gas regulations – thermal magnesium, 273
 Greenhouse-gas emission studies, 273
Contents

- World resources and production, 275
 - Future supplies, 277
- World trade, 277
- Prices, 277
- Outlook, 279
- References, 281

12 Platinum-group metals, 284
Gus Gunn
- Introduction, 284
- Properties and abundance in the Earth, 284
- Mineralogy, 285
 - Major deposit classes, 285
 - PGM-dominant deposits, 286
 - Nickel–copper-dominant deposits, 292
 - Other deposit types, 293
- Extraction and processing, 294
 - Extraction methods, 294
 - Processing, 294
- Specifications and uses, 297
 - Uses of platinum, palladium and rhodium, 297
 - Uses of ruthenium, iridium and osmium, 300
- Recycling, re-use and resource efficiency, 300
- Substitution, 301
- Environmental issues, 301
- World resources and production, 302
 - Resources and reserves, 302
 - Production, 302
- World trade, 304
- Prices, 306
- Outlook, 306
- Acknowledgements, 309
- Note, 309
- References, 310

13 Rare earth elements, 312
Frances Wall
- Introduction, 312
- Physical and chemical properties, 312
- Distribution and abundance in the Earth’s crust, 313
- Mineralogy, 315
- Deposit types, 317
 - Carbonatite-related REE deposits, 319
 - Alkaline igneous rocks, 323
- Other hydrothermal veins, 324
- Iron oxide–apatite deposits, including iron-oxide–copper–gold (IOCG) deposits, 324
- Placer deposits (mineral sands), 324
- Ion adsorption deposits, 324
- Seafloor deposits, 325
- By-products, co-products and waste products, 325
- Extraction methods, processing and beneficiation, 325
 - Mining, 325
 - Beneficiation, 325
- Extraction and separation of the REE, 327
- Specifications and uses, 328
- Recycling, re-use and resource efficiency, 328
- Substitution, 330
- Environmental aspects, 330
- World resources and production, 331
- Future supplies, 332
- World trade, 333
- Prices, 334
- Outlook, 336
- Note, 337
- References, 337

14 Rhenium, 340
Tom A. Millensifer, Dave Sinclair, Ian Jonasson and Anthony Lipmann
- Introduction, 340
- Physical and chemical properties, 340
- Distribution and abundance, 341
- Mineralogy, 341
- Deposit types, 342
 - Porphyry deposits, 342
 - Vein deposits, 345
 - Sediment-hosted copper deposits, 345
 - Uranium deposits, 346
 - Magmatic nickel–copper–platinum-group element (PGE) deposits, 346
- World resources and production, 346
- Future supplies, 348
- Extraction methods, processing and beneficiation, 350
- Specifications and uses, 352
- Recycling and re-use, 354