Alaskan/Alaskan-Ural type deposits 289
alkaline granites and syenites 363, 367–8
alkaline igneous rock deposits 319, 323–4
Alpine-type (APT) deposits 181–2, 184
aluminium 102, 103, 113, 116
beryllium alloys 99–121
beryllia ceramics 100, 103
beryllium oxide production from beryllium hydroxide 113–15
cobalt 122–3, 125, 138
contemporary uses 70
definitions and characteristics 70
deposit characteristics 76
earth factors 94–5
epithermal deposits 72–7
future developments and needs 96
global consumption 84
global distribution 73, 75, 86
global production 87–90
gold-antimony ore 72–7
greenstone-hosted quartz-carbonate vein deposits 76–8
historical uses 70
hot spring deposits 74, 76–7
major deposit classes 72–8
mineralogy 70–72
mining methods 78–9
polymeric base metal vein deposits 74, 76
prices 92–4
processing, beneficiation and conversion to metal 79–82
projects under development 90–91
recycling and reuse 52
resource criticality 6, 8
aluminium-doped zinc oxide (AZO) 224
ammonium metatungstate (AMT) 395, 398
ammonium paratungstate (APT) 394, 395, 398–9, 406–7
ammonium perrhenate (APR) 352
ammonothermal 160
AMT see ammonium metatungstate
anode slime residues 212
antimony 70–98
abundance in the Earth 71
carbonate replacement deposits 72, 76–8
contemporary uses 70, 82–5
definitions and characteristics 70
deposit characteristics 76
environmental factors 94–5
epithermal deposits 72–7
future developments and needs 96
global consumption 84
global distribution 73, 75, 86
AZO see aluminium-doped zinc oxide
autocatalysts 297–9, 307, 309
basalt deposits 288, 292–3
Basel Convention 60
bastnäsite 315, 327
batteries
antimony 85–6
cobalt 140, 142–3, 145–6
gallium 155
lithium 239–41, 244, 255–8
rare earth elements 330
beauxite 151, 153
Bayer process 151, 153, 155
BEE see black economic empowerment
Beja process 153
bertrandite 106, 109–111
beryl 106, 107, 110
beryllia ceramics 100, 103
beryllium 99–121
beryllia ceramics 100, 103
beryllium oxide production from beryllium hydroxide 113–15
contemporary uses 100–103, 118–19
deposit characteristics 107–10
discovery and isolation 99
distribution and abundance in Earth’s crust 100
environmental factors 116–18
future developments and needs 118–19
global distribution 107, 108
global production 103–5
high-beryllium alloys 102–3
hydrothermal deposits 110
beryllium (cont'd)
low-beryllium alloys 100, 102
metal and alloy production from
beryllium hydroxide 113–15
metal preparation 269
mining 106–7
mining methods 110–11
pegmatite deposits 107–10
prices 118
processing of ores to beryllium
hydroxide 111–12
properties 99–100, 102–3
pure beryllium metal 102–3
rare element zoning 107, 109
recycling and reuse 57, 113–16
resources and reserves 106–7
substitution 116
world trade 105
BGS see British Geological Survey
Bielfeld and Laspeyres process 153
bismuth alloys 215–16
black economic empowerment
(BEE) 28
blast furnaces 85–6
Bou Azer, Morocco 125
breccia deposits 391
British Geological Survey (BGS)
beryllium 103–5
cobalt 138, 140
lithium 247
rare earth elements 333–4
Bushveld Complex 286, 290–292
by-product metals
cobalt 123, 125
germanium 193–4
indium 226–7
mining industry 28–9
rare earth elements 326
recycling and reuse 46
resource criticality 6–8
cadmium
alloys 215–16
cadmium telluride 163
mining industry 28
Canadian Institute of Mining,
Metallurgy and Petroleum
(CIM) 4
capacitors 375, 382
capital investment 24, 30–31
carbon nanotubes 224
carbonate-hosted zinc-lead
deposits 182–4
carbonate ores 316
carbonate replacement deposits 74,
76–8
carbonatite deposits
niobium and tantalum 363–6
platinum-group metals 289
rare-earth elements 319–23
carbo-thermic reduction 266–7
carcinogenicity 117
cars 43–4, 58–60
casting cover-gases 273–4
catalysts
cobalt 142
germanium 189–91
platinum-group metals 297–9, 307,
309
rare earth elements 330
recycling and reuse 43
rhenium 340–341, 352–6, 358
CBD see chronic beryllium disease
CCZ see Clarion–Clipperton Zone
Central African Copperbelt 126–8,
135–40, 198
CFL see compact fluorescent lightbulbs
chalcopyrite deposits 206
Chromitite reef type deposits 286, 288,
291
chronic beryllium disease
(CBD) 116–18
CIGS see copper indium gallium
selenium
CIM see Canadian Institute of Mining,
Metallurgy and Petroleum
CIS see copper indium selenide
civil war see geopolitical risk
Clarion–Clipperton Zone (CCZ) 132
closed-loop recycling systems 58–60,
62, 66, 300–301, 309
coal deposits 185–6, 188, 194, 197, 199
cohalamin 143
cobalt 122–49
contemporary uses 122, 140–142
deposit characteristics 123–34
distribution and abundance in the
Earth 122
environmental factors 143–4
extraction, processing and
refining 134–8
ferromanganese oxyhydroxide
crusts 123, 132–4, 138
future developments and needs 144–6
global distribution 123–4
global production 138–40
historical uses 122
hydrothermal deposits 123–9, 135–6
iron-oxide–copper-gold deposits 125,
129
laterite deposits 130–132, 134–5
magnetic deposits 129–30, 134
manganese nodules 132, 140
mineralogy 122–3
mining industry 27, 28, 34
physical and chemical
properties 122–3
prices 144–5
recycling and reuse 43, 57, 138
resources and reserves 139–40
specification 140–142
substitution 142–3, 146
world trade 139, 141
cobalt–chromium alloys 122
collection schemes 47–8, 52–4
columbiumtantalite 362–3, 371
combustion 81
comminution 294–5
compact fluorescent lightbulbs
(CFL) 161
computers see Waste Electrical and
Electronic Equipment
concentrator photovoltaics (CPV) 162,
170
ConRoast process 296
construction minerals 1
collection types 288, 291
continental brines 232–4, 236–8, 241–2,
249–51, 392
Copaux–Kawecki process 111
copper and copper ores
beryllium alloys 100, 101, 113, 115,
118–19
cobalt recovery 125–7, 129–30, 135–6
germanium recovery 178–9, 181–3
indium recovery 206, 208–14, 217
mining industry 26–31, 35
recycling and reuse 41–2, 52
resource criticality 6–7
rhenium recovery 342–50
tungsten alloys 397
copper–indium–gallium–selenide
(CIGS) 155, 163–4, 166–7, 171, 216
copper–indium–selenide (CIS) 163, 216
CPV see concentrator photovoltaics
criticality see resource criticality
cyanidation 81
Czochralski (CZ) method 155–6, 188–9
de la Bretèque process 153
Defence Advanced Research Projects
Agency (DARPA) 170
demand rationing 26
depleted uranium 399
deuterium-tritium (DT) reaction 257–8
didymium 312
dietary ingestion 143–4
Index

dismantling processes 47–8, 51–4
disseminated deposits 390
dolomite deposits 366
DT see deuterium-tritium (DT) reaction
ductile-to-brittle transition temperature 341
dunite pipes 288, 291–2
economic forecasting 24, 25, 39
economic viability 3–5
electric vehicles (EV) 240, 244, 255–7
electrical insulation 103
electrodeposition 81–2
electrolytic processes
 indium 212, 214
 lithium 239–40
 magnesium 263–4, 267, 272–3,
 279–80
dunite pipes 288, 291–2
economic forecasting 24, 25, 39
economic viability 3–5
electric vehicles (EV) 240, 244, 255–7
electrical insulation 103
electrodeposition 81–2
electrolytic processes
 indium 212, 214
 lithium 239–40
 magnesium 263–4, 267, 272–3,
 279–80
End-of-life Vehicles (ELV)
 Directive 47, 60
economic minerals 2
environmental factors
 antimony 94–5
 beryllium 116–18
 cobalt 143–4
 gallium 163–4
 germanium 192
 indium 225–6
 lithium 241
 magnesium 272
 mining industry 25
 niobium and tantalum 376
 platinum-group metals 301–2
 rare earth elements 330–331, 336–7
 recycling and reuse 42, 43
 resource criticality 14
 rhenium 356
 tungsten 399–400
epitaxial layers 156–7, 160
epithermal deposits 72–7, 210–211
equity financing 22–3
essential nutrients 143–4
ETFs see exchange-traded funds
European Commission [EC] 12–13, 35
eutecit alloys 157
EV see electric vehicles
evaporite deposits 392
exchange-traded funds [ETFs] 298, 307
exploration companies 22–3
ferberite 386
ferromanganese oxyhydroxide
 crusts 123, 132–4, 138
 ferro-niobium 376, 380
 ferrotungsten 396, 406
 fibre glass 308
fibre optics 189–91, 199
Financial Stability Act (2010) 377
Fischer–Tropsch process 354, 358
flame retardants 83, 85
flash smelting 134–5
floation processes
 germanium 186, 188
 platinum-group metals 294–5
 rare earth elements 326
fluorcarbonate ores 316
fluoride ores 316
fluorite 317
fluxes 239, 271
fly ash 152
forensic fingerprinting 377
Frary and Pechiney process 153
fuel cells 307–8, 328
fusion reactors 103
gallium 150–176
bauxite deposits 151
contemporary uses 153–63
deposit characteristics 151–2
discovery 150
environmental factors 163–4
future developments and needs 166–7, 170–172
gallium antimonide 157
gallium arsenide 153–9, 163, 166,
 224–5
gallium chemicals 159–60
gallium metal 157
gallium nitride 153, 160–163, 170
 gallium phosphide 162
global distribution 150–151
global resources and production 164–7
IREDs, LDs and LEDs 158–64,
 170–172
mineralogy 150–151
mining industry 29–30, 37
physical and chemical properties 150–151
prices 167–9
primary production 164–5
primary recovery 152–3
recovery and reuse 41, 57, 153–5,
 165–7
refining and purification 155
resource criticality 6
secondary production 165–6
secondary recovery 153–5
semiconductors 153–60, 163
specifications 157–63
sphalerite deposits 151–2
substitution 163
world trade 167–9
gallium-doped zinc oxide
 (GZO) 170–171
gallium–indium–tin alloys 216–17
galvanic corrosion 271–2
gas turbines 353–4, 356–8
global risks
 cobalt 142, 144
 magnesium 261
 mining industry 26, 28, 32–4, 37
 niobium and tantalum 376–7,
 380–381
 platinum-group metals 308–9
 policy attractiveness 34–6
 recycling and reuse 43
global distribution 150–5
 Cobalt 142–4
 magnesium 260
 mining industry 26, 28, 32–4, 37
 niobium and tantalum 376–7,
 380–381
 platinum-group metals 308–9
 policy attractiveness 34–6
 zinc 275
 world trade 167–9
greenhouse gases
 cobalt 142
 germanium 177–204
 zinc 275
green energy funds
 renewable energy 297
 sustainable development 297
 wind power 297
 world trade 167–9
Ghana 47
Germanium 177–204
accumulation in sulfide deposits 181–5
contemporary uses 189–91, 199–200
deposit characteristics 179–86
discovery 177
distribution and abundance in the Earth 177–8
enrichment in lignite and coal 185–6,
 188, 194, 197–9
environmental factors 192
extraction methods 186
first reduction metal 188
future developments and needs 196–7, 199–200
germanium dioxide 188
Germanium 178–9
global distribution 179–81
global production 194–6
mineralogy 178–9
mining industry 28, 37–8
physical and chemical properties 177–8
prices 197–8
processing and beneficiation 186–8
recycling and reuse 47, 57, 189–91, 199
resources and reserves 192–4
single crystals 188–9
specifications 188–9
substitution 191–2
supply and demand 198–200
world trade 197
zone-refined metal 188
GHG see greenhouse gases
global diversified miners 21
Global Mineral Resource Assessment Project 6
Index

gold
 antimony deposits 73–80, 90
 antimony ores 73–7
 cobalt ores 125, 129
 mining industry 21, 24
 recycling and reuse 41–2, 47–8
granite deposits 363, 367–8, 370–371
 granitic pegmatites 107–10
 gravity methods 394
 greenhouse gases (GHG) 272–5, 302
 greenstone-hosted quartz-carbonate vein deposits 76–8
 greisen deposits 390
 Grignard reagents 269
GZO see gallium-doped zinc oxide
Harris Process 213
HB see horizontal Bridgman (HB) method
hectorite clays 234–5, 248–9, 252–3
 high nitrogen pressure solution (HNPS) 160
 high-pressure acid leach (HPAL) technology 135, 138
 high-speed steel (HSS) 397
 Hoboken universal process 54–5
 horizontal Bridgman (HB) method 155–6
hot spring deposits
 antimony 72, 76–7
 indium 211
 tungsten 392
HPAL see high-pressure acid leach
HSS see high-speed steel
hübnerite 386
hydride vapour phase epitaxy (HVPE) 160
hydrometallurgical processes
 antimony 80, 81
 cobalt 134
 germanium 187
 lithium 240
 platinum-group metals 296
 recycling and reuse 47–8, 54, 56
 tungsten 394
hydrothermal deposits
 antimony 72, 74, 76, 77
 beryl 110
 cobalt 123–9, 135–6
 platinum-group metals 289
 rare earth elements 317, 319–24
hypothetical resources 4
ICGLR see International Conference on the Great Lakes Region
Idaho Cobalt Belt (ICB) 125, 138
IMA see International Mineralogical Association
IMDG see International Maritime Dangerous Goods
imperial smelting process (ISP) 212
indigenisation 32
indium
 abandoned production 221–2
 abundance in Earth’s crust 205
 alloys and solders 215–16
 base-metal-rich epithermal deposits 209, 211
 base-metal-rich tin–tungsten and skarn deposits 210
 base-metal sulphide deposits 209
 contemporary uses 204, 214–17
 deposit characteristics 206–10
 discovery 204
 environmental factors 225–6
 extraction methods and processing 210–214
 future developments and needs 226–7
 global distribution 207
 global production 218–20
 historical uses 204
 mineralogy 205–6
 mining industry 28, 37
 mining methods 210–212
 physical and chemical properties 204–5
 polymetallic vein-type deposits 209, 211
 prices 223–4
 processing, beneficiation and conversion to metal 212–14
 production from copper ores 213–14
 production from tin ores 214
 projects under development 221
 recovery from secondary sources 214
 recycling and reuse 41, 42, 46, 51, 57, 220–221, 224
 resource criticality 5, 8
 resources and reserves 217–18
 semiconductors 215, 216
 specifications 214–15
 substitution 224–5
 world trade 222–3
indium–boron oxide 216
indium gallium aluminium phosphide 162
indium gallium phosphide 162
 indium–tin oxide (ITO) 46, 51, 54, 171, 204, 215, 223–6
industrial minerals 1–2
infrared emitting diodes (IREDs) 158–9
infrared optics 189–91, 199
inhalation exposure 117
intermetallic compounds 101
International Conference on the Great Lakes Region (ICGLR) 377
International Maritime Dangerous Goods (IMDG) Code 376
International Mineralogical Association (IMA) 178
international reporting codes 4
IOCG see iron-oxide–copper–gold
ion adsorption deposits 322–4
ion-exchange processes 238
IREDs see infrared emitting diodes
iridium see platinum-group metals
Irish-type (IRT) deposits 181–2, 184
iron and iron ores
 germanium recovery 179, 182–3
 indium recovery 206
 mining industry 36
 rare earth elements 325
 recycling and reuse 52
 resource criticality 6, 8
 iron-oxide–copper–gold (IOCG) deposits 125, 129, 324
 IRT see Irish-type (IRT) deposits
 isotropy of beryllium 102
 ISP see imperial smelting process
 ITO see indium–tin oxide
jadite 235–6, 244, 253
jarosite 152, 212
jewellery 298
Joint Ore Reserves Committee (JORC) 4
Joint Research Council (JRC) 13
Kambalda Dome 129
Kipushi-type (KPT) deposits 181–2, 184, 196–7
Kjellgren–Sawyer process 111
Komatiite related deposits 288, 293
KPT see Kipushi-type (KPT) deposits
Kroll process 269
Landsat images 235
lanthanides see rare earth elements
laser diodes (LDs) 158–61
laterite deposits 130–132, 134–5, 289
LCA see life-cycle analysis
LCD see liquid crystal displays
LCEs see lithium carbonate equivalents
LCI see life-cycle inventories
LCT see Lithium-Caesium-Tantalum
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDs</td>
<td>see laser diodes</td>
</tr>
<tr>
<td>leaching</td>
<td>antimony 81, beryllium 111, 112, cobalt 134–8, germanium 186</td>
</tr>
<tr>
<td>lead and lead ores</td>
<td>germanium 181–4, indium alloys 215–16, recycling and reuse 52, resource criticality 8</td>
</tr>
<tr>
<td>LEC</td>
<td>see liquid encapsulated Czochralski</td>
</tr>
<tr>
<td>LEDs</td>
<td>see light emitting diodes</td>
</tr>
<tr>
<td>lepidolite</td>
<td>232, 247</td>
</tr>
<tr>
<td>life-cycle analysis (LCA)</td>
<td>274–5, 399–400</td>
</tr>
<tr>
<td>life-cycle inventories (LCI)</td>
<td>273</td>
</tr>
<tr>
<td>light emitting diodes (LEDs)</td>
<td>gallium 155, 158–9, 161–4, 170–172, germanium 199, indium 216, lignite deposits 185–6, 194, limonite 152, liquid crystal displays (LCD)</td>
</tr>
<tr>
<td>liquid encapsulated Czochralski (LEC) method</td>
<td>155–6</td>
</tr>
<tr>
<td>liquid ion exchange (LIX)</td>
<td>350–351</td>
</tr>
<tr>
<td>liquid phase epitaxy (LPE)</td>
<td>157, 160</td>
</tr>
</tbody>
</table>
Index

mining industry (cont’d)
institutional constraints 31–4
market capitalisation 21–2
market size and market share 36
miners and explorers 21–3
nationalisation 32
natural constraints 27–8
policy issues 38–9
prospect development 24
resource criticality 20, 24, 34–8
role of China 34–8
securitisation 20, 32
supply and demand 20–21, 26–7
Minor Metals Trade Association
[MMTA] 82, 352, 357
Mississippi Valley-type (MVT) deposits 181–4, 196
MLCC see multi-layer ceramic capacitors
MMAC see Metallurgical Miners’ Association of China
MMIC see monolithic microwave integrated circuits
MMTA see Minor Metals Trade Association
mobile phones 158, 239 see also Waste Electrical and Electronic Equipment
modifying factors 5
molecular beam epitaxy (MBE) 157, 160
molybdenites 342–5, 349–50
molybdenum 28–29, 342–5, 347–50
monazite 315–17, 323, 326–7
monolithic microwave integrated circuits [MMIC] 158–9
MOVPE see metal organic vapour phase epitaxy
multi-layer ceramic capacitors [MLCC] 299, 301
multi-stage solvent extraction 327–8
MVT see Mississippi Valley-type (MVT) deposits
National Bureau of Statistics of China [NBSC] 400
National Institute of Occupational Safety and Health [NIOSH] 95
National Research Council [NRC] lithium 240–241
mining industry 35
resource criticality 12, 14
nationalisation 32
naturally occurring radioactive materials (NORMs) 376
NBSC see National Bureau of Statistics of China
neodymium–iron–boron magnets 328, 334
neutron moderation 102
nickel
beryllium alloys 113, 115
cobalt ores 129–35
mining industry 26, 27, 36
platinum-group metal alloys 308
recycling and reuse 52
resource criticality 7, 8
tungsten alloys 397
nickel–copper-dominant deposits 288, 292–7, 309
niobium 361–84
alkaline to peralkaline granites and syenites 363, 367–8
carbonatite deposits 363–6
deposit characteristics 363–71
discovery 361
distribution and abundance in the Earth 361–2
environmental factors 376–8
exploration methods and processing 371–4
future developments and needs 379–82
geopolitical risk 376–7, 380–381
global distribution 377
global production 377–80
mineralogy 362–3
mining industry 28
peraluminous granites and syenites 363, 370–371
peraluminous pegmatites 363, 368–70
physical and chemical properties 361–2
prices 380–381
recycling and reuse 43, 57, 375
resources and reserves 377–80
specifications and uses 374–5
substitution 375
niobium-yttrium-fluorine [NYF] association 109
NIOSH see National Institute of Occupational Safety and Health
non-ferrous tungsten alloys 396
Norilsk region 130
NORMs see naturally occurring radioactive materials
nuclear weapon pits 157
NYF see niobium-yttrium-fluorine (NYF) association
occupational health
antimony 95
beryllium 117
indium 226
platinum-group metals 301
Oddo Harkins effect 314
OECD see Organisation for Economic Cooperation and Development
oilfield brines 234, 251–2
ongonites 110
open-loop recycling systems 58–9, 61–2, 300, 309
operating costs 25–6, 30–31
ophiolites 289
Organisation for Economic Cooperation and Development [OECD] 377
osmium see platinum-group metals
oxide ores
antimony 79, 81
germanium 179, 181
rare earth elements 316
palladium see platinum-group metals
peak production concept 9
pegmatite deposits
beryllium 107–10
lithium 232, 236, 241–9, 255
niobium and tantalum 363
nickel 392
peralkaline granites and syenites 363, 367–8
peraluminous granites 363, 370–371
peraluminous pegmatites 363, 368–70
photovoltaics
gallium 162–4, 170–171
germanium 190–192
indium 221, 223
platinum-group metals 308
Pidgeon process 263, 265–7, 273–5, 279
pipe deposits 392
placer deposits 289, 324, 325, 392
platinum-group metals [PGM] 284–309
cobalt 129–30
contemporary uses 284, 297–300, 307–9
deposit characteristics 285–94
environmental factors 301–2
extraction methods 294
future developments and needs 306–9
global distribution 287
global production 302–4
mineralogy 285–6
mining industry 27–8, 35
nickel–copper-dominant deposits 288, 292–7, 309
Index

nomenclature 284
PGM-dominant deposits 286–92, 294–6, 309
prices 306–7
processing methods 294–7
properties and abundance in the Earth 284–5
recycling and reuse 41–4, 46, 49, 51, 54, 57–62, 300–301, 309
resource criticality 5, 8, 13, 14, 16
resources and reserves 302
specifications 297
substitution 301
supply security 308–9
world trade 304–6
policy attractiveness 33–5
polyethylene terephthalate (PET) antimony 83–5, 95
germanium 189, 191, 199
polymetallic vein deposits antimony 72, 76
indium 209, 211
porphyry deposits
germanium 182–3
indium 208, 211
platinum-group metals 289
rhenium 342–8
tungsten 390–391
pre-processing 47–8, 51–4
primary resources 9–10
prospect development 24
pyrometallurgical processes antimony 79, 81
cobalt 134
germanium 187–8
lithium 239
recycling and reuse 47–8, 54–7
tungsten 394–5
quantum dots 224
rare earth elements [REE] 312–39
alkaline igneous rock deposits 319, 323–4
by-products, co-products and waste products 325
carbonatite-related deposits 317–23
didymium 312
distribution and abundance in the Earth’s crust 313–15
environmental factors 330–331, 336–7
extraction and separation 327–8
future developments and needs 329, 332–3, 336–7
global distribution 318
global production 331–3
inclusion of yttrium and scandium 312
iron oxide deposits 319, 324
iron-oxide-pyrite deposits 316–17, 324
IUPAC definition 312
lanthanide contraction 313
mineralogy 315–17
mines and advanced projects 317, 319–22
mining industry 24, 25
mining methods 325
physical and chemical properties 312–5
placer deposits 324, 326
prices 334–6
processing and beneficiation 325–8
recycling and reuse 41, 54, 58, 328–31
resource criticality 5–8, 14, 16
resources and reserves 331–3
seafloor deposits 325
separation from each other 312
size and grade of ore deposits 317, 319
specifications and uses 328–9
substitution 330
world trade 333–4
rare element zoning 107, 109
Raw Materials Group 36
Raw Materials Initiative 62
REACH guidelines 376
recycling and reuse 41–67
antimony 58, 85, 88
automotive PGM applications 60
gallium 57, 113–16
cars 43
cobalt 142
dedicated processes for metal combinations 56–7
electronic PGM applications 60
EU critical metal recycling status 57–8
future developments and needs 62–6
gallium 153–5, 165–7
germanium 189–91, 198–9
global end-of-life recycling rates 49
improvements in primary production and wastes 45
indium 220–221, 224
industrial PGM applications 59–60
innovation needs 62–4
lifecycle structures 58–62
lithium 239–40
magnesium 269–71
metallurgical metals recovery 47–8, 54–7
metals life cycle 45–6, 62
mining industry 26
mining and recycling as complementary systems 64–6
mobile phones 42–3
niobium and tantalum 375
platinum-group metals 300–301, 309
rare earth elements 328–31
rational and benefits 41–3
recyclability factors 48–50, 62, 63
recycling challenges 48–50
recycling rates and improvement pathways 61–2
recycling technologies 51–8
recycling value chain 47–8, 51–7
resource criticality 9–10, 16
resource security as societal driver 64
rhenium 354–5
seven conditions of effective recycling 50–51
status and challenges 45–51
tungsten 398–9
urban mine concept 41–3, 66
waste and resource legislation 47
reduced magmatic deposits 74, 76, 78
REE see rare earth elements
reserve base, definition 5
reserves, definition 5
resource classification 4
resource criticality 1–18
assessments of criticality 11–15
construction minerals 2
criticality concept 10–18
crustal abundances 2
definitions and terminology 3–4
demand and usage patterns 6
economic viability 4–6
energy minerals 2
geological assessment 6
geology and technology of metals 1–5
improving criticality assessment 14, 15
industrial minerals 1–2
key concepts 1–4
metals 2
mining industry 20, 24, 34–8
peak production concept 9
policy implications 16
recycling and reuse of metals 9–10, 16
resource criticality [cont’d]
resources and reserves 4–5
supply and demand 6–9
Resource Super Profits Tax 32
reverberatory furnaces 85
rhenite 341–2
rhenium 340–360
contemporary uses 340, 352–4, 356–9
discovery 340
distribution and abundance in the Earth’s crust 341
environmental factors 356
extraction methods, processing and beneficiation 350–351
future developments and needs 348–9, 358–9
global distribution 347
global production 340, 346–50
magmatic nickel–copper–PGE deposits 346, 349–50
mineralogy 341–2
mining industry 28, 35
physical and chemical properties 340–341
porphyry deposits 342–8
prices 352–3, 355, 357–8
recycling and reuse 354–5
resources and reserves 346–50
sediment-hosted copper deposits 345, 348
specifications 352–4
substitution 355–6
uranium deposits 346, 349
vein molybdenum deposits 343, 345
world trade 356–7
rhodium see platinum-group metals
rift-and continental-flood basalts 288, 292–9
ruthenium see platinum-group metals
salars 232–5, 237, 238, 241–4, 249–51
samarium–cobalt magnets 328
scandium see rare earth elements
scheelite 386, 390–392
Schwenzfeir process 113, 114
SEC see Securities and Exchange Commission
secondary resources 9
Securities and Exchange Commission [SEC] 377
securitisation 20, 32
sediment-hosted copper deposits 345, 348
sediment-hosted massive sulfides [SMS]
germanium 181–2, 184, 196
indium 208–9, 211, 217–18, 222
selenium 28
semiconductors
gallium 153–60, 163
germanium 189, 199
indium 215, 216
tungsten 398
shales 289
SIC see Sudbury Igneous Complex
silicates 178–9, 316
silico-thermic reduction 267
silver 42–3, 49
skarn deposits 210, 389–90
skutterudite 123
slag/tailings recovery
antimony 79–81, 85
cobalt 136–7
germanium 185, 192
indium 213
niobium and tantalum 372–3, 379
recycling and reuse 45, 57
SMS see sediment-hosted massive sulfides
sodium antimonate 84–5
solid-bed ion exchange 350–351
solid-state lighting [SSL] 161–2
solution-annealing 113
solvent extraction 111–12, 327–8
speculative resources 4
spalerite deposits 151–2, 183, 205–6
spodumene 232, 236, 243–5, 254
SSL see solid-state lighting
State Reserves Bureau [SRB] 35–6
static life index 27
stibnite 70–73, 78–81
stock market financing 23
stockpiling
antimony 89–90
beryllium 99, 101–3, 111
China and criticality 34–6
cobalt 137
germanium 185
indium 223, 227
lithium 246
niobium and tantalum 372, 379
policy issues 39
rare earth elements 331–2
recycling and reuse 62
resource criticality 11, 14, 34–7, 39
rhenium 354, 357
tungsten 404
stockwork deposits 387, 389
stratabound deposits 391–2
structural scarcity 7
Sudbury Igneous Complex [SIC] 129–30, 292, 293
sulfide ores
antimony 79–81
cobalt 122–3, 125, 134–6
gallium 151–2
germanium 178–9, 181–5, 193, 197
indium 205–6, 209
platinum-group metals 285–6
rhenium 341–2
sulfur hexafluoride 273–4
superalloys
cobalt 140–142, 145–6
platinum-group metals 308
rhenium 352–5, 359
tungsten 396, 397, 409
supply risk 12–14
surface-coating applications 216
sylvinite deposits 363, 367–8
synorogenic hydrothermal deposits 77–8
tailings see slag/tailings recovery
Tanco deposit 368–70
tantalum 361–84
alkaline to peralkaline granites and syenites 363, 367–8
carbonatite deposits 363–6
deposit characteristics 363–71
discovery 361
distribution and abundance in the Earth 361–2
environmental factors 376
extraction methods and processing 371–4
future developments and needs 379–82
geopolitical risk 376–7
global distribution 364
global production 377–80
mineralogy 362–3
mining industry 28
peraluminous granites 363, 370–371
peraluminous pegmatites 363, 368–70
physical and chemical properties 361–2
prices 380–381
recycling and reuse 57, 375
resources and reserves 377–80
specifications and uses 374–5
substitution 375
taxation 34
TCOs see transparent conducting oxides
technical scarcity 7
Index

tellurium 7–8, 28, 35
TFSC see thin-film solar cells
TFT see thin-film transistor
thermometers 157
thin-film deposition 157
thin-film solar cells (TFSC) 163, 167, 223
thin-film transistor (TFT) LCDs 161–2
tin and tin ores. see also indium–tin oxide
indium alloys 215–16
indium recovery 210, 214
niobium and tantalum 363, 372–3, 379
resource criticality 8
titanium 269
TMI see trimethylindium
total leaching 296
transparent conducting oxides (TCOs) 170
trimethylindium [TMI] 216
tungsten 385–413
antimony deposits 78
breccia deposits 391
brine/evaporite deposits 392
contemporary uses 385, 396–8
deposit characteristics 386–92
discovery 385
disseminated or greisen deposits 390
distribution and abundance in the Earth's crust 385
environmental factors 399–400
extraction methods 392–3
future developments and needs 402–9
global distribution 388
global production 401–5
hot spring deposits 392
indium recovery 210
life-cycle analysis 399–400
mill products 398
mineralogy 386
mining industry 36
pegmatite deposits 392
physical and chemical properties 385–6
pipe deposits 392
placer deposits 392
porphyry deposits 390–391
prices 406–9
processing and beneficiation 393–5
recycling and reuse 57, 398–9
resources and reserves 400–405
skarn deposits 389–90
specifications 395–6
steal and other alloys 397–8, 409
stratabound deposits 391–2
substitution 399
vein and stockwork deposits 387, 389
world trade 404–8
tungsten carbides 375, 395–7
tungsten–heavy-metal alloys (WHAs) 395, 397
UBC see Used Beverage Containers
unconformity-related deposits 289
undiscovered resources 4
United Nations Environment Programme (UNEP), beryllium 115
United States Bureau of Mines (USBM) 5
United States Environmental Protection Agency (USEPA)
beryllium 117
magnesium 273–4
rare earth elements 331
United States Geological Survey (USGS) 5, 7
antimony 87
beryllium 118
cobalt 139–40
indium 217–18, 222
lithium 241
mining industry 27–8
niobium and tantalum 380
rare earth elements 312
tungsten 400
uranium and uranium ores
metal preparation 269
mining industry 33
rhenium 346, 349
tungsten alloys 399
urban mine concept 41–3, 66
USBM see United States Bureau of Mines
Used Beverage Containers [UBC] 270
USEPA see United States Environmental Protection Agency
USGS see United States Geological Survey
vacuum melting 113, 114
vanadium 34
VB see vertical Bridgman [VB] method
ven deposits
antimony 74, 76–8
indium 209, 211
rhenium 343, 345
tungsten 387, 389
vertical Bridgman [VB] method 155–6
vertical gradient freeze [VGF] method 155–6
vitamins 143–4
VMS see volcanogenic massive sulfide
Voisey's Bay 130
volatilisation, antimony 79–82
volcanogenic massive sulfide (VMS) deposits
germanium 181, 184, 197
indium 206, 208–9, 211, 217–18, 222
vulnerability to supply restriction (VSR) 14

Waste Electrical and Electronic Equipment (WEEE)
germanium 191
lithium 239–40
platinum-group metals 300
recycling and reuse 42–3, 47, 50, 52–3, 59–60, 64
WHAs see tungsten–heavy-metal alloys
whole ore leach (WOL) method 136–7
wireless communications 159
wodginite 363
WOL see whole ore leach
wolframite 386, 392, 394
World Trade Organisation (WTO)
magnesium 279
mining industry 32
tungsten 407–8

X-ray transparency 102
xenotime 315–16, 326–8

yttrium see rare earth elements
yttrium aluminium garnet (YAG) lasers 328

zinc and zinc ores
gallium recovery 151–3
germanium recovery 178–9, 181–4, 195
indium recovery 206, 212, 217–20, 226
mining industry 28
resource criticality 8
zircon 317
zirconium 269
zirconium–indium-based fluoride glass 191