Index

2D traps, see Linear ion traps
3D traps, see Paul traps

Abbreviated validations 549–50
Above quantitation limit (AQL) 549
Absolute quantitation 47, 675–80
Accelerated solvent extraction (ASE) 119, 167
Accessible m/z range 255–6
Accuracy
 carryover 526
 fitness for purpose 465, 466
 mass analyzers 257–8
 method development 512
 statistical tools 375–7, 427, 428
 strategy formulation 483
 validation 543, 549, 557, 561–2, 566
Acrylamide 588–600
Acylation 184
ADC, see Analogue-to-digital converters (ADC)
Addition polymer columns 141
ADME studies
 bioanalytical applications 637–8
 validation 560, 566, 581
Adsorption 55
Affinity media 143–4
AHR, see Aryl hydrocarbon receptor (AHR) agonists
AIQ, see Analytical instrument qualification (AIQ)
Air displacement pipets 34
Alumina stationary phases 134–6
Amino columns 136
Analogue-to-digital converters (ADC) 346, 365–6
Analogue internal standards 484, 514

Analysis of variance (ANOVA)
 389, 394–8, 455
Analysts' roles, see Fitness for purpose
Analytical balances 25–32, 49
analytical standards 31–2
Archimedes' Principle 29–30
 calibration 27
 historical development 26
 uncertainties 27–31
Analytical instrument qualification (AIQ) 491–3, 495
Analytical standards 18–25, 31–2, 47, 435–6
ANOVA, see Analysis of variance (ANOVA)
Anthropogenic pollutants, see Environmental pollutants
Antibiotic screening in the environment 623–5
APCI, see Atmospheric pressure chemical ionization (APCI)
API, see Atmospheric pressure ionization (API)
APPI, see Atmospheric pressure photoionization (APPI)
AQI, see Above quantitation limit (AQL)
AQUA method 676
Archimedes' Principle 29–30
Aryl hydrocarbon receptor (AHR) agonists 636–7
ASE, see Accelerated solvent extraction (ASE)
Assigned purity 481–2
ASTM Class 1 weights 27
Atmospheric pressure chemical ionization (APCI) 203–5
 applications 198–9
bioanalytical applications 637–61
chemical derivatization 184
comparative studies 210–11, 221
 coupling to mass spectrometers 199–203
desorption methods 236–7
environmental pollutants 623, 628
flow-FAB comparison 198
food contaminants 596
key concepts 241–2
lab-on-a-chip 196
mass analyzers 246, 267, 279, 281, 289, 297, 320
matrix effects 520
 method development 491, 503
 mobile phases 182, 208
 principles 82
rapid heating effect 198
separation techniques 111
 source–analyzer interfaces 237
 strategy formulation 479
suppression of ionization by matrix 176, 205
Atmospheric pressure ionization (API) 198–203
 calibration 46
 fitness for purpose 473
see also Atmospheric pressure chemical ionization (APCI);
 Atmospheric pressure photoionization (APPI);
 Electrospray ionization (ESI)
Atmospheric pressure photoionization (APPI) 206–11
 applications 198–9, 207–10
 comparative studies 210–11

Trace Quantitative Analysis by Mass Spectrometry Robert K. Boyd, Cecilia Basic, Robert A. Bethem
© 2008 John Wiley & Sons, Ltd
Atmospheric pressure
photoionization (APPI)
(Continued)
coupling to mass spectrometers...
key concepts...
separation techniques...
strategy formulation...
suppression of ionization by matrix...
Autosamplers...
Avogadro Constant...
Background signal...
Balances, see Analytical balances
Ballistic gradients...
Ball-on-a-saddle model...
Bartlett test...
Batch preparation...
Bayer–Alpert gauges...
Best-fit calibration curve...
Bias errors...
Binomial expansions...
Bioanalytical applications...
chiral analyses...
clearance rate tests...
drug development phase...
drug discovery...
drug–drug interactions...
high throughput screening...
metabolite identification/quantitation...
method development...
passive permeability tests...
pharmaceutical dose/ratio...
quantitative proteomics...
two concentration ranges...
validation...
see also ADME studies
Biochemical affinity...
Biological fluids...
BIPM, see Bureau International des Poids et Mesures (BIPM)
Bivariate data...
correlation analysis...
goodness of fit...
heteroscedacity...
homoscedacity...
inversion of calibration equation...
linearity...
regression analysis...
reproducibility...
Black, Joseph...
Blanks...
Box-car averaging...
Bureau International des Poids et Mesures (BIPM)
Caco-2 assays...
CAD, see Collision activated dissociation (CAD)
Calibration
analytical balances...
analytical standards...
best-fit curve...
chromatography...
cross-contributions...
equation inversion...
external linear calibration...
final method...
key concepts...
limit of detection...
limits of quantitation...
mass spectrometry calibration solutions...
method development...
natural abundance isotopic distribution...
nonzero intercepts...
regression analysis...
solutions...
stock and spiking solutions...
surrogate internal standards...
validation...
see also Method of standard additions (MSA)
Capacitance manometers...
Capacity factor...
Capillary electrophoresis (CE)
Carbon loading...
Carrier gases, see Mobile phases
Carryover...
CCVS, see Continuing calibration verification standards (CCVS)
CEC, see Capillary electrophromatography (CEC)
Cell-based assays...
CEMA, see Channel electron multiplier arrays (CEMA)
CEM, see Channel electron multipliers (CEM)
Centre of mass collision energy...
Certificates of Analysis (COA)
Certified reference materials (CRM)
CFGS, see Channel gas thickness (CGT)
Channel electron multiplier arrays (CEMA)
Channel electron multipliers (CEM)
Charge residue mechanism...
Chemical derivatization...
Chemical ionization (CI)
Chemical derivatization interfaces...
environmental pollutants...
<table>
<thead>
<tr>
<th>Key Concepts</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>Constitutional heterogeneity (CH)</td>
</tr>
<tr>
<td>CID</td>
<td>Collision induced dissociation (CID)</td>
</tr>
<tr>
<td>CIPM</td>
<td>Comité International de Poids et Mesures (CIPM)</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical ionization (CI)</td>
</tr>
<tr>
<td>Clean-up</td>
<td>Sample preparation</td>
</tr>
<tr>
<td>Clearance rate tests</td>
<td>643, 645–8</td>
</tr>
<tr>
<td>Clerk-Maxwell, James</td>
<td>9, 262–3</td>
</tr>
<tr>
<td>COA, see Certificates of Analysis (COA)</td>
<td></td>
</tr>
<tr>
<td>Coefficient of variation (CV)</td>
<td>calibration 379</td>
</tr>
<tr>
<td>environmental pollutants validation 562, 566</td>
<td></td>
</tr>
<tr>
<td>Co-elution</td>
<td>calibration 434, 439, 443</td>
</tr>
<tr>
<td>food contaminants 594 ion sources 175–6, 179, 222–3, 228</td>
<td></td>
</tr>
<tr>
<td>mass analyzers 336 matrix effects 517–20 probability 68</td>
<td></td>
</tr>
<tr>
<td>strategy formulation 482 validation 563</td>
<td></td>
</tr>
<tr>
<td>Cold trapping</td>
<td>153–4</td>
</tr>
<tr>
<td>Collision gas thickness (CGT)</td>
<td>326</td>
</tr>
<tr>
<td>Collision induced dissociation (CID)</td>
<td>bioanalytical applications 652, 654, 658–60</td>
</tr>
<tr>
<td>environmental pollutants 632 figures of merit 247, 249 fitness for purpose 469, 473</td>
<td></td>
</tr>
<tr>
<td>ion activation/dissociation 321, 324–6</td>
<td></td>
</tr>
<tr>
<td>ion sources 201–2 method development 491, 502–3, 507</td>
<td></td>
</tr>
<tr>
<td>multiple reaction monitoring 336 principles 264</td>
<td></td>
</tr>
<tr>
<td>QqQ trap analyzers 310–11 quadrupole ion traps 290–1, 298–9</td>
<td></td>
</tr>
<tr>
<td>separation techniques 129–30 strategy formulation 487–8</td>
<td></td>
</tr>
<tr>
<td>tandem mass spectrometry 254–5</td>
<td></td>
</tr>
<tr>
<td>triple quadrupole mass analyzers validation 565</td>
<td></td>
</tr>
<tr>
<td>Column efficiency 57, 63–4, 72–4, 75</td>
<td></td>
</tr>
<tr>
<td>Column porosity 58</td>
<td></td>
</tr>
<tr>
<td>Confidentie levels 387, 455</td>
<td></td>
</tr>
<tr>
<td>limits 405, 410–11, 416, 418, 424–7, 448</td>
<td></td>
</tr>
<tr>
<td>Confirmation criteria 569</td>
<td></td>
</tr>
<tr>
<td>Confirmation limits 467, 470</td>
<td></td>
</tr>
<tr>
<td>Constitutional heterogeneity (CH) 451</td>
<td></td>
</tr>
<tr>
<td>Contamination causes and impact 522–3 method development 506 monitoring 522–4 validation 548–9</td>
<td></td>
</tr>
<tr>
<td>Continuing calibration verification standards (CCVS) 46–7</td>
<td></td>
</tr>
<tr>
<td>Control matrices 486–9</td>
<td></td>
</tr>
<tr>
<td>Corrective action 580–2</td>
<td></td>
</tr>
<tr>
<td>Correlation analysis 398, 401, 455–6</td>
<td></td>
</tr>
<tr>
<td>Coulomb’s Law 4</td>
<td></td>
</tr>
<tr>
<td>Critical regions/values 456</td>
<td></td>
</tr>
<tr>
<td>CRM, see Certified reference materials (CRM)</td>
<td></td>
</tr>
<tr>
<td>Cross-contamination 506–7</td>
<td></td>
</tr>
<tr>
<td>Cross-contributions 444–8, 454</td>
<td></td>
</tr>
<tr>
<td>Cross-linked gels 141</td>
<td></td>
</tr>
<tr>
<td>Cross-over molecular mass 11–14</td>
<td></td>
</tr>
<tr>
<td>Cross validations 550–1</td>
<td></td>
</tr>
<tr>
<td>Crushed crystal method 243</td>
<td></td>
</tr>
<tr>
<td>CSP, see Chiral stationary phases (CSP)</td>
<td></td>
</tr>
<tr>
<td>Culture-based labelling 668, 673–5</td>
<td></td>
</tr>
<tr>
<td>Current-to-voltage converters 346</td>
<td></td>
</tr>
<tr>
<td>Cusum charts 41–2</td>
<td></td>
</tr>
<tr>
<td>CV, see Coefficient of variation (CV)</td>
<td></td>
</tr>
<tr>
<td>Cyano columns 136</td>
<td></td>
</tr>
<tr>
<td>Cyclodextrins 140–1</td>
<td></td>
</tr>
<tr>
<td>CYP450 assays 640, 643–5</td>
<td></td>
</tr>
<tr>
<td>CZE, see Capillary zone electrophoresis (CZE)</td>
<td></td>
</tr>
<tr>
<td>Daltons 15</td>
<td></td>
</tr>
<tr>
<td>Daly detectors 358–9</td>
<td></td>
</tr>
<tr>
<td>DAPCI, see Desorption atmospheric pressure chemical ionization (DAPCI)</td>
<td></td>
</tr>
</tbody>
</table>

Chemical noise
- chromatography 163
- electrospray ionization 220–1
- ion detection 347, 350, 370
- matrix assisted laser desorption/ionization 186

Chiral bioanalytical analyses
- 657–62

Chiral purity 482

Chiral stationary phases (CSP)
- 137–42, 168

Chi-squared distribution
- 385, 395–6

Chlorinated paraffins 637

3-chloro-4-(dichloromethyl)-5-hydroxy-2, 5H)-furanone (MX) 609–14

Christofilos, Nicholas C. 268

Chromatography 51–107
- calibration 42–7
- chemical separations 53–5
- chiral separations 137–42, 168
- detectors 163–6, 169–71 dilution 58, 87
gradient elution 58, 92–7 historical development 51–2, 59–6
- injection devices 152–4
- internal standards 24, 25
- ion exchange 137, 168, 603, 601
- key concepts 55–8, 102–5
- kinetic theory 53, 58–9, 69–92 lab-on-a-chip 160–3, 169
- method development 507–11
- multidimensional separations 510
- nonequilibrium effects 69–92
- plate theory 53, 56–7, 58–69, 102–4
- pumping systems for HPLC 154–7, 168–9
- resolution 57, 64–5
- retention mechanisms 55
- Snyder’s theory 104–5
- validation 550–1, 555, 559, 572–6

see also Individual techniques; Mobile phases; Stationary phases
D’Arcy’s Law 74, 76
Dark noise 356
DART, see Direct analysis in real time (DART)
Data acquisition rate 259–61, 262
rejection 577–8
reviews 553, 572–8
smoothing 352–3
see also Bivariate data; Univariate data
DBP, see Disinfection by-products (DBP)
Dead volume 165
Decision limits 424–5
Dehmelt Approximation 288, 292
Derivatization 182–4
Design qualification (DQ) 492
DESI, see Desorption electrospray ionization (DESI)
Desorption atmospheric pressure chemical ionization (DAPCI) 236–7
Desorption electrospray ionization (DESI) 236–7
Detection limits 424–5
Detectors for chromatography 163–6, 169–71
see also Ion detection
Determination limits 424–5
DH, see Distributional heterogeneity (DH)
Differential pumping 332–4
Diffusion pumps 330, 331
Dilution integrity 549
Diol columns 136
Dioxins 625–38
Direct analysis in real time (DART) 236–7
Discrete dynode secondary electron multipliers 354–9
Disinfection by-products (DBP) 607–18
Dispersive liquid–liquid microextraction (DLLE) 115
Distributional heterogeneity (DH) 451
DLLE, see Dispersive liquid–liquid microextraction (DLLE)
DQ, see Design qualification (DQ)
DR-CALUX 636–8
Dried droplet method 242–3
Drift 164, 349, 574–5
Drug development phase 656–63
Drug discovery 640–56
Drug–drug interactions 640, 643–5
Duty cycle 259, 260
Dwell times 336
Dynamic range chromatography 163–5
definition 48
ion detection 357, 360–1, 364, 367
mass analyzers 261
matrix assisted laser desorption/ionization 187
see also Limits of quantitation (LOQ)
ECD, see Electron capture dissociation (ECD)
ECHO technique 230
ECI, see Estimated carryover influence (ECI)
EDIAP, see Extraction of dissolved ions at atmospheric pressure (EDIAP)
Effective plate number 65
EIC, see Electrically isolated collectors (EIC); Extracted ion chromatograms (EIC/XIC)
Einzl lenses 265–6
EI, see Electron ionization (EI)
Electrically isolated collectors (EIC) 361
Electric sector analyzers 282
Electron capture dissociation (ECD) 325
Electron ionization (EI) 176–9, 180–4
calibration 447–8
chemical derivatization 182–4
discrete chromatograph ion source interfaces 180–2
environmental pollutants 605, 614, 623, 632, 636
fitness for purpose 469–70
food contaminants 589–91, 596–7, 602–5
key concepts 242
MALDI comparisons 186, 193–5
mass analyzers 267, 279, 281, 289, 297, 303–7, 320
matrix effects 176, 221–30, 517–19
method development 490–517
nanospray approach 231–6
porous polymer monoliths 234–6
principles/development 77–80, 83, 211–21
ruggedness 226
separation techniques 111, 146
source–analyser interfaces 237–8
strategy formulation 479
total solvent consumption 233, 234
Elution equation 56, 59–61, 67–9, 88–9, 102–4
Elution strength 145–6
Enantiomer-specific, see Chiral purity
End capping 136
Endogenous analytes 682–3
Enforcement methods 567–70
Enhanced product ion (EPI) spectra 310–11
Enhancement of matrix ionization 517, 519–20
electrospray ionization 176, 221–30
validation 562–3
see also Matrix effects
Environmental pollutants 605–37
antibiotic screening in the environment 623–5
dioxins 625–38
disinfection by-products 607–18
macrolide antibiotics 617–20, 624
multiresidue analytical methods 620–5
MX 609–14
N-nitrosodimethylamine 614–18
persistent 625–39
pharmaceutical residues 616–25
safe drinking water 608
sample preparation 622–3

Environmental Protection Agency (EPA)
calibration 427, 454
disinfection by-products 608, 616–17
limits of detection 421–3
method development 511–12
persistent environmental pollutants 632
pharmaceutical residues 620–1, 624
validation 567
EOF, see Electro-osmotic flow (EOF)
EPA, see Environmental Protection Agency (EPA)
EPI, see Enhanced product ion
Equipment qualification 491–4, 495
Erythromycin 617–20
ESI, see Electrospray ionization (ESI)
Esterification 184
Estimated carryover influence (ECI) 580
Euromech–CITAC Guide 568
Expert witnesses 474
External linear calibration 428–30, 432–3
External standards 42–4
Extracted blanks 513–14, 518
Extracted ion chromatograms (EIC/XIC) 347–9
Extraction of dissolved ions at atmospheric pressure (EDIAP) 215
Extraction, see Individual techniques; Sample preparation
Extract/re-injection stability 547–8
FAB, see Fast atom bombardment (FAB)
Facility Management and Personnel 476–7
FAIMS, see High field asymmetric waveform ion mobility spectrometry (FAIMS)
False positives/negatives calibration 458
fitness for purpose 462, 463, 467–70
food contaminants 606
univariate data 385–7, 398
validation 569
Faraday Cup detectors 353–4
Faraday, Michael 262
FASS, see Field-amplified sample stacking (FASS)
Fast atom bombardment (FAB) 196–7, 241
bioanalytical applications 677, 681
Fast evaporation 243
FDA, see Food and Drug Administration (FDA)
Fedyakin, N. N. 10
Feedback resistors 353–4, 365
Field-amplified sample stacking (FASS) 159
Field theory 262–4
Filtered noise fields (FNF) 298, 299
Flow
impedance 87–8
rates 174–5, 230–6, 242, 327–9
splitters 156–7, 168
Flow fast atom bombardment (flow-FAB) 196–7, 675
Flow injection liquid–liquid extraction (LLE) 115
Food and Drug Administration (FDA) 427–8, 454
fitness for purpose 470
method development 489–90
pharmaceutical residues 621
strategy formulation 477
validation 540, 550, 556, 560–6, 569–70, 581–5
Fourier Transform ion cyclotron resonance (FTICR) 175, 248, 320, 339
bioanalytical applications 675, 677
figures of merit 257–9
ion activation/dissociation 325
magnetic sector analyzers 284
quadrupole ion traps 302–3, 309
quadrupole mass filters 268
Freeze–thaw stability 546, 557, 564
FSOT, see Fused silica open tubular (FSOT) columns
FTICR, see Fourier Transform ion cyclotron resonance (FTICR)
Fundamental errors 449
Fused silica open tubular (FSOT) columns 54
Gas chromatography (GC)
 analyte/matrix 111
bioanalytical applications 681
calibration 429, 432, 437–9, 441, 447–8
environmental pollutants 623–37, 605, 614
fitness for purpose 469–71, 474
food contaminants 589–91, 597, 602
historical development 59, 60
injection devices 152–4
internal standards 25, 35–6
ion detection 353, 366
ion sources 174, 178, 180–2, 207
lab-on-a-chip 162
mass analyzers 246–8, 265, 276, 281, 285, 292, 311
method development 491–2, 494, 496, 507–11
mobile phases 147–50, 168–9
principles 54, 65–7, 74, 88–90, 98
solid phase extraction 124–5, 127
stationary phases 150–2, 168
strategy formulation 475, 479
temperature programming 149–50, 154
validation 570
Gas-tight syringes 38–9
Gaussian distribution 374–5, 378–9, 382–5
Gauss, Johann Carl Friedrich 403
Gauss–Newton method 417
GC, see Gas chromatography (GC)
Gel electrophoresis 669–70
Gel permeation, see Size exclusion
Gibbs, Josiah Willard 122
Gibbs’ Phase Rule 121–3
GLP, see Good laboratory practice (GLP)
Golay equation 58, 89–90, 147–8
Golay, Marcel J. E. 148
Good laboratory practice (GLP) 475–8, 490
Goodness of fit 407–10, 414, 416, 453–4
Gosset, William Sealy 387, 389
Gradient elution 58, 92–7
Grouping errors 449
Gy theory 449–52
Heated pneumatic nebulizers (HPN) 203, 204–5
Height equivalent theoretical plate (HETP) 57, 63–4, 75
Heterogeneous matrices 448–53, 454–5
Heteroscedacity 401–7
HETP, see Height equivalent theoretical plate (HETP)
High field asymmetric waveform ion mobility spectrometry (FAIMS) 238–40
High performance liquid chromatography (HPLC)
 bioanalytical applications 637–661, 667, 671, 674
calibration 429, 438, 441
environmental pollutants 605, 614, 623
final method 473
fitness for purpose 454
food contaminants 591, 594–6, 602–6
internal standards 25
ion detection 353
ion sources
coupling problems 174, 176, 182
electron ionization/chemical ionization 176, 182
MALDI 193
lab-on-a-chip 162–3
liquid–liquid extraction 112–14, 116–17
loop injectors 35–8, 152, 168
mass analyzers 248, 281, 292, 320
matrix effects 518–19
method development 492–3, 495, 507–12
mobile phases 144–7, 154–7
principles 127, 146–7, 168
stationary phases 133–6, 141–3, 167
strategy formulation 479
thermospray ionization 197–8
High resolution mass spectrometry (HRMS) 284, 610–14, 630–3
High throughput screening 639, 643–8
HILIC, see Hydrophilic interaction chromatography (HILIC)
Homogenizers 529–30
Homologue internal standards 484
Homoscedacity 401–7
HPLC, see High performance liquid chromatography (HPLC)
HPN, see Heated pneumatic nebulizers (HPN)
HRMS, see High resolution mass spectrometry (HRMS)
Huber–Davies test 398
Humidity 28–9
Hydrophilic interaction chromatography (HILIC)
 food contaminants 602, 605, 606–7
 matrix effects 520
 method development 503
 principles 127, 146–7, 168
 strategy formulation 479
Hygroscopic analytes 28–9
Hypothesis tests 385–7, 456–8
ICAT, see Isotope-coded affinity tags (ICAT)
ICP, see Inductively-coupled plasma (ICP)
Identification
 confidence 462, 464, 470
 points 472, 621
 targets 466–72
IDL, see Instrumental detection limit (IDL)
IDMS, see Isotope dilution mass spectrometry (IDMS)
IMAC, see Immobilised metal affinity chromatography (IMAC)
Image current detection 345
Immobilised metal affinity chromatography (IMAC) 143
Immunooaffinity chromatography 143–4
Increment delimitation/extraction errors 449–50
Incurred sample re-analysis 549, 565–7, 572, 578–9
Inductively-coupled plasma (ICP)
 ion sources 237
 quantitative proteomics 673
 separation techniques 115
Infra-red multi-photon dissociation (IRMPD) 325
Injection volumes 65–6
Installation qualification (IQ) 491, 492, 495
Instrumental detection limit (IDL) 419, 454
Instrument qualification 491–4, 495
Index 715

Integrity of dilution 549
Internal standards, see Surrogate internal standards; Volumetric internal standards
International Union of Pure and Applied Chemistry (IUPAC) 6
Intrinsic noise 163
Inversion of calibration equation 410–11, 454
Investigation/corrective action 580–2
Ion detection 345–71
analogue-to-digital converters 346, 365–6
aspect ratios 360
channel electron multipliers 345–6, 359–67, 370
computer-based data systems 367–8, 369
data smoothing 352–3
digital electronics 366–7
Faraday Cup detectors 353–4
key concepts 368–71
peak integration 353
Poisson distributions 350–1, 361–2, 365, 368
post-detector electronics 365–8
secondary electron multipliers 345, 354–9, 366, 368–70
shot noise 347, 350–2
signal:noise and signal:background 347–53, 361–2, 365, 368
Ion evaporation theory 213–15
Ion exchange 55, 591, 593, 669
chromatography 137, 168, 603, 605
Ionization efficiency 176
Ionization enhancement, see Enhancement of ionization by matrix; Matrix effects
Ionization gauges 335–6
Ionization suppression, see Matrix effects; Suppression of ionization by matrix
Ion optics 245, 265–6
Ion pairing 220, 222
Ion trap analyzers 192, 245, 247, 251, 337–8
see also Linear ion traps; Paul traps
IP, see Identification
IQ, see Installation qualification (IQ)
IRMPD, see Infra-red multi-photon dissociation (IRMPD)
Isocratic elution 56, 74, 76, 92–7
ISO Guides 20–1, 35
Isotope-coded affinity tags (ICAT) 669, 670
Isotope dilution mass spectrometry (IDMS) 630
Isotope tagging for relative and absolute quantitation (ITRAQ) 671–3, 677
Isotopologs calibration 439–42, 444, 447
measurement units 11–14
method development 499
strategy formulation 482–4
surrogate internal standards 21–4
ITRAQ, see Isotope tagging for relative and absolute quantitation (ITRAQ)
IUPAC, see International Union of Pure and Applied Chemistry (IUPAC)
James, A. T. 59, 60
Jet separators 181
Johnson noise 347, 352, 354, 365
Kinetic isotope effects 22
Kinetic theory of chromatography 53, 69–92
chromatographic dilution 58, 87
column efficiency 57, 72–4, 75
elution equation 88–9
flow impedance/separation impedance 87–8
gas chromatography 69–70, 88–90
Golay equation 58, 89–90
key concepts 58–9, 105–7
Knox equation 84–7
longitudinal diffusion 58, 71, 73
monolithic columns 80–1
multipath dispersion 58, 70–1, 73, 88
optimised parameters 74–7
packed microcolumns 81–8
peak asymmetry 90–2
resistance to mass transfer 58, 71–2, 73
ultra high flow rates 81, 84–5
ultra-small stationary phase particles 77–80
Knox equation 84–7
Lab-on-a-chip
ion sources 195–6
principles 97
separation techniques 160–3, 169
Laboratory accreditation 478
Laminar flow 56
Lavoisier, Antoine 3
LC, see Liquid chromatography (LC)
Least-squares regression 402–7, 408–9, 417–18, 453, 456
Legendre 403
Levenberg–Marquardt method 417
Light sensitivity 505
Limit of detection (LOD)
bioanalytical applications 662–3, 681
carryover 524
chromatography 163
definition 48
contamination 522–3
environmental pollutants 614, 628, 632, 636–7
fitness for purpose 467
food contaminants 603–4
ion detection 348
ion sources 175, 192, 221–2
mass analyzers 249, 261, 285
method development 516–17
statistical tools 375, 418–27, 454
validation 542, 552, 559, 561
Limits of quantitation (LOQ)
bioanalytical applications 649, 658–9, 662–3, 681
carryover 524–7
chromatography 163
definition 48
definition 48
evaluation 614, 623–37
final method 530–3, 536–7
fitness for purpose 466, 467
food contaminants 603
ion detection 353, 361, 364
ion sources 192, 221–2
mass analyzers 249, 261, 285
method development 506, 507, 513, 514–17
quality control 41–3
statistical tools 375, 418–19, 423–4, 427–8, 454
strategy formulation 483, 485, 487
validation 542–3, 549, 552, 555, 559–62, 566, 572–5
Linear flow velocity 58, 75
Linear ion traps 247, 248, 284–5, 301–9, 338
Linearity
bivariate data 407–10, 415–18
Linearity (Continued)
fitness for purpose 466
method development 516–17
validation 542–3
Linear quadrupole mass filters, see Quadrupole mass filters
Linear regression 401–7, 408–9, 413–16, 453, 456
Liquid assisted secondary ion mass spectrometry (LSIMS) 196
Liquid chromatography (LC)
bioanalytical applications 637–661, 664–70, 675–81
calibration 43, 401, 436
environmental pollutants 614–23, 615
final method 535–7
fitness for purpose 469–73
food contaminants 589–600, 602–6
historical development 60
ion sources 182, 192–9, 203–7, 212, 214–16, 222–44
liquid–liquid extraction 112–17, 127–8, 167
bioanalytical applications 655
environmental pollutants 6, 32–7
method development 512
Liquid-phase microextraction (LPME) 116
Literature reviews 489
LLE, see Liquid–liquid extraction (LLE)
LOD, see Limit of detection (LOD)
Longitudinal diffusion 58, 71, 73
Long range heterogeneity errors 449–50
Long term storage stability 546–7, 564
Loop filling technique 526
Loop injectors 35–8, 152, 168
LOQ, see Limits of quantitation (LOQ)
Lorentz Force Law 281
Low resolution mass spectrometry (LRMS) 471, 610–14
LPME, see Liquid-phase microextraction (LPME)
LRMS, see Low resolution mass spectrometry (LRMS)
LSIMS, see Liquid assisted secondary ion mass spectrometry (LSIMS)
Macrocyclic antibiotics 141–2
Macrolide antibiotics 617–20, 624
MAE, see Microwave assisted extraction (MAE)
Magnetic sector analyzers 245–343
accessible m/z range 255–6
accuracy/precision 257–8
axial modulation scanning 294–5
calibration 266–7
centre of mass collision energy 323–4
collisional damping 293–4
costs 261
data acquisition rate 259–61, 262
duty cycle 259, 260
dynamic range 261
ease of use 261
figures of merit 246–7, 255–61
instrument tuning 265–6
ion activation/dissociation 320–6
ion optics 245, 265–6
ion trap analyzers 192, 245, 247, 251, 337–8
key concepts 336–8, 341–3
leak detection 340–1
magnetic sector analyzers 245, 280–4
operation modes 248–61
orthogonal acceleration 315–16
principles 261–5, 339–40
QuQuTRAP analyzers 247, 309–11, 651–3
quadrupole ion traps 247–8, 272, 284–309, 338, 635, 650–1, 656
quadrupole mass filters 245, 258, 267–77, 336
resolving power 256–7, 267, 272–6, 313, 337
RF-only analyzers 265, 269, 272, 276–7, 304–6, 318
selectivity–sensitivity compromise 249–51, 260, 587
space charge effects 248, 284, 289, 294, 303
stability diagrams 287–8
strong focusing principle 268
transmission efficiency 258–9
vacuum systems 326–36
see also Time of flight (TOF)
mass analyzers; Triple quadrupole mass analyzers
Mass-to-charge ratio (m/z)
ion sources 220–1
ion range 255–6
measurement units 6–9, 14
surrogate internal standards 24
see also Mass analyzers
Mass–flux dependence 169–71
Matched sampling 456
Mathieu equations 287–8
Matrix assisted laser desorption/ionization (MALDI) 184–95
analyte/matrix 187–9
applications 194–5
bioanalytical applications 680
historical development 184–5
ion detection 358, 367
ionization mechanism 185, 187
key concepts 241
laser irradiation 189, 191
mass analyzers 248, 259, 267, 289, 297, 311, 315
matrix clusters 186
off-line coupling 192, 241
orthogonal 192–3
sample preparation 185–6, 242–4
separation techniques 114
strategy formulation 479
suppression of ionization by matrix 176, 187–8, 190, 241
time of flight analyzers 185, 191–3
Matrix blanks 513, 516, 560
Matrix CRMs 20–1, 44, 48
Matrix effects 175–6, 517–22
interferences 520–2, 549, 562
method development 512, 518–19
strategy formulation 486–9
validation 549, 558–9, 562–3
see also Enhancement of matrix ionization; Suppression of ionization by matrix
Matrix factor (MF) 562
Matrix matched calibrators 40, 528–30, 553, 556
Matrix precoated targets 244
Matrix stability 545–7, 557–8, 565
Maximum regulatory limits (MRL) 424
MCS, see Multichannel scalers (MCS)
MDL, see Method detection limit (MDL)
Mean values 377–9
MEA, see Microwave assisted extraction (MAE)
Measurement units 1–15
binomial expansions 11–12
cross-over molecular mass 11–14
isotopologs 11–14
mass-to-charge ratio 6–9, 14
molecular mass limit 11–14
molecular peaks 13–14
moles and Avogadro Constant 5–6, 14
polywater 10
precision 9–11, 14
SI units 2, 3–6, 14
Median values 377–8
MEKC, see Micellar electrokinetic chromatography (MEKC)
Membrane extraction 115–17
Metabolic stability tests 643, 645–8
Metabolite identification/quantitation 648–54
Method detection limit (MDL) 419, 420–3, 427, 454
environmental pollutants 614–16, 623, 637
Method development 490–517
bioanalytical applications 649, 655–61
blanks 513–15, 518
calibration 491, 494, 504–7, 516–17
carryover 523–4
chiral analyses 657–8
chromatography 507–11
cross-contamination 495–6
evaluating options 512–13
food contaminants 593–4
matrix effects 512, 517–21
nonlinearity 516–17
optimization 496–504
qualification 491–4, 495
quality control 41
sample preparation 511–15
stock and spiking solutions 504–7
strategy formulation 478
validation 491, 494–6
Method limits 462
Method scope 474–5
Method of standard additions (MSA) chromatography 44–5, 48
definition 454
electrospray ionization 226
matrix assisted laser desorption/ionization 192
method development 511, 518
systematic errors 430–2, 434–5, 438–9
Method validation, see Validation
MFC, see Microfluidic flow control (MFC)
MFI, see Multi-frequency irradiation (MFI)
MF, see Matrix factor (MF)
Micellar electrokinetic chromatography (MEKC) 101
Microdialysis 117
Microfluidic flow control (MFC) 156–7
Micropipets 33–5
Microporous membrane liquid–liquid extraction (MMLLE) 115–16
Micro total analysis system, see Lab-on-a-chip
Microwave assisted extraction (MAE) 120–1, 167, 631
MIKES, see Mass analysed ion kinetic energy spectrometry (MIKES)
Minimum reporting levels (MRL) 616–17
MIP, see Molecularily imprinted polymers (MIP)
MMLLE, see Microporous membrane liquid–liquid extraction (MMLLE)
Mobile phases
capillary electrochromatography 159–60
gas chromatography 147–50, 168–9
ion sources 176, 182
liquid chromatography 144–7
pumping systems for HPLC 154–7, 168–9
solid phase extraction 144–7
volume 56
Molecular flow rate 174–5, 230–6
Molecularly imprinted polymers (MIP) 130–2, 141–2
Molecular mass limit 11–14
Molecular peaks 13–14
Mole, definition 5–6, 14
Monolithic columns 80–1
Moving average smoothing 353
MRL, see Maximum regulatory limits (MRL); Minimum reporting levels
MRM, see Multiple reaction monitoring (MRM)
MSA, see Method of standard additions (MSA)
MS/MS, see Tandem mass spectrometry (MS/MS)
Multi-analyte assays 484
Multichannel scalers (MCS) 366
Multidimensional chromatography 169
Multidimensional separations 510
Multi-frequency irradiation (MFI) 299–300
Multipath dispersion 58, 70–1, 73, 88
Multiple range tests 395, 398–400
Multiple reaction monitoring (MRM) bioanalytical applications 643–8, 652–5, 657–61, 677, 680
environmental pollutants 623–37
figures of merit 259–60
final method 535
fitness for purpose 467, 470–1
food contaminants 591, 593–5, 604, 607
ion detection 347–53, 362, 367
ion sources 192–3, 194, 237–8, 240
key concepts 336
matrix effects 517, 519
method development 496–504, 508–9
QqQTRAP analyzers 310–11
Multiple reaction monitoring (Continued)
quadrupole ion traps 284–5, 296–7, 299–301
quadrupole mass filters 274–5
strategy formulation 483, 487–9
tandem mass spectrometry 250, 252–4
time of flight mass analyzers 317–19
triple quadrupole mass analyzers 277, 279–80
validation 562, 565, 569

Multi-residue analytical methods 620–3
MX 609–14
m/z, see Mass analyzers;
Mass-to-charge ratio (m/z)

Nanoelectrospray 231–6, 642, 653–6
Natural abundance distribution 445
NDMA, see N-nitrosodimethylamine (NDMA)
NMR, see Nuclear magnetic resonance (NMR)
N-nitrosodimethylamine (NDMA) 614–18

Noise chromatography 163–4
electrospray ionization 220–1
ion detection 347–54, 361, 362, 365, 368
mass analyzers 249, 252, 260, 293, 298
matrix assisted laser desorption/ionization 186
source–analyser interfaces 237
statistical tools 419
Nonlinearity, see Linearity
Nonlinear regression 415–18, 444–8, 453, 456
Non-relativistic classical field theory 264
Nonroutine maintenance 491, 494
Normal distribution 374–5, 378–9, 382–5
Nuclear magnetic resonance (NMR) analytical standards 19–20
detectors for chromatography 175
strategy formulation 478, 481

Oa-TOF, see Orthogonal acceleration (oa-TOF)
Off-axis conversion dynodes 357–9
OOS, see Out-of-specification (OOS)
Operational qualification (OQ) 491, 492–3, 495
Optimization 496–504
Optimum value of linear velocity 58
OQ, see Operational qualification (OQ)
Orbitrap analyzers 248, 257–9, 309, 320
Orthogonal acceleration (oa-TOF) 315–16, 338
Orthogonal MALDI 192–3
Outliers 395, 398
Out-of-specification (OOS) 581–2
Overlayer method 243
Packed microcolumns 81–8
PADI, see Plasma assisted desorption/ionization (PADI)
PAH, see Polycyclic aromatic hydrocarbons (PAH)
Paired sampling 456
Paralytic shellfish poisoning (PSP) toxins 600–7
Partial validations 549–50
Partition coefficients 56
Pascal Triangle 445
PA, see Proton affinity (PA)
Passive permeability tests 639, 640–3
Pauling theory of antibody formation 130
Paul traps 285–301, 338
axial modulation scanning 294–5
bioanalytical applications 650–1, 655
collisional focusing 289–90, 293
development 285–6
environmental pollutants 632
ion activation/dissociation 322, 325–6
low mass cutoff 253, 291, 297
mass selective instability scans 293–5
one-third rule 291, 297
operation modes 292–301
resonant excitation 290–1
space charge effects 248, 284, 289, 294, 302–3
Paul, Wolfgang 285
PBDE, see Polybrominated diphenyl ethers (PBDE)
PCDD, see Polychlorodibenzo-p-dioxins (PCDD)
PDF, see Probability density function (PDF)
Peak asymmetry 90–2
capacity 57, 66–7, 75
integration 353
Performance qualification (PQ) 491, 493, 494
Periodic heterogeneity errors 449–50
Persistent environmental pollutants 623–37
Pharmaceutical dose/ratio 638
Pharmaceutical residues 617–25
antibiotic screening in the environment 623−5
macrolide antibiotics 617–20, 624
sample preparation 622–3
Pharmacokinetic (PK) studies, see ADME studies
Phase partitioning 55
Phase ratio 56
Phase Rule 121–3
Phenyl columns 137
Photomultipliers 354–9, 368
Pipets 33–5
Pirani gauges 334
Pirkle-type chiral selectivity 138–40
PI, see Principal Investigators (PI)
PK (pharmacokinetic) studies, see ADME studies
Plasma assisted desorption/ionization (PADI) 237
Plate theory of chromatography 53, 58–69
capacity factor 57, 62–3
chromatographic resolution 57, 64–5
coe­lustion probability 68
column efficiency 57, 63–4
derivation 102–4
effective plate number 65
elution equation 56, 59–61, 67–9, 102–4
height equivalent theoretical plate 57, 63–4
injection volumes 65–6
key concepts 56–7, 105–7
peak capacity 57, 66–7
retention time/volume 56–7, 61–2
separation ratio 57, 62
PLE, see Pressurised liquid extraction (PLE)
Index 719

PLOT, see Porous layer open tubular (PLOT) columns
PNEC, see Predicted no-effect concentration (PNEC)
Pneumatic amplifiers 155–7
Point selection errors 450
Poisson distributions 350–1, 367, 370
Poisson, Siméon-Denis 350–1
Polybrominated diphenyl ethers (PBDE) 637
Polychlorodibenzo-p-dioxins (PCDD) 625–38
Polycyclic aromatic hydrocarbons (PAH) 637
Polyimide polymers 150
Polynomial smoothing 352
Polyisiloxanes 151
Polywater 10
Porous layer open tubular (PLOT) columns 151
Porous polymer monoliths (PPM) 234–6
Positive displacement pipets 34
Post-detector electronics 365–8
Post-translational modifications (PTM) 667
PPM, see Porous polymer monoliths (PPM)
PQ, see Performance qualification (PQ)
Precision analytical balances 29
 calibration 40
 fitness for purpose 465, 466
 mass analyzers 257–8
 measurement units 9–11, 14
 method development 512
 statistical tools 375–7, 427, 428
 strategy formulation 483
 validation 543, 549, 557, 561–2, 566
 Predicted no-effect concentration (PNEC) 617
 Preparation errors 449–50
 Pre-separation of proteins 668
 Pressurised liquid extraction (PLE) 631–3
 Pressurised solvent extraction 117–19, 167
 Pre-study assay evaluations (PSAE) 41, 530
 Preventative maintenance 491
 Primary stock solutions 504–6
 Principal Investigators (PI) 551–2
 Probability density function (PDF) 388
 Probability value (p-value) 387, 395–6, 424, 457
 In-process stability 545, 565
 Programmed temperature vapourisers (PTV) 154, 168
 Propagation of error 379–82
 Protein-based CSPs 141
 Protein precipitation from biological fluids 117, 167
 Proteomics, see Quantitative proteomics
 Protocols for specific purposes (PSP) 551–2
 Proton affinity (PA) 179–80, 210
 PSAE, see Pre-study assay evaluations (PSAE)
 PSP, see Paralytic shellfish poisoning (PSP) toxins;
 Protocols for specific purposes (PSP)
 PTM, see Post-translational modifications (PTM)
 PTV, see Programmed temperature vapourisers (PTV)
 Pulse counting 346–7
 Pumping systems for HPLC 154–7, 168–9
 Purge-and-trap analysis 124–5, 167
 p-value, see Probability value (p-value)
 QA, see Quality assurance (QA)
 QAU, see Quality Assurance Units (QAU)
 QCAT peptides 676–7
 QC, see Quality control (QC)
 QET, see Quasi-equilibrium theory (QET)
 QqQ trap analyzers 247, 309–11, 651–3
 Quadratic fitting function 415–16, 453
 Quadrupole ion traps, see Linear ion traps; Paul traps
 Quadrupole mass filters 245, 258, 267–77, 336
 Qualification 491–4, 495, 536
 Quality assurance (QA) 20, 478
 Quality Assurance Units (QAU) 477
 Quality control (QC) analytical standards 20, 48–9
 bioanalytical applications 649, 659, 681
 calibration 41–2, 46–7
 definition 47
 final method 530–3
 method development 41, 505–6
 sample analysis 41–2
 statistical tools 457
 strategy formulation 475, 480, 485, 487
 validation 41, 543–9, 551–8, 561–6, 570–8, 581–3
 Quantization error 365–6
 Quantitation targets 466
 Quantitative proteomics 662–82
 absolute quantitation 675–81
 AQUA method 676
 chemical labelling methods 671–4
 culture-based labelling methods 668, 673–4
 identification of proteins 666–9
 isotope-coded affinity tags 671, 672, 677
 isotope tagging for relative and absolute quantitation 669–71, 677
 pre-separation of proteins 668
 proteolytic labelling methods 672–3
 QCAT peptides 676–7
 relative/comparative quantitation 667–75
 selective digestion of proteins 663–4
 shotgun proteomics 665, 667–9
 stable isotope standards and capture by anti-peptide antibodies 677–82
 Quasi-equilibrium theory (QET) 321
 Quick and dirty method 244
 QUINSTOR, see Paul traps
 Radiofrequency (RF-only) quadrupoles 265, 269, 272, 276–7, 304–6, 318
 Random errors 375–7, 428–48
 Range of reliable response 542–3
 Raoul’s Law of Partial Pressure 150
 Rapid heating effect 185, 197–8
 Rate theory of chromatography 57, 59
 Rayleigh limit 217–19
 Reciprocating piston pumps 155
 Recovery samples 513–15
 validation 544, 563
 Rectangular averaging 352
<table>
<thead>
<tr>
<th>Concept</th>
<th>Reference</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference materials, see Certified reference materials (CRM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference standards 18–25, 31–2, 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>assigned purity 481–2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>availability/source 479–80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificates of Analysis 481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chiral purity 482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>receipt/documentation 480–1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>storage/stability 482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strategy formulation 477, 479–82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>validation 556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflectron principle 313–15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression analysis 401–7, 408–18, 443–8, 453, 456–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejection of data 576–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative quantitation 47, 669–76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative standard deviation (RSD) calibration 379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>environmental pollutants 623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>validation 562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMPI, see Resonance enhanced multi photon ionization (REMPI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability 376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproducibility fitness for purpose 473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>statistical tools 376, 407–10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>validation 543–4, 563, 564, 567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to mass transfer 58, 71–2, 73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolving power (RP) 256–7, 267, 272–6, 313, 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resonance enhanced multi photon ionization (REMPI) 208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention time 57, 61–2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention volume 56–7, 61–2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse-phase chromatography ion sources 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobile phases 145, 159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>principles 92–4, 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stationary phases 133, 136–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF, see Radiofrequency (RF-only) quadrupoles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk assessments 467–8, 567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robustness 533–5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room temperature stability 545, 564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary vane pumps 329–30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine maintenance 491, 494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF, see Resolving power (RP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSD, see Relative standard deviation (RSD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruggenedness final method 533–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ion detection 359, 361–2, 364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ion sources 226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run acceptance criteria 554–5, 556, 575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run failures 553, 558, 572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run lists 570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run summary sheets 555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE, see Sonication assisted liquid extraction (SAE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe drinking water 608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample preparation 110, 111–33, 166–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>analyte/matrix 110–11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blanks 513–14, 518</td>
<td></td>
<td></td>
</tr>
<tr>
<td>evaluating options 512–13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>food contaminants 593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquid extraction from solid matrices 117–24, 167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquid–liquid extraction 112–17, 127–8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>matrix assisted laser desorption/ionization 185–6, 242–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>method development 511–15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>molecularly imprinted polymers 130–2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>persistent environmental pollutants 636–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pharmaceutical residues 622–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solid phase extraction 124–33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spikes and recovery samples 513–15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>volatile organic compounds 124–5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample stability 546–7, 565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample tracking 582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling of heterogeneous matrices 448–53, 454–5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandwich technique 244, 526–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savitzky–Golay (SG) filtering 353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAX, see Strong anion exchange (SAX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBME, see Solvent bar microextraction (SBME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/B, see Signal to background ratio (S/B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBSE, see Stir-bar sorptive extraction (SBSE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCOT, see Support-coated open tubular (SCOT) columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCX, see Strong cation exchange (SCX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDME, see Single drop microextraction (SDME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD, see Standard deviation (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDS-PAGE 668, 677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary electron multipliers (SEM) 345, 354–9, 366, 368–70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary ion mass spectrometry (SIMS) 196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secular frequency modulation (SFM) 299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed layer method 243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segregation errors 449–50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected ion monitoring (SIM) bioanalytical applications 647–8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>environmental pollutants 605, 614–16, 623, 628, 636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>figures of merit 258–60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>final method 535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fitness for purpose 467, 470–1, 484, 487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>food contaminants 590–1, 604–5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ion detection 347–53, 362, 367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>key concepts 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>magnetic sector analyzers 281, 283–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>matrix effects 517, 519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>method development 494, 499, 503–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadrupole ion traps 296–7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadrupole mass filters 267, 274–6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tandem mass spectrometry 250, 251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time of flight mass analyzers 311–13, 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>triple quadrupole mass analyzers 280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>validation 562, 569–70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected reaction monitoring (SRM), see Multiple reaction monitoring (MRM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective digestion of proteins 663–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selectivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chiral 137–43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromatography 165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass analyzers 249–51, 260, 587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>method development 499, 508–10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strategy formulation 486–9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>validation 540–2, 562, 569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM, see Secondary electron multipliers (SEM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity 47, 457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromatography 163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limit of detection 419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass analyzers 249–51, 260, 587</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
method development 491, 499, 512, 516–17
validation 542–3, 560–1
Separation impedance 87–8
Separation ratio 57, 62
Separation techniques 109–71
analyte/matrix 110–11, 166–7
capillary electrophoresis/electrochromatography 157–62, 169
chromatography 133–66
lab-on-a-chip 160–3, 169
liquid extraction from solid matrices 117–24
mobile phases 144–52, 154–7
molecularly imprinted polymers 130–2, 141–2
sample preparation 110, 111–33, 166–7
stationary phases 133–44
volatile organic compounds 124–5
see also Liquid–liquid extraction (LLE); Solid phase extraction (SPE)
SE, see Standard error (SE)
SFE, see Supercritical fluid extraction (SFE)
SFI, see Single frequency irradiation (SFI)
SFM, see Secular frequency modulation (SFM)
SG, see Savitzky–Golay (SG) filtering
Shellfish toxins 600–7
Short term stability 545, 564
Shotgun proteomics 665, 667–9
Shot noise
ion detection 347, 350–2, 362, 370
mass analyzers 252, 260
SID, see Surface induced dissociation (SID)
Signal to background ratio (S/B) 347–53, 362
Signal to noise ratio (S/N) chromatography 163
ion detection 347–53, 361–2, 365, 368
ion sources 237
mass analyzers 249, 252, 260, 293, 298
statistical tools 419
Significance tests 386
Significant figures 379–82
Silica stationary phases 134–7, 150, 167
Silylation 183–4
Simple linear regression 401–7, 408–9, 413–16, 453, 456
SIM, see Selected ion monitoring (SIM)
SIMS, see Secondary ion mass spectrometry (SIMS)
Single channel electron multipliers 359–62
Single drop microextraction (SDME) 114–15
Single frequency irradiation (SFI) 299
Single tailed significance tests 386
SISCAPA, see Stable isotope standards and capture by anti-peptide antibodies (SISCAPA)
SIS, see Surrogate internal standards (SIS)
SI units 2, 3–6, 14
Size exclusion 55
SLE, see Solid-supported liquid–liquid extraction (SLE)
SLME, see Supported liquid membrane extraction (SLME)
Smoothing 352–3
S/N, see Signal to noise ratio (S/N)
Snyder’s theory of chromatography 104–5
Solid phase extraction (SPE) 124–47
environmental pollutants 614, 622–3, 631–3
final method 535
flash chromatography 124, 167
food contaminants 594
generalised procedure 127
internal standards 24
method development 511–12, 513
mobile phases 144–7
molecularly imprinted polymers 130–2, 141–2
principles 54–5, 167
purge-and-trap analysis 124–5, 167
stationary phases 133–44
stir-bar sorptive extraction 133
turbulent flow chromatography 128–30, 167
volatile organic compounds 124–5
Solid phase microextraction (SPME) 132–3, 167
Solid-supported liquid–liquid extraction (SLE) 114
Solvent bar microextraction (SBME) 116
Solvent blanks 513–14
Solvent polarity 145–6
Solvent trapping 153–4
Sonication assisted liquid extraction (SAE) 120
SOP, see Standard operating procedures (SOP)
 Soxhlet extraction 117, 118, 167, 631
Space charge effects 248, 284, 289, 294, 303
Specificity 165
SPE, see Solid phase extraction (SPE)
Spiromycin 620
Split-splitless injectors 153–4
SPME, see Solid phase microextraction (SPME)
SRM, see Certified reference materials (CRM); Multiple reaction monitoring
Stability
bioanalytical applications 639, 643–8
diagrams 287–8
reference standards 482
validation 544–7, 557–8, 564–5
Stable isotope standards and capture by anti-peptide antibodies (SISCAPA) 679–82
Stable isotope substitution 22
Standard additions, see Method of standard additions
Standard deviation (SD) 378–9, 384–5, 405, 421–2
Standard error (SE) 379, 383, 392–3
Standard operating procedures (SOP)
advisory balances 27
final method 530–1, 536
fitness for purpose 464, 474
method development 490, 491, 494, 507
strategy formulation 475, 477, 485–6, 490
validation 542, 551–5, 558, 569–73, 577–8, 582–3
Standard reference materials (SRM), see Certified reference materials (CRM)
Standard volumetric flasks 32–3
Static buoyancy 29–31
Stationary phases
affinity media 143–4
alumina/silica 134–7, 151, 167
capillary electrochromatography 160
chiral separations 137–42, 168
gas chromatography 147–52, 168
ion exchange media 137, 168
liquid chromatography 133–44
reverse-phase chromatography 133, 136–7
solid phase extraction 133–44
Statistical tools 373–459
accuracy and precision 375–7, 427, 428
bivariate data 398–418, 453
calibration and measurement 428–48, 458–9
key concepts/glossary 453–8
limit of detection 375, 418–27
limits of quantitation 375, 418–19, 423–4, 427–8
sampling of heterogeneous matrices 448–53, 454–5
systematic/random errors 375–7, 428–48
univariate data 377–98, 453
Steepest Descent method 417
Stern layers 98–9
Stir-bar sorptive extraction (SBSE) 133
Stock solutions 544–5, 555, 566
Swedish National Food Administration 588–9
SWIFT, see Stored waveform inverse Fourier Transform (SWIFT)
Syng, R. L. M. 59, 60
Tandem mass spectrometry (MS/MS) 250–5
bioanalytical applications 637, 642–5, 650–4, 657–69, 671–2, 680
calibration 436, 439–40, 446
environmental pollutants 616, 623, 628, 636–7
figures of merit 246–7, 261
final method 530–5
fitness for purpose 469–70, 487, 587
food contaminants 596–7, 602, 605
ion activation/dissociation 320, 324–5
ion sources 178, 192–5, 205, 221, 237
method development 490, 508
principles 81, 82, 84
quadrupole ion traps 284, 290–1, 297–8, 303–4, 308–11
quadrupole mass filters 267, 276
surrogate internal standards 22, 23
surrogate matrices 489
Tanaka, Koichi 184
TDC, see Time-to-digital converters (TDC)
TEF, see Toxic Equivalent Quantity/Factor
Temperature effects 28
Temperature programming 149–50, 154
Index 723

TEQ, see Toxic equivalent quantity/factor (TEQ/TEF)
Theoretical plates 56
Thermocouple gauges 335
Thermospray ionization (TS) 197–8, 241
Thin-layer chromatography (TLC)
fitness for purpose 471
principles 53–4
separation techniques 124
Thomson, Joseph John 8, 173–4
Thoroughness 464, 472–4
TIC, see Total ion current (TIC)
chromatography
Time-to-digital converters (TDC) 319, 367
Time of flight (TOF) mass analyzers 311–20, 338
bioanalytical applications 646–8, 650, 680
environmental pollutants 636–8
figures of merit 247–8, 259
ion detection 345–6, 352, 360, 362–5, 367
ion sources 185, 191–3, 212–13
magnetic sector analyzers 284
principles 81
QQQ trap analyzers 310–11
quadrupole ion filters 267, 274
tandem mass spectrometry 252–4
TS, see Thermospray ionization (TS)
Tswett, Michail Semjonowitsch 51–2
Turbomolecular pumps 330–2
Turbulent flow 56
Two-dimensional gas chromatography 634–7
Two layer method 243
Two tailed significance tests 386
Tylosin 618–22
Type I/II errors
fitness for purpose 462, 463, 467–70
food contaminants 606
univariate data 385–7, 398, 458
validation 569

Ultra high flow rate liquid chromatography 81, 84–5
Ultra-high performance liquid chromatography (UPLC)
bioanalytical applications 646–8
principles 81
Uncertainty tolerance
environmental pollutants 623
fitness for purpose 461–2, 464, 465–72
validation 568–9
Unified atomic mass unit 14
Units of measurement 2, 3–6, 14
binomial expansions 11–14
cross-over molecular mass 11–14
isotopologs 11–14
mass-to-charge ratio 6–9, 14
molecular mass limit 11–14
molecular peaks 13–14
moles and Avogadro Constant 5–6, 14
polywater 10
precision 9–11, 14
SI units 2, 3–6, 14
Univariate data 377–98, 453
analysis of variance 389, 394–8, 455
Bartlett test 394–8
Fisher F-distribution 385, 390–4, 396
Huber–Davies test 398
hypothesis tests 385–7, 456–8
mean, median, SD and SE 377–9, 383–5, 392–3
multiple-range tests 395, 398–400
Normal distribution 378–9, 382–5
outliers 395, 398
significant figures and propagation of error 379–82
Student's t-test 375, 385, 387–94, 395
Universality 165
Unweighted sliding average smoothing 352
UPLC, see Ultra-high performance liquid chromatography
USEPA, see Environmental Protection Agency (EPA)
UV-visible absorption detectors 166
Vacuum drying 243
Vacuum systems 326–36
differential pumping 332–4
flow characteristics 327–9
gauges 334–6
pumps 329–34
Validation 539–84
abbreviated/partial 549–50
accuracy/precision 543, 549, 556, 561–2, 566
batch preparation 570–1
bioanalytical applications 559–66
for analytical applications 155–66
figures of merit 540–9, 559–66
final method 536
fitness for purpose 461–2, 559–70
flowchart 540
incurred sample re-analysis 549
integrity of dilution 549
enforcement methods 567–70
figures of merit 540–9, 559–66
final method 536
fitness for purpose 461–2, 559–70
flowchart 540
Validation (Continued)
linarity 542–3
matrix effects 549, 557–9, 562–3
method development 491, 493–6
protocols 551–2, 556–7, 559
quality control 41
range of reliable response 542–3
recovery 544, 563
rejection of data 577–8
report and scientific review 555–9, 583–4
reproducibility 543–4, 563, 565, 566
risk assessment 567
run acceptance criteria 554–5, 556, 575
run failures 553, 558, 572
sample analysis 552–3, 555, 556–8, 570–83
sample tracking 582
selectivity 540–2, 562, 569
sensitivity 542–3, 560–1
stability 544–7, 557–8, 564–5
strategy formulation 478
traceability 583–5
Van Deemter equation 69–92, 101
mobile phases 147–9
plate theory 58, 59
stationary phases 150
see also Kinetic theory of chromatography
Van Deemter, J. J. 69
VIS, see Volumetric internal standards (VIS)
Volatile organic compounds (VOC) 124–5
Voltage amplifiers 346
Volume measurement/dispensing 32–9, 49
capillary electrophoresis 158
GC injectors 152–4
loop injectors 35–8, 152, 168
pipets 33–5
standard volumetric flasks 32–3
syringes 38–9
Volumetric flasks 32–3
Volumetric internal standards (VIS) 25, 36, 48
calibration 436–41, 444, 447
Vonnegut, Kurt 10
Von Soxhlet, Franz 118
Wall-coated open tubular (WCOT) columns 54, 151, 168
Weighted linear regression 411–15, 416, 453
Weight measurement, see Analytical balances
Wiley–McLaren condition 313
Willstätter, Richard 52
XIC, see Extracted ion chromatograms (EIC/XIC)
Youden plots 434–5, 454
Zero-point energy (ZPE) 22
Zeta potential 99, 101
Zone of uncertainty 464–5
ZPE, see Zero-point energy (ZPE)