Index

a
abrasive materials, 12, 134, 155
adsorption layer, 42, 69, 74, 125, 143, 146
adhesion forces, 15, 25, 26, 45, 115, 124
aggregative dynamic stability, 42, 48, 71
aggregative stability, 11, 34, 42, 72, 74, 142, 143
aging of bitumen, 77, 83, 156
ampholytic surfactants, 74
amphoteric surfactants, 74
anionic surfactants, 73
anisometric particles, 37, 40
anisometry of particle shape, 145
apolar medium, 72, 85
apparent pseudoplasticity, 93
asphalt concrete, 13, 14, 23, 27, 155
atomic contacts, 12, 13, 15, 31, 43, 125, 148
bentonite clay suspension, 62, 146
– effective viscosity, 147
– shear stress, 146
bitumen, 13, 23, 34, 77–81, 156
bitumen–mineral composition, 78, 82, 83
bitumen–shungite composites, 83, 157
– cone immersion, 84, 85
– flow curves, 82, 83
– rheograms, 78
– rheological properties, 83, 84
– shear stress vs. shungite content, 84, 86
– structural–rheological properties, 77
– vibration exposures, 81
bitumen–concrete mixtures, 5
breaking of contacts, 37, 43, 47
Brownian motion, 17, 18, 33, 110
bulky two-phase (S–G) systems, see highly dispersed powders (HDP)
calcium carbonate, 97
calcium hydroxide, 83, 156, 157
capillary radius, 56
capillary viscometer, 98, 99
cation–active surfactants, 73, 83
cement concretes
– cement/water ratio, 2–4
– excessive water content, 4
– segregation, 3
– water segregation, 3
cement–water suspension
– discontinuity aperture, 65, 66
– dispersion degrees, 63, 64
– full rheological flow curves, 64, 70
– mineralogical composition, 63
– vibration and surfactant effects, 69–71
– water–cement ratio, 64, 65
characteristic relaxation time, 67
coaulation contacts, 12–16, 24, 25, 69, 110, 125, 135, 157
coaulation structure, 16, 96
coaescence, 11, 45–47, 65, 72, 86, 123, 148, 149
coaescence of aggregates, 125, 126
coaial cylinders, 53–55, 98, 101
colloid cement glue (CCG), 149
colloid dispersed systems, 11, 34
colloid dispersed systems, 11
colloid polymer–cement mixtures (CPCM), 152
colloid precipitation, 145
compacted layer, 134
complete disaggregation, 111
computer simulation, 68, 94, 134
concentration factor, 18
cone immersion, 84, 85

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
contact interactions, 6, 7, 37
 - HDP, 43, 102
 - nonequilibrium dynamic state, 36
 - three–phase dispersed systems, 45
 - two–phase dispersed systems
 - – elasticity modulus, 42
 - – particle shape factor, 40
 - – slipping effect, 37
 - – structural–mechanic barrier, 2
contact types between particles, 11, 12
continuous shear rate, 81
continuous vibromixer, 113
critical particle size, 14, 17
critical velocity, 39
de \(d\) decomposition of emulsion, 86
defects of the structure, 27, 65
deformation rate, 5, 26, 38, 53, 60, 78
degraded structure, 52, 61, 62, 65, 67, 68, 90, 133
degree of structure destruction, 164
density distribution, 95, 154
dielectric permeability, 143
direct atomic contacts, 12–15, 24, 31, 125, 148
dispersion viscosity, 53, 90
dynamic conditions, 6, 7, 18, 22, 25, 26, 32, 36, 38, 39, 41–45, 51, 52, 74, 88, 122, 129
de \(e\) effect of vibration and surfactants, 68
elasticity modulus, 12, 23, 41, 42, 46, 75, 129, 133
elasto–plasto–viscous state, 115, 118, 122, 126, 127
electrohydrodynamic processing, 146, 147
electrostatic stabilization factor, 143
emulsions, 72, 84, 85
 – application, 84
 – decomposition, 86
 – direct, 85
 – drop model, 87
 – kinds, 86
 – stability, 88
 – surfactants, 87, 89
energy consumption, 112, 127, 139, 147
de \(f\) far particle coagulation, 16, 17
fluidization, 100, 118
fractal dimension, 21, 90
frequency response technique, 59
full limiting disaggregation, 32, 103
full rheological flow curves, 60
 – cement–water suspension, 64, 70
 – plastic–elastic systems, 67, 68
 – SDS, 61
d \(g\) globular porous structure model, 18
d \(h\)
Hamaker’s constant, 91
HCWS, see high–concentration coal–water suspensions (HCWS)
HDP, see highly dispersed powders (HDP)
high–concentration coal–water suspensions (HCWS), 141
high-concentration emulsions, 86
high-concentration pastes, 109
high–filled highly dispersed composites, 153, 157
 – maximum fluidity, 6, 7
high-frequency vibration, 68
highly dispersed powders (HDP)
 – capillary viscometer, 99
 – contact interactions, 43, 101
 – dynamic state, 97, 98
 – effective viscosity, 97, 99, 100, 102
 – rotary viscometer, 98, 101
 – shear stress variation under mixing, 111, 115, 116
 – vibrorheology, 97
 – volume flow, 98, 100
highly filled three–phase dispersion systems, 134, 135
hydration hardening materials, 149
hydrocarbon radical, 42, 44, 73
hydrodynamic lubrication, 97
hydrophilic surfaces, 16, 39, 72
hydrophobic surfaces 16, 40
hygroscopic powders, preventing consolidation of, 148
d \(i\)
interaction energy, 15, 41, 48, 170
interparticle contacts, see contact types between particles
inverse emulsions, 85
iron particles, 114
irreversibly destroyed contacts, 13, 23, 24, 163
isotropic dynamic state, 32, 34
d \(k\)
kinetic energy, 35, 45
Index

l
layered flow, 66, 67
liquefaction, 118
liquid flowing layers, 92, 93
liquid intermediate layer, 65
low-concentration emulsions, 85
lyophilic surface, 16, 38

m
macrodrop, 86–88
maximum compaction degree, 132, 134
mechanical exposure, 13, 35, 36, 47, 86, 102, 111, 125, 146–148
mechanical–chemical destruction, 42
microinhomogeneities, 65
mineral particles, 65, 79
mineral suspensions, 63
mixing chamber, 113, 114, 122
mixing efficiency, 114, 118
mixing uniformity, 115
model emulsions, 86
multicomponent highly dispersed aggregation, 145
multicomponent powdered systems, 97
multifrequency nonlinear oscillation, 135

n
nanodispersed systems, 34
near particle coagulation, 15, 17
nonequilibrium dynamics, 22, 36
nonionogenic surfactants, 73
number of contacts, 18, 20, 31, 167

o
optimum dynamics state, 69
ore mining, wasteless technology of, 141
orthogonally (to flow direction) directed oscillation, 69, 83, 112

p
particle interaction, 15, 17, 39
particle shape factor, 39
particle size (average emulsion), 14, 17, 33, 34, 71, 86, 143
pastelike dispersions, 12, 13, 15, 17
phase contacts, 12, 13, 24, 148, 154
physico–chemical mechanics, 5, 6
pipeline hydrotransport, 141
plasticity, 3, 5, 6, 31, 63, 69, 77, 90, 92, 93, 95, 96, 103
plastifying effect, 42, 74
polar continuous dispersion medium, 85
powder efflux, 97
powders, 12, 13, 25
principle of synergism, 139
pseudoliquefied HDP, 97, 100
pseudoplasticity, 103
pseudoviscosity, 103

q
regulated isotropic state, 36
Reh binder effect, 12, 42, 72, 75, 76, 147
relaxation rate, 22, 126
reversible–strength contacts, 13, 14, 24, 110
rheological flow curves, 53, 60–64, 67, 91, 99
rheological properties, 53, 83, 97
rotation vibro-viscometer, 98, 101, 130
rupture energy, 46
rupture zone, 65, 67
ruptures of continuity, 67, 68, 102, 103, 128, 133

s
sedimentation processes, 34, 95, 145
sedimentation resistant dispersions, 145
segregation, 2, 3, 114, 127
separation, 69, 71, 120, 121, 123
shear stress coefficient, 54
shungite composite, 83, 84
solid phase effect, 80
solid phase–liquid phase systems (S–L systems), 17
– elasticity modulus, 42
– particle shape factor, 40
– slipping effect, 37
– structural–mechanic barrier, 42
solid phase–liquid–gas medium systems, see
three–phase S–L–G dispersed systems, 109
solidified dispersed composites, 22, 23
specific molding pressure, 135
static conditions, 3, 6, 31, 36, 66, 87, 88, 97, 101, 102
strength of contacts, time factor of, 22
stress relaxation, 23, 46, 126
strong dispersed structures, 32
structural bonds, 79, 124, 126, 127
structural–mechanic barrier (SMB), 42, 143
structural–mechanical properties, 11, 43, 46,
48, 79, 102, 115, 130, 131, 133, 139, 144, 152, 156
structured dispersed systems (SDS)
– flow mechanism of, 90
– full rheological flow curves, 61, 91
– optimum dynamic state, 32
– spreading over solid surface, 93, 94, 96
structured mineral suspensions, see
cement–water suspension
structure formation in consecutive stages, 129
structure hardening, 147
superfluidity, 69, 103, 139, 149, 163
surface wetting, 16
surfactant Layer, 41, 42, 44, 48, 142, 143
surfactants, 71, 102
suspensions, 12, 15, 17, 25, 26
– pipeline hydrotransport, 141
– structural–rheological properties, regulation of, 144
– structured mineral, see cement–water suspension

\(t \)
thermoplastic organic binders, 65
thermorheological effect, 5
thixotropic S–L dispersions, 63
three–phase S–L–G dispersed systems
– compaction
– – rheological curves, 131, 132
– – static vs. vibration compaction, 133
– – transition mechanism, 130
– – vibroviscometer, 130, 131
– – volume variation, 132, 133
– contact interactions, 45
– mixing
– – component distribution, uniformity of, 110
– – continuous vibromixer, 112
– – effective viscosity, 111
– – nonuniformity variation kinetics, 114

turbulent mode, 145
two–phase dispersed L–L systems, see emulsions
two–phase S–L dispersed systems
– bitumen– mineral systems, see bitumen–shungite composites
– capillary viscometers, 56, 57
– cone–plane type measuring systems, 55
– contact interactions
– – elasticity modulus, 42

\(– \)
– – particle shape factor, 40
– – slipping effect, 37
– – structural–mechanic barrier, 42
– dynamic loading modes, 59
– dynamic states, 51, 52
– flow and spreading, 89
– full rheological flow curve, 60
– plane–plane type measuring systems, 56
– rheological characteristics, 53
– rotation viscometers, 53–55
– suspensions, see cement–water suspension

\(u \)
ultrasonic Doppler method, 144

\(v \)
vibration amplitude, 44, 67, 80, 81, 98, 102, 118
vibration compaction modes, 134
vibration fluidization, 43, 44, 102, 118, 121, 124
vibration intensity, 67–69, 81, 96, 122, 128, 150
vibration mixing, 45, 118, 119, 127, 129, 149, 150, 153
vibration rate, 46, 129
vibration viscosity, 67, 79, 80
viброfluidization, 97, 98
viброliquefaction, 97–99
vibromixer, 112–114
vibrorheology, 51, 63–71, 77–84
vibroviscometer, 54, 55, 57, 59, 69, 98, 130

\(w \)
water/cement ratio, 2, 4, 64
water-soluble surfactants, 85
weakly aggregated dispersions, 63, 90

\(y \)
Young’s elasticity modulus, 92, 134
Young’s law, 16