Index

a
acoustic waves 56–59
asymmetric X-ray reflection 56–59
atomic scattering factor 55, 61, 64–66, 67

b
backscattering neutron spectrometers 219
bandgap engineering 121
Bessel function 7, 233
Bohr model 244
Borrmann effect 33
Bose–Einstein statistics 228
boundary conditions 83, 85, 88, 89
Bragg law 15
Bragg scattering geometry
– Darwin plateau 41
– diffracted and transmitted waves 42
– diffraction intensity 71–75
– diffraction profile 41
– symmetric 38
– thick crystal 42–43
– X-ray interaction with acoustic waves 231, 232, 235–236
Bragg–Brentano powder diffractometer
– angular divergence 280
– crystal monochromator 280, 281
– detector 280, 281
– focusing geometry 281
– high resolution 283, 284
– receiving slit 280, 281
Bragg–Fresnel lenses 268
Bragg–Fresnel lenses
– body-centered modifications 146, 147, 150
– crystallography 148
– face-centered modifications 146, 151
– holohedry group 147
– international notations 146
– primitive/centered 150
– P-type 150
– side-centered modifications 146
– symmetry systems 145
– types 147
bremsstrahlung 241, 242
Brillouin zone boundary 25, 26

C
chromatic aberration effect 206–209, 208
classical radius of electron 48
coherent Rayleigh scattering 224
coherent scattering
– acoustic phonons 230, 231
– angular intervals 233
– boundary condition 232
– Bragg scattering geometry 231, 232, 235–236
– Laue scattering geometry 231, 234
– parallel scattering geometry 235
– Pendelröhrung effect 234
– perpendicular scattering geometry 235
– ultrasound effect 234
Compton scattering 61, 62, 77
Coolidge tube 241, 242
crystal monochromator
– double crystal 276
– four-crystal 278–279
– single crystal 276
crystal reflectivity 75
crystallography 145
Darwin approach, dynamical diffraction
– diffraction intensity 71–75
– scattering amplitude 68–71, 70
Darwin plateau 41, 59, 175
Debye–Scherrer rings 142, 168, 169, 173
Debye–Waller factor (D–W factor) 135–137, 193 196
diced monochromators 223
dielectric polarizability 46, 47, 48, 49, 50, 53, 54
diffraction optics
– asymmetric reflections 272–273
– focal spot size 8, 9
– Fresnel zones (see Fresnel zones)
– light transmission 5, 6
– Rayleigh criterion 8
– spatial resolution 8
– wave vector 5, 6
diffraction vector 13
diffractometer. See Bragg–Brentano powder diffractometer; high-resolution diffractometer
Dirac delta function 166
direct wave summation method
– heterostructures (see heterostructures, single-crystalline thin films)
– quantum-well structures (see quantum-well structures)
– scattering amplitude 103
– superlattices (see superlattices)
dispersion corrections 63
dispersion law 21, 22, 24
double-crystal monochromator 206, 207
d-Spacings 15, 16, 17, 279, 280
dynamical diffraction
– Bragg scattering geometry 38–43
– Darwin approach 61–75
– Ewald–Laue approach 45–59
– in nonhomogeneous media 77–89
– nonstationary Schrödinger equation 21
– single-scattering approximation (see single-scattering approximation)
– two-beam approximation 23–33
– dynamical factor 225

Einstein model 227
electromagnetic waves 45, 46, 47, 50
electron backscatter diffraction (EBSD) 161
electron density 48, 49, 54, 55, 65
electron scattering 61–64
energy-variable diffraction (EVD)
– basic principle 206
– chromatic aberration effect 206–209, 208
– double-crystal monochromator 206, 207
– exponential attenuation, X-ray beams 209
– homogeneous materials 211–212
– inhomogeneous materials 212–215
European Synchrotron Radiation Facility (ESRF) 237
Ewald sphere 12, 17
Ewald–Laue approach
– critical angle 48–49
– dielectric polarizability 48
– dispersion law 47
– electric displacement field 46
– force balance equation 47
– Maxwell’s equations 45
– periodic function 47
– polarization 48
– symmetric Bragg diffraction 58, 59
– symmetric Laue diffraction 58–59
– time-dependent differential equations 45, 46–47
– total external reflection 48, 49
– two-beam approximation 49–59
– X-ray propagation 48, 49
extended X-ray absorption fine structure (EXAFS) 92–93
extinction length 31, 41

Fermat’s principle 257–258, 261
finite crystallite size, line broadening analysis
– Bragg scattering geometry 175
– characteristic broadening 174
– Darwin plateau 175
– Heisenberg uncertainty principle 174
– kinematic diffraction theory 174
– Laue scattering geometry 178–180, 179
– powder diffraction 174
– Scherrer equation 175–177
– Friedel scheme 157
– forbidden reflections 67
– four-crystal monochromator (FCM) 278–279
Fresnel diffraction 5
– free-electron lasers (FELs) 255
– Fresnel zones 70
– focal length 268
– Fresnel zone plates (FZP) 269
– total scattering amplitude 270
– wavefront construction 269
– Friedel pairs 151

Gaussian function
g
g
g
geometrical optics
– angular deviations 262
– capillary optic focusing 266
– compact lenses focusing 264
– critical angle 265
Index

- elliptic surface focusing 263, 264
- entrance angle 265
- Fermat’s principle 261
- focusing mirror system 265
- focusing surface shape 262
- Göbel mirrors 266
- graded multilayers 266, 267
- Kirkpatrick–Baez mirrors 265
- parabolic equation 262
- parabolic surface focusing 263
- parallel beam 266
- total external reflection 265
- glide plane 147, 148
- grazing-incidence diffraction (GID) 261
- Guinier approximation 200

h

Hanawalt scheme 157
harmonic approximation 226
Harris index 163, 164
heavy-atom method 153–154
Heisenberg uncertainty principle 174
heterostructures, single-crystalline thin films
- diffraction profile, Si$_{0.9}$Ge$_{0.1}$/Si heterostructure 106, 107, 108, 109
- d-spacings 107
- film contribution 105, 107, 108, 109, 110
- fluctuating phase 104
- interference term 107, 108, 109, 110
- phase shift 104
- relative diffraction intensity 105
- substrate contribution 104, 106, 107, 108, 109, 110
- symmetric Bragg diffraction profiles 106
- X-ray diffraction simulation, hypothetical heterostructure 111, 112
- heterostructures, strain measurements
 - of crystalline materials 122
 - cubic symmetry system 123
 - diffraction experiments 126
 - fully relaxed film 124, 126, 127, 128
 - fully strained film 124, 126, 127, 128
 - Hooke’s equations 123
 - in-plane strain components 123
 - lattice mismatch 122
 - out-of-plane strain component 122, 123
 - reciprocal space mapping 127
 - strain degree 123
 - symmetric and asymmetric reflections 121–122, 125
- high-frequency ultrasound 232
- high-resolution diffractometer
 - angular resolution 279–280
 - dispersion 275
 - dispersive setting 278
 - double crystal monochromator 276
 - d-spacing 279, 280
 - four-crystal monochromator 278–279
 - monochromatization 275
 - nondispersive setting 277
 - parallel beam optics 280
 - receiving slit 279
 - single crystal monochromator 276
 - homogeneity of space 11
- Hooke’s equations 123
- Huang scattering 197

i

ideal mosaic crystal 139–141
inelastic scattering
- Bragg diffraction peaks 217
- diced monochromators 223
- law of conservation of energy 217
- law of conservation of quasi-momentum 217
- neutron scattering (see neutron scattering (inelastic))
- X-ray scattering (see X-ray scattering (inelastic))
- isoenergetic dispersion surface, asymmetric reflection 56–59
- isoenergetic surface 26, 27, 28, 31

j

Joint Committee for Powder Diffraction Standards (JCPDS) file 155, 156

k

kinematic approximation, X-ray diffraction
- crystal irradiation 132
- Debye–Waller factor 135–137
- diffraction power 132
- parallel atomic planes 131, 132
- relative scattering intensity 131
- X-ray polarization factor 133–135
- kinematic diffraction theory 99, 100, 131
- Kirkpatrick–Baez mirrors 265

l

Laplace operator 79
lattice defects, X-ray diffraction
- Burgers vector 194
- chaotically distributed linear dislocations 197–198
- Debye–Waller factor (D–W factor) 193, 196
lattice defects, X-ray diffraction (contd.)
 \- deformation field 194
 \- diffraction intensity 196, 197
 \- Huang scattering 197
 \- intrinsic stacking fault 198
 \- kinematic approximation 194
 \- linear defects 193
 \- plane defects 193
 \- point defects 193
 \- polycrystalline samples 199
 \- screw dislocation 194
 \- small defect concentrations 196
 \- small-angle X-ray scattering 199, 201
 \- spherical inclusions 199–200
 \- Stokes–Wilson scattering 197
 \- two-dimensional defects 198
 \- volume defects 193
 \- Williamson–Hall analysis 194
lattice potential 21, 22, 24, 25, 26, 27
Laue classes 151
Laue diffractions 237
Laue scattering geometry 231, 234
 \- boundary conditions 34
 \- diffraction intensity profile 35
 \- excitation (tie) points 33, 34
 \- integrated diffraction intensity 37–22
 \- Lorentz point 36
line broadening analysis
 \- convolution approach 182–184
 \- defect-mediated local d-spacing fluctuations 173
 \- dislocation-mediated curvature, atomic planes 171–173, 172
 \- finite crystallite size (see finite crystallite size, line broadening analysis)
 \- grain size 187, 173, 186–188, 187
 \- instrumental broadening 173, 184–186, 185
 \- microstrain fluctuations 180–181
 \- microstrain-induced broadenings 187, 186–188, 187
 \- polycrystalline systems 173
 \- Williamson–Hall method 181–183, 182
Patterson function 154
Pendellösung effect 30, 234
phonon dispersion law 230
plane wave, definition 11
point-group symmetry 146
polycrystalline materials, X-ray diffraction
 \- ideal mosaic crystal 139–141
 \- powder diffraction 141–143
polycrystals, X-ray diffraction measurements
 \- absorbing wire, triangulation method 204, 205
 \- 3-D X-ray diffraction microscopy 203
 \- EVD (see energy-variable diffraction (EVD))
 \- grain localization problem 203–204
 \- movable area detector, triangulation method 204, 205
 \- unique phase sensitivity 205
 \- white radiation 204
 \- X-ray penetration depth 206
powder diffraction 141–143
preferred orientation (texture) analysis
 \- conventional Θ/2Θ diffractometer 161
 \- distribution function 163
 \- electron backscatter diffraction (EBSD) 161

n
neutron scattering (inelastic)
 \- backscattering spectrometers 219
 \- coherent 219
 \- crystal analyzer 218, 219
 \- crystal monochromator 218, 219
 \- incoherent 219
 \- phase transition 219, 221
 \- spin-echo spectrometers 220
 \- time-of-flight spectrometers 219
 \- triple-axis neutron diffractometer 218

o
orientation distribution function (ODF) 161

p
parallel beam optics 280
parametric X-ray radiation 55
partial distribution function 225
Patterson function 154
Pendellösung effect 30, 234
phonon dispersion law 230
plane wave, definition 11
point-group symmetry 146
polycrystalline materials, X-ray diffraction
 \- ideal mosaic crystal 139–141
 \- powder diffraction 141–143
polycrystals, X-ray diffraction measurements
 \- absorbing wire, triangulation method 204, 205
 \- 3-D X-ray diffraction microscopy 203
 \- EVD (see energy-variable diffraction (EVD))
 \- grain localization problem 203–204
 \- movable area detector, triangulation method 204, 205
 \- unique phase sensitivity 205
 \- white radiation 204
 \- X-ray penetration depth 206
powder diffraction 141–143
preferred orientation (texture) analysis
 \- conventional Θ/2Θ diffractometer 161
 \- distribution function 163
 \- electron backscatter diffraction (EBSD) 161

m
March–Dollase approach
 \- degree of preferred orientation 167, 170, 168, 169
 \- Dirac delta function 166
 \- distribution function 166
 \- fraction of crystallites 166–167
 \- reciprocal lattice vectors, mutual arrangement 165
 \- virtually ideal uniaxial texture 166
Marquardt optimization algorithm 160
Miller indices 14, 16, 222, 230
Mössbauer spectrometer 223, 224
multilayered structures 84, 88–89
– inverse pole figures 162, 163
– Kikuchi lines 161
– kinematic approximation 164
– March–Dollase approach (see March–Dollase approach)
– orientation density function (ODF) 161, 162
– pole figures 161–162
– uniaxial texture 165
– X-ray reflections 164

q
qualitative phase analysis
– definition 155
– diffraction pattern quality index 157
– figure of merit 158
– Fink scheme 157
– Hanawalt scheme 157
– JCPDS file 155, 156
– permutation procedure 157
– pronounced lines 157
– search-and-match routine 157
– X-ray density 155
quantitative phase analysis
– I/I_cor ratio 157
– internal standard method 158–159
– Rietveld refinement 159–160
quasi-wave vector 14, 15
quantum-well structures
– additional phase 114
– d-spacing 112
– GaAs/InGaAs/GaAs quantum-well structure 114, 115
– relative diffraction intensity 114
quasimomentum 14, 15

r
reciprocal lattice 14, 15, 17, 18
residual stress measurements,
– polycrystalline materials 190–192, 191
– Rietveld refinement 159–160
residual stress measurements,
– single-crystalline systems 189–190
r

s
scanning transmission X-ray microscopy 203
scattering amplitude 61, 62, 63, 64, 66, 68–71, 70
scattering vector 13
– Scherrer equation 175–177
– screw rotation axis 147, 148
self-amplified spontaneous radiation emission (SASE) 255
– single-crystal monochromator 276
single-scattering approximation
– Bragg angle 97, 98
– crystal reflectivity 100
– Darwin diffraction profile 101
– diffraction intensity 101
– diffraction profile 102
– direct wave summation method (see direct wave summation method)
– extinction and absorption effects 102
– geometrical regression 97
– kinematic diffraction theory 99, 100
– Lorentzian (Cauchy) function 101
– parallel atomic planes 100
– relative scattering intensity 97, 102
– thickness fringes 97, 98
– total scattering amplitude 100
– sin²Ψ method 190, 191
– small-angle X-ray scattering 199, 201
– Snell’s law 258, 259
– spatial Fourier transform 225
– spin-echo neutron spectrometers 220
– static factor 225, 226
Stokes–Wilson scattering 197
strain measurements, single-crystalline systems 189–190
stroboscopic measurement 237, 238
structure factor 61, 66–68
superlattices
– diffraction profiles, hypothetical superlattice 118, 119, 120
– diffraction reflectivity 116
– diffraction vector magnitude 118
– ideal interfaces conditions 116
– relative diffraction intensity 118
– on single-crystalline substrate 116
– superlattice contribution 116
– superlattice period 116
synchrontron radiation
– Coulomb term 252
– delay time 251
– free-electron lasing 255
– nonhomogeneity 252
– principle of operation 241, 250
– radiation intensity 254
– SASE 255
– spectral brilliance 254
– Taylor series 251
– velocity-dependent term 252

T
Takagi equations, dynamical diffraction
– atomic planes in deformed crystal 77, 78
– centrosymmetric crystals 82
Takagi equations, dynamical diffraction (contd.)
- deformation field 81, 82, 83
- diffracted (D) and transmitted (T) intensities 83
- diffraction intensity 80
- extinction length 84
- Fourier components 79
- reflecting planes 77, 78
- symmetric Laue scattering geometry 81
Taupin equations, dynamical diffraction
- for multilayered structures 88–89
- symmetric Bragg case 86–87
- symmetric Laue case 81, 84–86
Taylor series 251
thermal diffuse scattering
- vs. Brillouin scattering 230
- vs. thermal neutron scattering technique 230
- atomic displacements 228
- Boltzmann constant 228
- Bose–Einstein statistics 228
- Bragg position 230
- Miller indices 230
- one-phonon 229
tie points 33, 34
time-of-flight neutron spectrometers 219
time-resolved X-ray diffraction
- acoustic waves 238
- angular frequency 239
- delay time 240
- electron bunches 238
- ESRF 237
- Laue diffraction 237
- Lorentzian (Cauchy) function 239
- phase locking 239
- pump-and-probe experiment 237
- relaxation time 240
- storage ring 238
- stroboscopic measurement 237, 238
- wavefront visualization 239
translation vectors 12
translational symmetry 12, 14
triple-axis neutron diffractometer 218
two-beam approximation
- asymmetric reflection, isoenenergetic dispersion surface 56–59
- Borrmann effect 33
- centrosymmetric crystals 27
- dielectric polarizability 50
- dispersion curve 25
- excitation point 28, 29
- extinction length 31
- forbidden zone 26
- Laue scattering geometry 29, 31
- nontrivial (nonzero) solution 24
- Pendellösung effect 30
- two-branch isoenenergetic dispersion surface 27, 28, 52–55
- wave vector 24
- X-ray polarization 50–52
- X-ray standing waves 32, 33
two-branch isoenenergetic dispersion surface
- characteristic depth 55
- characteristic gap 53, 54, 58
- extinction length 54
- parametric X-ray radiation 55
- structure factor 55
- wave vectors 53

ν
vectors of reciprocal lattice 14

w
wave propagation
- Bragg condition 19
- Bragg law 15
- coherence length calculation 19
- diffraction vector 13
- d-spacings 16
- electron diffraction 18
- Ewald construction 17, 18
- homogeneous medium 11
- infinite medium 12
- nonhomogeneous medium 11
- quasimomentum 14
- reciprocal lattice 14, 15, 17, 18
- reciprocal space 13, 14
- wave vectors, graphical representation 14, 15
- X-ray coherence 19–20
- X-ray scattering 12, 16
wave vector gap 27
wave vector transfer 13
Williamson–Hall method 181–183, 182, 194

x
X-ray absorption
- asymmetric Bragg scattering geometry 95
- EXAFS 92–93
- linear absorption coefficient 94, 96
- mass absorption coefficient 95, 96
- multiphase materials 96
- Ni filter installation 91
- penetration depth 95
- photoelectric effect 91, 92
- resonant nature 92
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric Bragg scattering geometry</td>
<td>94</td>
</tr>
<tr>
<td>X-ray attenuation</td>
<td>93, 94</td>
</tr>
<tr>
<td>X-ray coherence</td>
<td>19</td>
</tr>
<tr>
<td>X-ray density</td>
<td>152</td>
</tr>
<tr>
<td>X-ray focusing optics</td>
<td></td>
</tr>
<tr>
<td>- critical angle</td>
<td>259</td>
</tr>
<tr>
<td>- diffraction optics (see diffraction optics)</td>
<td></td>
</tr>
<tr>
<td>- Fermat's principle</td>
<td>257–258</td>
</tr>
<tr>
<td>- geometrical optics (see geometrical optics)</td>
<td></td>
</tr>
<tr>
<td>- GID</td>
<td>261</td>
</tr>
<tr>
<td>- glancing angle</td>
<td>260</td>
</tr>
<tr>
<td>- homogeneous media refraction</td>
<td>257, 258</td>
</tr>
<tr>
<td>- optical path</td>
<td>257</td>
</tr>
<tr>
<td>- Snell’s law</td>
<td>258, 259</td>
</tr>
<tr>
<td>- total external reflection</td>
<td>259</td>
</tr>
<tr>
<td>X-ray polarization</td>
<td></td>
</tr>
<tr>
<td>- Brewster angle</td>
<td>52</td>
</tr>
<tr>
<td>- mathematical representation</td>
<td>50</td>
</tr>
<tr>
<td>- scalar magnitudes</td>
<td>52</td>
</tr>
<tr>
<td>- transverse X-ray polarization</td>
<td>51</td>
</tr>
<tr>
<td>X-ray polarization factor</td>
<td>133–135</td>
</tr>
<tr>
<td>X-ray scattering</td>
<td></td>
</tr>
<tr>
<td>- angular resolution</td>
<td>224</td>
</tr>
<tr>
<td>- coherent Rayleigh scattering</td>
<td>224</td>
</tr>
<tr>
<td>- dispersion law</td>
<td>221</td>
</tr>
<tr>
<td>- in periodic medium</td>
<td>12</td>
</tr>
<tr>
<td>- Miller indices</td>
<td>222</td>
</tr>
<tr>
<td>- Mössbauer diffractometer</td>
<td>223, 224</td>
</tr>
<tr>
<td>- parallel atomic planes</td>
<td>16</td>
</tr>
<tr>
<td>X-ray sources</td>
<td></td>
</tr>
<tr>
<td>- atomic level</td>
<td>243</td>
</tr>
<tr>
<td>- Auger electron</td>
<td>244</td>
</tr>
<tr>
<td>- beam compression</td>
<td>249</td>
</tr>
<tr>
<td>- Bohr model</td>
<td>244</td>
</tr>
<tr>
<td>- bremsstrahlung</td>
<td>241, 242</td>
</tr>
<tr>
<td>- Coolidge tube</td>
<td>241, 242</td>
</tr>
<tr>
<td>- Coulomb field</td>
<td>245</td>
</tr>
<tr>
<td>- electron velocity</td>
<td>244</td>
</tr>
<tr>
<td>- filtering principle</td>
<td>248</td>
</tr>
<tr>
<td>- fine line focus</td>
<td>249</td>
</tr>
<tr>
<td>- intensity ratio</td>
<td>246, 247</td>
</tr>
<tr>
<td>- K terms</td>
<td>245, 246</td>
</tr>
<tr>
<td>- K terms splitting</td>
<td>246</td>
</tr>
<tr>
<td>- Moseley law</td>
<td>245</td>
</tr>
<tr>
<td>- orbit radius</td>
<td>244</td>
</tr>
<tr>
<td>- point focus</td>
<td>249</td>
</tr>
<tr>
<td>- principal quantum number</td>
<td>244, 245</td>
</tr>
<tr>
<td>- quantum energy</td>
<td>241</td>
</tr>
<tr>
<td>- rotating anode</td>
<td>249</td>
</tr>
<tr>
<td>- sealed tube</td>
<td>247, 248</td>
</tr>
<tr>
<td>- shortest wavelength</td>
<td>242</td>
</tr>
<tr>
<td>- spectral doublet</td>
<td>246</td>
</tr>
<tr>
<td>- stable electron orbits</td>
<td>244</td>
</tr>
<tr>
<td>- synchrotron radiation</td>
<td></td>
</tr>
<tr>
<td>- total angular momentum</td>
<td>245</td>
</tr>
<tr>
<td>X-ray standing waves</td>
<td>32, 33</td>
</tr>
<tr>
<td>X-ray tomography</td>
<td>203</td>
</tr>
</tbody>
</table>