Index

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorption column</td>
<td>28</td>
</tr>
<tr>
<td>actuator</td>
<td>150, 151, 156</td>
</tr>
<tr>
<td>adaptation</td>
<td>292</td>
</tr>
<tr>
<td>adaptive control</td>
<td>279, 289, 292</td>
</tr>
<tr>
<td>applications</td>
<td>289, 290, 291, 293</td>
</tr>
<tr>
<td>commercial systems</td>
<td>293</td>
</tr>
<tr>
<td>programmed</td>
<td>290, 292</td>
</tr>
<tr>
<td>self-tuning</td>
<td>292</td>
</tr>
<tr>
<td>adaptive tuning</td>
<td>292</td>
</tr>
<tr>
<td>ADC, 300, 320, 466</td>
<td></td>
</tr>
<tr>
<td>advanced control techniques</td>
<td>284</td>
</tr>
<tr>
<td>alarm classification</td>
<td>163</td>
</tr>
<tr>
<td>limits</td>
<td>163</td>
</tr>
<tr>
<td>management</td>
<td>165</td>
</tr>
<tr>
<td>switch</td>
<td>163</td>
</tr>
<tr>
<td>aliasing</td>
<td>302, 321</td>
</tr>
<tr>
<td>ammonia synthesis</td>
<td>265</td>
</tr>
<tr>
<td>amplitude ratio</td>
<td>121, 245</td>
</tr>
<tr>
<td>analog controller</td>
<td>123, 125, 129, 131, 133</td>
</tr>
<tr>
<td>analog instrumentation</td>
<td>124, 151</td>
</tr>
<tr>
<td>analog to digital converter</td>
<td>133, 316, 466</td>
</tr>
<tr>
<td>analog signal</td>
<td>466</td>
</tr>
<tr>
<td>analytical predictor (AP)</td>
<td>295</td>
</tr>
<tr>
<td>analyzers</td>
<td>134</td>
</tr>
<tr>
<td>annunciator</td>
<td>163, 168</td>
</tr>
<tr>
<td>anti-aliasing filter</td>
<td>302</td>
</tr>
<tr>
<td>anticipatory control</td>
<td>128</td>
</tr>
<tr>
<td>anti-reset windup</td>
<td>127, 128, 424</td>
</tr>
<tr>
<td>approximation</td>
<td></td>
</tr>
<tr>
<td>finite difference</td>
<td>133, 327</td>
</tr>
<tr>
<td>higher-order systems, of</td>
<td>88, 92, 100</td>
</tr>
<tr>
<td>least squares</td>
<td>107</td>
</tr>
<tr>
<td>linearization</td>
<td>61</td>
</tr>
<tr>
<td>Padé, 91</td>
<td></td>
</tr>
<tr>
<td>Taylor series</td>
<td>61, 92, 93</td>
</tr>
<tr>
<td>argument</td>
<td>246, 253</td>
</tr>
<tr>
<td>artificial neural net (ANN)</td>
<td>113</td>
</tr>
<tr>
<td>ARX model</td>
<td>116</td>
</tr>
<tr>
<td>assignable cause</td>
<td>396, 398, 399</td>
</tr>
<tr>
<td>auctioneering control</td>
<td>287</td>
</tr>
<tr>
<td>automatic mode</td>
<td>132, 143</td>
</tr>
<tr>
<td>autoregressive model</td>
<td>116, 320</td>
</tr>
<tr>
<td>auto-tuning</td>
<td>284</td>
</tr>
<tr>
<td>average run length</td>
<td>401, 403</td>
</tr>
<tr>
<td>averaging level control</td>
<td>221</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>back calculation method</td>
<td>127</td>
</tr>
<tr>
<td>backlash (valve)</td>
<td>158</td>
</tr>
<tr>
<td>backward difference</td>
<td>125, 311, 318</td>
</tr>
<tr>
<td>bandwidth</td>
<td>J11</td>
</tr>
<tr>
<td>bang-bang control</td>
<td>136</td>
</tr>
<tr>
<td>batch control system</td>
<td>415, 430</td>
</tr>
<tr>
<td>alarms</td>
<td>416, 417</td>
</tr>
<tr>
<td>ANSI-IS</td>
<td>95, 415</td>
</tr>
<tr>
<td>biocatalysis</td>
<td>144, 428</td>
</tr>
<tr>
<td>batch production</td>
<td>287, 296</td>
</tr>
<tr>
<td>binary logic diagram</td>
<td>417, 418</td>
</tr>
<tr>
<td>campaign</td>
<td>428</td>
</tr>
<tr>
<td>control during the batch</td>
<td>415, 421</td>
</tr>
<tr>
<td>flexible manufacturing</td>
<td>430</td>
</tr>
<tr>
<td>Gantt chart</td>
<td>429</td>
</tr>
<tr>
<td>information flow diagram</td>
<td>417</td>
</tr>
<tr>
<td>ladder logic diagram</td>
<td>417, 418</td>
</tr>
<tr>
<td>levels</td>
<td>415</td>
</tr>
<tr>
<td>rapid thermal processing</td>
<td>425, 427</td>
</tr>
<tr>
<td>reactor control</td>
<td>422, 425</td>
</tr>
<tr>
<td>recipe</td>
<td>428, 430</td>
</tr>
<tr>
<td>run-to-run control</td>
<td>415, 416, 426, 427</td>
</tr>
<tr>
<td>scheduling and planning</td>
<td>428, 429</td>
</tr>
<tr>
<td>semiconductor processing</td>
<td>422, 425, 427, 430</td>
</tr>
<tr>
<td>sequential function chart</td>
<td>417, 418</td>
</tr>
<tr>
<td>sequential logic</td>
<td>416, 417, 421</td>
</tr>
<tr>
<td>SP-88 terminology</td>
<td>427</td>
</tr>
<tr>
<td>batch distillation</td>
<td>413</td>
</tr>
<tr>
<td>batch reactor control</td>
<td>422, 425</td>
</tr>
<tr>
<td>batch sequence</td>
<td>416</td>
</tr>
<tr>
<td>batch-to-batch control</td>
<td>416</td>
</tr>
<tr>
<td>beermaking</td>
<td>436</td>
</tr>
<tr>
<td>Bernoulli equation</td>
<td>25</td>
</tr>
<tr>
<td>beta-gamma controller</td>
<td>141</td>
</tr>
<tr>
<td>bias</td>
<td>424, 426, 427</td>
</tr>
<tr>
<td>biggest log-modulus (BLT) tuning</td>
<td>341</td>
</tr>
<tr>
<td>binary logic diagram</td>
<td>417, 418</td>
</tr>
<tr>
<td>biological switch</td>
<td>462</td>
</tr>
<tr>
<td>bioreactor</td>
<td>41, 50, 436</td>
</tr>
<tr>
<td>bioreactor sensor</td>
<td>154</td>
</tr>
<tr>
<td>black box modeling</td>
<td>114</td>
</tr>
<tr>
<td>blending process</td>
<td>15, 18, 56, 176, 278, 326, 476</td>
</tr>
<tr>
<td>block diagram</td>
<td></td>
</tr>
<tr>
<td>algebra</td>
<td>58, 59, 269</td>
</tr>
<tr>
<td>analysis</td>
<td>482</td>
</tr>
<tr>
<td>feedback control</td>
<td>6</td>
</tr>
<tr>
<td>reduction</td>
<td>179, 281</td>
</tr>
<tr>
<td>representation</td>
<td>176</td>
</tr>
<tr>
<td>blood glucose</td>
<td>442, 443</td>
</tr>
<tr>
<td>blood pressure control</td>
<td>444</td>
</tr>
<tr>
<td>Bode diagrams</td>
<td></td>
</tr>
<tr>
<td>breakpoint</td>
<td>260, 261</td>
</tr>
<tr>
<td>of controllers</td>
<td>252, 262</td>
</tr>
<tr>
<td>Bode sensitivity integral</td>
<td>252, J14</td>
</tr>
<tr>
<td>Bode stability criterion</td>
<td>263</td>
</tr>
<tr>
<td>boilers</td>
<td></td>
</tr>
<tr>
<td>adaptive control</td>
<td>279, 292</td>
</tr>
<tr>
<td>feedforward control</td>
<td>274</td>
</tr>
<tr>
<td>inverse response of reboiler</td>
<td>89</td>
</tr>
<tr>
<td>RTO, 363</td>
<td></td>
</tr>
<tr>
<td>selective control</td>
<td>279, 287, 293</td>
</tr>
<tr>
<td>split-range control</td>
<td>287, 288</td>
</tr>
<tr>
<td>bracket (optimimum)</td>
<td>357</td>
</tr>
<tr>
<td>breakpoint</td>
<td>343</td>
</tr>
<tr>
<td>Bristol's relative gain array</td>
<td>332, 334</td>
</tr>
<tr>
<td>bumpless transfer</td>
<td>132</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calibration, instrument</td>
<td>163</td>
</tr>
<tr>
<td>campaign</td>
<td>428</td>
</tr>
<tr>
<td>cancer treatment</td>
<td>445</td>
</tr>
<tr>
<td>cardiac-assist device</td>
<td>446</td>
</tr>
<tr>
<td>capability index</td>
<td>404</td>
</tr>
<tr>
<td>capacitance probe</td>
<td>153</td>
</tr>
<tr>
<td>cascade control</td>
<td></td>
</tr>
<tr>
<td>design, 279, 282</td>
<td></td>
</tr>
<tr>
<td>frequency response</td>
<td>337</td>
</tr>
<tr>
<td>loop configuration</td>
<td>288, 358, G3, H3</td>
</tr>
<tr>
<td>primary controller</td>
<td>280, 283, 284</td>
</tr>
<tr>
<td>secondary controller</td>
<td>280, 283, 284</td>
</tr>
<tr>
<td>catalytic converters</td>
<td>246</td>
</tr>
<tr>
<td>Central Dogma</td>
<td>452, 453, 461</td>
</tr>
<tr>
<td>chemotaxis</td>
<td>457, 462</td>
</tr>
<tr>
<td>Center for Chemical Process Safety (CCPS)</td>
<td>161</td>
</tr>
<tr>
<td>Central Limit Theorem</td>
<td>402</td>
</tr>
<tr>
<td>characteristic equation</td>
<td>188, 330</td>
</tr>
<tr>
<td>digital control</td>
<td>300, 307, 313</td>
</tr>
<tr>
<td>characteristic polynomial</td>
<td>87</td>
</tr>
<tr>
<td>characteristic roots</td>
<td>481</td>
</tr>
<tr>
<td>chemical reactors</td>
<td></td>
</tr>
<tr>
<td>ammonia synthesis</td>
<td>265</td>
</tr>
<tr>
<td>batch</td>
<td>413</td>
</tr>
<tr>
<td>catalytic</td>
<td>287</td>
</tr>
<tr>
<td>continuous stirred-tank reactor (CSTR)</td>
<td>34</td>
</tr>
<tr>
<td>fluidized catalytic cracker</td>
<td>352, 355</td>
</tr>
<tr>
<td>trickle-bed</td>
<td>91</td>
</tr>
<tr>
<td>tubular</td>
<td>89, 297</td>
</tr>
<tr>
<td>chemometrics</td>
<td>114</td>
</tr>
<tr>
<td>chromatographic analysis</td>
<td>154, 481</td>
</tr>
<tr>
<td>circadian clock</td>
<td>452, 455</td>
</tr>
<tr>
<td>closed loop</td>
<td></td>
</tr>
<tr>
<td>block diagrams</td>
<td>176</td>
</tr>
<tr>
<td>frequency response</td>
<td>J10</td>
</tr>
<tr>
<td>gain, 188</td>
<td></td>
</tr>
<tr>
<td>performance criteria</td>
<td>J11</td>
</tr>
<tr>
<td>poles, 188</td>
<td></td>
</tr>
<tr>
<td>prediction</td>
<td>369</td>
</tr>
<tr>
<td>response, 181–186</td>
<td></td>
</tr>
<tr>
<td>stability, 186</td>
<td></td>
</tr>
<tr>
<td>transfer function</td>
<td>63, 178, 179, 180, 188, J2</td>
</tr>
</tbody>
</table>
coincidence point, 373, 385
combustion process
adapative control, 279, 292
ratio control, 264
comparator, 177
compensation, dynamic, 268
complementary sensitivity, 170
composition control, 176
composition sensor, 154, 176
computer
hardware, 465
interface, 466
representation of information, 466
software, 470
computer control, 329, 465
conditional stability, 253
condition number, 338, 339, 340
connection weight (neural net), 114
conservation laws, 17
controller design
advanced, 279, 284, 293
adaptive, 279, 292
run-to-run, 415, 421
cascade, 279, 282, 293
central, 96, 170
complementary sensitivity, 170
composition sensor, 154, 176
complementary sensitivity, 170
comparison, 177
correlation
air-to-open, 157
core reactor/flash unit model, 20
controller tuning
ultimate gain, 215
tuneable, 211, 213, 224
controller pairing
AMIGO method, 211, 213, 224
feedforward controller, 273
Hågglund-Aström, 211
controller parameters/settings
integral error criteria, 210
controller tuning
integral error criteria, 210
internal model control (IMC), 205
controller tuning, 199
AMIGO method, 211, 213, 224
feedforward controller, 273
Hågglund-Aström, 211
IMC, 206
integral error criteria, 210
multiloop control system, 327, 335, 341
on-line, 214
predictive control, 384, 385
relay auto-tuning, 218
Skogestad, 206, 209
Skogestad IMC method (SIMC), 209, 210, 224
Tygues-Luyben, 224
Ziegler-Nichols, 211, 215
conversion of signals
continuous to discrete-time, 308
converters
analog to digital, 466
digital to analog, 466
instrument, 151
core reactor/flash unit model, 20
coriolis meter, 153
critical controller gain
See ultimate gain
critical frequency, 253
critical point, 77
critically damped, 75
cross controllers, 342
crossover frequency, 253, 256
crystallizer, 438, 439, 449
CSTR, see continuous stirred-tank reactor
current-to-pressure transducer, 135, 151, 177
cycle time, 425
cyclone, continuous, 215, 466
D
Dahlins's algorithm, 315
modified version, 316, 317
damping coefficient, 75, 78
data fitting, 109, 110, 111
data highway, 412
data network, 151
data reconciliation, 351, 353, 354
data validation, 114, 370
dCS (distributed control system), 469
deadband, 136
dead time, 368
delay, 90
delay time, See also time delay, 90
decay ratio, 77, 211, 215, 224
decentralized integral controllability, 351
decibel, 343
decoupling control, 342, 343
detuning, 137, 177
detuning, 251
degrees of freedom, 19, 230
derivative
approximation of, 129, 311
control action, 128–130
kick, 130, 134
Laplace transform, 41
mode filter, 129
time, 129, 136
design of control systems, 199, 266, H1, H4
design, plant, G4
detuning control loops, 341
deviation variable, 59
diabetes mellitus, 442, 443, 449
digital versions of PID controllers, 145
digital-to-analog converter, 145, 301
digital signal
digital filters, 303, 446
digital controllers, PID, 145
digital control algorithms, 146
analitical predictor, 319
conversion of continuous controller settings, 313
Dahlin, 315
direct synthesis, 313, 315, 319
disturbance estimation, 319
integral error criteria, 311
internal model control, 303, 318
minimal prototype, 315
modified Dahlin, 316
PID, 145, 303, 311, 314
pole placement, 317
reset windup, 145, 146
ringing, 317, 319
time-delay compensation, 316
tuning, 304, 313, 317
Vogel-Edgar, 317
digital controllers, PID, 145
approximation of analog controllers, 145, 302
derivative kick, 146
PID, 145
digital filters, 303, 446
digital signal
binary representation, 466
converter, 466
multiplexer, 467
pulse train, 467
transmission, 471
digital-to-analog converter, 145, 301
digital versions of PID controllers, 145
Dirac delta function (unit impulse), 40, 41
direct-acting controller, 142
direct substitution method, 200
direct synthesis method, 201, 224, 331
Dahlin’s algorithm, 315
Vogel-Edgar, 317
discrete event analysis, 415
discrete-time signal, 307, 312, 315
discrete-time system
closed-loop system, 329, 335
effect of hold element, 317
exact, 115
identification, 116
stability analysis, 312
z-transform, 307, 309, 312
discrete transfer function, 307, 312, 315, 320
discretization
of ordinary differential equation, 115
of partial differential equation, 30
distance-velocity lag. See time delay
distillation control, 7
alternative configurations, 348, G2
decoupling, 337, 342, 501
feedback, G2
feedforward, 266
heat integration, G3, G4
inherent, 279, 286, 293
inverse response, 89
override, 287, 289
selection of manipulated variables, 339
distributed control system (DCS), 469
distributed-parameter systems, 16
disturbance changes, closed-loop, 180
disturbance rejection, 200, G3
disturbance variable, 68, 368, 376, 378, 384
autoregressive, 320
moving average, 304, 320
non-stationary, 320
predictor, 316, 319
stationary, 320
transfer function, 280
DMC, 369
dominant time constant, 93, 206, 286, 290
double-exponential filter, 304
drift, 304, 319
Drosophila melanogaster, 455
drug delivery, 442
drug target, 453
DS, method, 201
duty cycle, 467
dynamic behavior of various processes
first order, 68
higher order, 92
instruments, 152, 163
integrating process, 73
inverse response system, 88, 89
second order, 75
time delay, 89
dynamic compensation, 268
dynamic error, 163
dynamic matrix, 375
Dynamic Matrix Control (DMC), 369
dynamic model, 14
E.
E. coli, 454, 457
entrainment, 456
error analysis, 503
eukaryote, 460
event tree analysis, 172
economic optimization, 369
EEPROM, 474
eigenvalue, 96, 97, 338
evenement shutdown system (ESD), 161
empirical model, 15, 105–108, 113, 114, 117
dead point, 416
tprise resource planning, 351, 447
evironmental regulations, 8
equal concern factor, 401
equal-percentage valve, 158–160
error
control, 136
instrument, 162
error criteria. See integral-error criteria
error gap controller, 290
error signal, 136
etcher, plasma, 4
Etherent, 469, 471, 472
Einler identity, 249
Einler integration, 115
evaporator, 234
event-based control, 315
evolutionary operation (EVOP), 359
EWMA control chart, 402, 403, 404
eact discretization, 115, 312
Excel, 112, 116, 360, 362
Excel Solver, 108, 362
EGG, 363, 366
exponential filter, 303
exponential function
approximations, 90
Laplace transform, 39
exponentially-weighted moving average
(EWMA) filter, 447
F
failure, computer, 465
failure probability, 171
failure rate, 163
fault detection, 169, 398
fault tree analysis, 172
FDA, 453
feasible region, 359
fed-batch, 29
feedback control
adaptive, 279, 292
block diagram, 6
design, 199, 251
disturbance changes, 180, 201
historical perspective, 135
multiple input-multiple output (MIMO) system, 326, 341
performance criteria, 200
regulator problem, 180
servo problem, 179
set-point changes, 179
transfer functions, 176–181
feedback loop, 267
dynamics, 143
hidden, 329
feedback path, 179
feedback trim, 283
feedforward control, 263
configuration, 272
design, 266
disturbance rejection, 270
lead-lag unit, 270
physically unrealizable, 280, 282
feedforward control (continued)
 stability considerations, 280
 tuning, 284
feedforward-feedback control, 272
feedforward variable, 368
fermentor, 436, 437, 448
fiber optics, 153
fieldbus, 162, 471
field tuning, 214
filters
 analog, 319
 derivative mode, 139
 digital, 319
 anti-aliasing, 302
double exponential, 304
effect on PID controller, 314
EWMA, 304
exponential, 303
moving-average, 304, 320
moving-window, 305
noise, 305
rate-of-change, 305
Savitzky-Golay, 305
second order, 304
final control element, 136, 137, 141, 143, 145, 156
final value theorem
 Laplace domain, 45
 z-domain, 323
finite-difference, 125, 311
finite impulse response (FIR) model, 117
finite step response model, 112
first-order hold, 301
first-order-plus-time-delay (FOPDT) model, 110
first-order process responses, 70
first-order system, 70, 109–111
fitting data, 109–111
flash drum, 258
flexible manufacturing, 430
flooded condenser, 249
flooding, 287
flow characteristic curve, valve, 159–161
flow control, 135, 139, 228, 280, 288, 296
flow-head relation, 159, 160
flow/inventory control G1
flow rate sensors, 153
fluidized catalytic cracker, 352, 355
food industry, 438
FOPTD model, 110
forcing function, 69
forward path, 178
fraction incomplete response method, 111
freedom, degrees of, 19
frequency response analysis
 Bode diagrams, 257
closed-loop, J11
feedback controller, 251
gain and phase margins, 256
Nichols chart, J12
Nyquist diagram, J7
open loop, 251, 252
shortcut method, 246
fuel-air ratio control, 264
furnace
cascade control, 279
thermal cracking, 354
fuzzification, 291
fuzzy logic, 290, 291
fuzzy logic controller (FLC), 291
G
 gain
 closed-loop, 182
 controller, 136
 critical, See ultimate gain
crossover frequency, 253
discrete-time system, 307, 310, 312
gain, 256
 matrix, 360
 open-loop, 57, 187
 process, 58, 63
 transfer function, 57, 281, 284, 291, 438
 transmitter, 261
 ultimate, 254
 variable, 289
 z-transform, 307, 313
 gain margin, 256
 gain scheduling, 289, 292
 gain/time constant form, 58, 88
 Gant chart, 429
 gap action, 290
gas absorption, 28
gas chromatograph, 154, 467
gas-liquid separator, 327
gas pressure control loop, 221
Gaussian distribution, 414
gene regulation, 452, 453, 454
general stability criterion, 252
generalized predictive control (GPC), 369
generalized reduced gradient (GRG), 362, 363
general stability criterion, 252
generalized reduced gradient (GRG), 362, 363
H
 half-rule, 92
 hard constraint, 382, 386
 hardware
 computer system, 467
 control loop, 468
 instrumentation, 209
 real-time optimization, 352, 358
 HART protocol, 472
 HAZOP, 169, 416
 heat exchanger, 2
 cascade control, 280, 281
double-pipe, 31
 evaporator, 234
 modeling, 31
 heat shock response, 451, 452
 Heaviside expansion, 43
 HIV/AIDS treatment, 445
 hidden feedback loop, 329
 hidden oscillation, 316
 hierarchy, control, 8, 350, H1
 higher-order process (system), 92, 318
 homeostasis, 2

 I
 IAE, 210
 ideal controller, 137, 139–141
 ideal decoupler, 342
 idealized sampling, 301
 identification, process, 117
 If-then statement, 291
 IID assumption, 401, 402
 ill-conditioned, 338, 396
 IMC, See Internal Model Control
 impulse
 inputs, 41
 modulation, 301
 response, 41
 response model, 117
 sampler, ideal, 308
 impulse function
 Laplace transform, 41
 z-transform, 307, 310, 312, 451
 incompletely complete method, 109
 individuals chart, 399
 inferential control, 279, 286, 293
 information flow diagram, 417, 420
 initial value theorem
 Laplace domain, 45
 in phase, 245, 254
 input
 blocking, 381, 384
 dynamics, 87
 variables, 68, 69
 input-output interface, 466, 471
 input-output model
 continuous-time transfer function, 54
 discrete-time, 307, 310, 315
 installed valve characteristics, 159
 instrument
 accuracy, 162
 signal level, 152
 smart, 163
 instrumentation symbols, 499
 insulin, 442, 443
 intracranial pressure, 448
 integral of the absolute error (IAE), 210
 integral control, 139, 141, 142
 reset windup, 138
 integral error criteria, 210
 integrals
 approximation of, 145
 Laplace transform, 46
 integral of the squared error (ISE), 210
 integral of the time-weighted absolute error (ITAE), 210
 integral time, 137
 integral windup, 138
 integrating process, 122
 control characteristics, 193, 311, 320
 response, 122
 integration
 analytical methods, 38
 numerical techniques, 481
 interacting tanks, 102
N
negative feedback, 5
neural net, 113
Newton-Raphson method, 64
Nichols chart, 111
noise, 110, 129
noise filter, 212
noise-spike filter, 305
noninteracting processes, 94
two tank system, 94
nonlinear
control system, 279
models, 61
optimization, 360
programming, 362, 363
regression, 112
transformation, 289
nonminimum-phase system, 240, 312
non-self-regulating process, 74
normal distribution, 398
nonminimum-phase system, 240, 312
non-self-regulating process, 74
normal distribution, 398
offset, 129, 182, 287
observer, 286
object linking and embedding, 470
observer, 286
P
PID controller, 129
PIDPlus controller, 303, 311, 321
piping and instrumentation diagrams, 487
P&IDs (piping and instrumentation diagrams), 487
Padé approximation, 91
pairing of variables, 236, 347
parameter estimation, 106
partial decoupling, 342
partial differential equations, 16
partial fraction expansion, 38
partial least squares (PLS), 408
particle size distribution, 440
pattern tests, 402
PCA, 408
PCM (Process Control Modules), 501
perfect control, 12, 202
performance criteria, 210
period of oscillation, 77, 245
pharmaceutical industry, 453
phase
angle, 245
crossover frequency, 253
lag, 245
lead, 249
margin, 256
shift, 245
pH control, 291
phosphorylation, 453, 473
photolithography, 400
physical realizability, 58, 129, 310
physically unrealizable controller, 129, 252, 270
PI controller, 127
PID controller, 129
digital version of, 34, 133
expanded form, 130
parallel form, 129
series form, 129
PIDPlus controller, 303, 311, 321
piping and instrumentation diagrams, 487
plantwide control design, G1, H1, H4
process
control, 1
dynamics, 1
economics, 354
gain matrix, 332, 333
identification, 105
interactions, 327
measurement, 332
interface, 141
monitoring, 325
reaction curve, 109
safety, 160
thermal mixing, 98, 100
variables, 1, 229
process capability index, 404
process control language (PCL), 474
Process Control Modules (PCM), 501
distillation, 122, 227, 257, 278, 501
furnace, 122, 227, 237, 278, 501
processes
batch, 2, 415
continuous, 3
fed-batch, 2, 29
semibatch, 2, 18
stirred-tank blending, 4, 15, 18, 123, 176, 267
process reaction curve method, 218
Profibus, 142, 466
programmable logic controller (PLC), 468
prokaryote, 460
promoter, 460
proportional band, 126
proportional (P) control, 4, 125
proportional derivative (PD) control, 129
proportional-integral (PI) control, 127
proportional-integral-derivative (PID) control, 129
proportional kick, 130
protection. See safety
pseudo-random binary sequence (PRBS), 113
pulse duration output (PDO), 467
pulse function. See rectangular pulse
pulse testing, 246
Pulse testing, 246
overspecification, 20
overshoot, 77
oversimplified model, 20
Pαt, 128
predictive control. See model predictive control
prediction horizon, 378
predictive emission monitoring system (PEMS), 146
pre-filter, 303
pre-load (batch control), 424
pressure sensor, 143
primary controller, 280
primary loop, cascade control, 280
principal component analysis (PCA), 402
Principle of the Argument, K1
Principle of Superposition, 39, 57
probability concepts, review, 491
process
control, 1
dynamics, 1
economics, 354
gain matrix, 332, 333
identification, 105
interactions, 327
measurement, 332
interface, 141
monitoring, 325
reaction curve, 109
safety, 160
thermal mixing, 98, 100
variables, 1, 229
process capability index, 404
process control language (PCL), 474
Process Control Modules (PCM), 501
distillation, 122, 227, 257, 278, 501
furnace, 122, 227, 237, 278, 501
processes
batch, 2, 415
continuous, 3
fed-batch, 2, 29
semibatch, 2, 18
stirred-tank blending, 4, 15, 18, 123, 176, 267
process reaction curve method, 218
Profibus, 142, 466
programmable logic controller (PLC), 468
prokaryote, 460
promoter, 460
proportional band, 126
proportional (P) control, 4, 125
proportional derivative (PD) control, 129
proportional-integral (PI) control, 127
proportional-integral-derivative (PID) control, 129
proportional kick, 130
protection. See safety
pseudo-random binary sequence (PRBS), 113
pulse duration output (PDO), 467
pulse function. See rectangular pulse
pulse testing, 246
Pulse testing, 246
overspecification, 20
overshoot, 77
oversimplified model, 20
Pαt, 128
predictive control. See model predictive control
prediction horizon, 378
predictive emission monitoring system (PEMS), 146
pre-filter, 303
pre-load (batch control), 424
pressure sensor, 143
primary controller, 280
primary loop, cascade control, 280
principal component analysis (PCA), 402
Principle of the Argument, K1
Principle of Superposition, 39, 57
probability concepts, review, 491
process
control, 1
dynamics, 1
economics, 354
gain matrix, 332, 333
identification, 105
interactions, 327
measurement, 332
interface, 141
monitoring, 325
reaction curve, 109
safety, 160
thermal mixing, 98, 100
variables, 1, 229
process capability index, 404
process control language (PCL), 474
Process Control Modules (PCM), 501
distillation, 122, 227, 257, 278, 501
furnace, 122, 227, 237, 278, 501
processes
batch, 2, 415
continuous, 3
fed-batch, 2, 29
semibatch, 2, 18
stirred-tank blending, 4, 15, 18, 123, 176, 267
process reaction curve method, 218
Profibus, 142, 466
programmable logic controller (PLC), 468
prokaryote, 460
promoter, 460
proportional band, 126
proportional (P) control, 4, 125
proportional derivative (PD) control, 129
proportional-integral (PI) control, 127
proportional-integral-derivative (PID) control, 129
proportional kick, 130
protection. See safety
pseudo-random binary sequence (PRBS), 113
pulse duration output (PDO), 467
pulse function. See rectangular pulse
pulse testing, 246
Pulse testing, 246
overspecification, 20
overshoot, 77
oversimplified model, 20
Pαt, 128
predictive control. See model predictive control
prediction horizon, 378
predictive emission monitoring system (PEMS), 146
pre-filter, 303
pre-load (batch control), 424
pressure sensor, 143
primary controller, 280
primary loop, cascade control, 280
principal component analysis (PCA), 402
Principle of the Argument, K1
Principle of Superposition, 39, 57
probability concepts, review, 491
process
control, 1
dynamics, 1
economics, 354
gain matrix, 332, 333
identification, 105
interactions, 327
measurement, 332
interface, 141
monitoring, 325
reaction curve, 109
safety, 160
thermal mixing, 98, 100
variables, 1, 229
process capability index, 404
process control language (PCL), 474
Process Control Modules (PCM), 501
distillation, 122, 227, 257, 278, 501
furnace, 122, 227, 237, 278, 501
processes
batch, 2, 415
continuous, 3
fed-batch, 2, 29
semibatch, 2, 18
stirred-tank blending, 4, 15, 18, 123, 176, 267
process reaction curve method, 218
Profibus, 142, 466
programmable logic controller (PLC), 468
prokaryote, 460
promoter, 460
proportional band, 126
proportional (P) control, 4, 125
proportional derivative (PD) control, 129
proportional-integral (PI) control, 127
proportional-integral-derivative (PID) control, 129
proportional kick, 130
protection. See safety
pseudo-random binary sequence (PRBS), 113
pulse duration output (PDO), 467
pulse function. See rectangular pulse
pulse testing, 246
Index 501

Q

quadratic interpolation, 357
quadratic programming, 362
quality control charts, 396
individuals chart, 399
s chart, 406
x chart, 398
quantization, 466
quasi-steady-state operation, G14
quick-open valve, 126

R

radar and radiation level sensors, 143, 145
ramp
input, 60
responses, 72
random input, 60
range, 124, 399
range control, 352
rapid thermal processing, 425
rate control action. See derivative control
rate-of-change filter, 223
ratio control, 264, G10
ratio station, 265
reactive scheduling, 430
reactor. See also chemical reactors
batch, 3, 22, 422, 425
continuous, 26
semibatch, 3
trickle-bed, 91
real-time clock, 470
real-time optimization (RTO), 350
applications, 354
basic requirements, 352
constrained optimization, 359
Excel Solver, 361
linear programming, 359
tca, 355
nonlinear programming, 362
operating profit, 332
operating window, 364
quadratic programming, 362
Real Translation Theorem, 46
receding horizon approach, 360, 370
reconstruction of continuous signals, 300
rectangular pulse, 41, 75
reference trajectory, 380
regression techniques, 106
regulator problem, 180
relative
disturbance gain, 337
gain array, 332
stability, 252, 256
relay auto-tuning, 218, 341
relay ladder logic, 418
reliability analysis, 171
repeatability, instrument, 155
reset time, 126
reset windup, 127
residual, 107
resistance temperature detector (RTD), 143
resonant frequency, 248
resonant peak, H15
response mode, 87
response time, 75

reverse-acting controller, 131
RGA. See relative gain array
rework, 422, 430
right-half plane (RHP) pole, 87, K2
right-half plane (RHP) zero, 88
ringing, controller, 316
rise time, 77
risk assessment, 171
robustness, 215
robust performance, J14
robust stability, J14
root locus diagram, 191
Routh array, 190
Routh stability criterion, 190
RTO (real-time optimization), 367
Rung-Kutta integration, 33
run-to-run control, 443

S

safety, 160
safety instrumented system (SIS), 161
safety interlock system, 161
sample data system stability, 312
sample variance, 169, 397
sampling, 300
aliasing, 302
multirate, 301
period, selection, 301
time-delay approximation, 313
saturation of controller, 126, 424
SCADA (supervisory control and data
acquisition), 468
S. cerevisiae, 454
scheduling and planning, 9, 350
s control chart, 400
search
multivariable, 359
nonlinear programming, 358
one-dimensional, 356
SCM (supply chain management), 351
secondary controller, 280
secondary control loop, 280
secondary measurement, 280
second-order-plus-time-delay (SOPTD)
model, 203
selection
controlled variables, 232, 359
manipulated variables, 232, 359
measurement device, 442
measured variables, 233
sampling period, 301
selective control, 287
selectors, 287
self-adaptive controller, 292
self-regulating process, 178
self-tuning control, 292
semiconductor processing, 4, 240,
400
sensitivity 6, 129, 244, 252, J1
sensitivity function, J1
sensors, 141
composition, 145
flow-rate, 143
level, 144

pressure, 143
temperature, 143
separation concentration ratio, G4
sequential function chart, 417
sequential logic, 416
serially correlated, 402
service factors, 408, 409
servo problem, 179
set point, 124
changes, closed-loop, 179
ramping, 134, 416
trajectory, 380, 421
weighting, 209, 213, 224
settling time, 77
Shannon's sampling theorem, 302
Shewhart control chart, 396
signals
conditioning, 303
discrete-time, 141
processing of, 303
reconstruction of, 300
signal transmission, 141
signal transduction, 457
signal transmission, 141
Simplex. See linear programming
simulation, 105
dynamic, 51
equation-oriented, 31
modular, 31
Simulink
closed-loop simulation, 204
discrete-time system, 313
gaussian, 141
SISO system, 98, 246
sine wave, 74
sine wave, 74
sinusoidal response of processes, 72, 246
six sigma approach, 396
sizing control valves, 150
Skogestad's “half rule,” 92
slack parameter, 382
slack variable, 382
slave controller, 280
slope-intercept method, 218
slowdown effect, G13
slurry flow control, 288
smart devices, 155, 469, 470, 474, 476
Smith predictor technique, 284
Smith's second-order method, 181
snowball effect, 47
soft sensor, 114, 146
span, transmitter, 142
SPC. See statistical process control
special cause, 396
specification limits, 404
split-range control, 287
spreadsheet software, 360, 470
SQC. See statistical quality control
stability
analysis, 96, 188, 190, 330
closed-loop, 330
criteria
Bode, 252
general, 188
Nyquist, J7
Routh, 190
sampling, 190, 312
definitions, 96, 187
stability (continued)
direct substitution method, 190
feedforward control, 270
multivariable, 96, 330
pole (root) location, 87, 338
root-locus, 191
Routh method, 190
standard normal distribution, 398
standard transfer function forms
gain/time constant form, 88
pole/zero form, 94
start-up, 1, 417
state-space model, 95, 372
state variables, 95
statistics review, 395
statistical process control, 396
steady-state control. See real-time optimization
steady-state gain, 70
step function, 39
Laplace transform, 39
z-transform, 308
step
input, 69
response, 71, 109
response coefficient, 371, 372, 376, 378
response model, 370–373, 377, 378
step test method, 109, 218
stick-slip, 149
stirred-tank heating system, 21
electrical heating, 23
steam heating, 24
transfer function, 59
stirred-tank reactor. See continuous stirred-tank reactor
stochastic process, 70
successive quadratic programming, 363
superposition principle, see Principle of Superposition
supervisory control and data acquisition (SCADA), 468
supply chain management (SCM), 351
surge tank, 26, 73
sustained oscillation, 187
surface acoustic wave (SAW), 143
SVA, 338
switch, alarm, 163
Symbolic Math Toolbox, 49, 331
system identification, 116
systems biology, 451
T
target, 351, 369
Taylor series approximation, 61
TCP/IP, 471
temperature control, 221
temperature sensor, 143
theoretical models, 15
thermocouple dynamic response, 147
thermowell, 147
three-mode controller. See PID controller
time delay, 89
Laplace transform, 47
Padé approximation, 91
time-delay compensation, 284
time to first peak, 83
totalizer, 422
transcription, 452
transducers, 141
transfer function, 54
additive property, 58
approximation of higher-order, 92
closed-loop, 178
controller, 125–130
definition of, 54
disturbance, 178
empirical determination of, 104, 218
final control element, 148
gain, 57
matrix, 95, 327
multiplicative property, 59
open-loop, 180
poles and zeros of, 86
process, 180
properties, 57
transient behavior, 1, 51
translation in time (time delay), 46
transformation theorem, 46
transmission line, 124
transmitter, 141
transportation lag, 90
transport delay, 90
trim heat exchanger, G16
triply redundant, 164
troubleshooting control loops, 222
truth table, 417
tryptophan synthesis, 461
tubular reactor, 89, 287
wagon, 287
hot spot control, 287
inverse response, 89
tuning, controller. See controller tuning
turbine flow meter, 153
two-point composition control,
two-position (on-off) control, 136
Tyreus-Luyben tuning method, 257
U
ultimate gain, 215
ultimate period, 215
ultrasound level sensor, 143
underdamped natural frequency, 75
underdamped process, 76
underdamped response, 75
underspecified model, 20
unit step, 39
unrealizable controller
decoupling, 342
digital, 310
feedback, 129, 252
feedforward, 269
unstable
closed-loop system, 186
open-loop process, 37
unsteady-state operation. See dynamic behavior
V
validation of models, 117
valve, control. See control valve
valve coefficient, 151
valve positioner, 150
velocity form of digital controller, 133
virtual sensor, 114
Vogel-Edgar control algorithm, 317
W
warning limits, 402
Western Electric rules, 402
windup
integral, 127
reset, 127
wireless
battery, 473
event-based control, 315
feedback control, 314, 473
final control elements, 473
HART, 470, 472
level sensor, 143
network, 473
PIDPlus controller, 473
Wood-Berry column, 402
Z
zero, transmitter, 147
zero-order hold, 301
zeros, 87
Ziegler-Nichols method, 215
Ziegler-Nichols settings, 215
zone control, 382
zone rules, 402
z-transform, 307
approximate conversion method, 311
definition, 308
long division, 317
physical realizability, 310
properties, 308
table, 328
variable, 308