Index

80 m box, 176, 186
accelerate-stop distance, 268
active constraint, 11, 201, 205
active point, 208
advanced design, 3, 4, 6, 31, 81, 206, 213, 320
aerodynamic centre, 165, 180
aerodynamic efficiency, 32, 43, 45, 47, 83, 102,
125, 131, 136, 239, 256, 281, 286, 287,
366, 388
aerodynamic limit, 16, 165, 168
aft spar, 322
aileron, 348
air brake, 348
air traffic control, 380
air traffic management, 24
airborne distance, 273
airborne systems, 24
airfoil, 82
airframe noise, 77
airport compatibility, 35
airworthiness
 certification, 7
 code, 12
 requirement, 32, 39
all engines operating, 268
all-wing aircraft, 11, 24, 108, 121, 128, 129, 162
alternative fuel, 76
ambient conditions, 262
ambient pressure, 233
analytical optimization, 5
approach climb, 266
approach speed, 35, 262
artificial stabilization, 145
aspect ratio, 90, 127, 128, 135, 158, 182, 218,
221, 272, 284, 333, 393
automated design synthesis, 19
automated optimization, 197
average deceleration, 274
balanced design, 167, 168
balanced field length, 17, 268
baseline design, 10, 13, 17
bi-level optimization, 217
biofuel, 76
biplane, 91, 115, 159–161, 179
theory, 91
blended wing body, 11, 45, 55, 124, 128, 144,
159, 162, 321, 394
blended winglet, 312
block fuel, 385
boundary domain, 199
boundary layer, 85
box beam, 321
boxplane, 94, 115, 161, 162, 179, 321
transonic, 161, 162, 173
Bréguet range equation, 43, 379, 385
branched tips, 161
Brayton cycle, 60
buffet
 boundary, 276
 margin, 378
 buffeting, 306
business jet, 34
bypass engine, 2
bypass ratio, 15, 21, 159, 244, 395
ultra-high, 23
Index

C-wing, 162, 163
 calculus of variations, 200
 calorific value, 43, 51, 63, 365
 canard configuration, 11, 93, 159, 162, 170
 cantilever ratio, 332, 353
 cantilevered wing, 179, 323
 carpet plot, 21
 centre of gravity, 12, 16, 36, 100, 143, 158, 165
 centre of lift, 90
 centre of pressure, 236, 311, 327
 centre section, 322, 353
 tank, 354
 certification category, 36
 climb gradient, 262
 climb rating, 262
 climb-out performance, 32
 combustion efficiency, 64, 376
 community noise, 149
 competition evaluation, 7
 component build-up technique, 99
 composite material, 24
 compound taper, 310, 354
 compressibility drag, 49, 98, 107, 241, 299, 301, 364
 compressive stress, 332, 350
 computational fluid dynamics, 12, 37, 85
 computational system, 19
 computer assisted design, 13, 197
 concept
 definition, 10
 finding, 4, 7, 198
 sizing, 213
 conceptual design, 4, 8, 9, 84, 198
 concurrent engineering, 5
 configuration, 10
 configuration freeze, 9, 13
 conjugate gradient algorithm, 209
 constant speed propeller, 69
 constrained optimization, 200
 constraint, 21, 25, 200
 continued take-off, 266, 268
 continuous cruise/climb, 380
 continuous optimization, 199
 contour plot, 203
 contra-rotating fans, 71
 control parameter, 220
 control vector, 201, 208
 core engine, 61, 62, 74
 corrected
 lapse rate, 262
 performance, 65
 rotor speed, 65
 thrust, 136, 138, 374
 cost function, 201
 critical Mach number, 87, 98, 285, 366
 cruise
 altitude, 25, 26, 232, 233, 256
 condition, 32, 244
 Mach number, 221
 speed, 8, 262
 cruise control factor, 385
 decision speed, 268
 dependent design variable, 368
 dependent variable, 199, 291
 derivative design, 36
 design
 condition, 26, 232, 299
 constraint, 8, 233
 definition, 11
 diving speed, 334
 efficiency, 104
 lift coefficient, 89, 285
 mission, 14, 42
 parameter, 197
 payload, 40
 range, 40, 45
 sensitivity, 37, 222
 space, 21, 25, 199, 202, 218, 285
 structure matrix, 216
 synthesis, 31
 technology, 1
 validation, 11
 variable, 19, 47
 weight, 14, 32, 36, 39, 45
 design optimization, 4, 11
 analytical, 4
 automated, 5
 multidisciplinary, 5
 design selection chart, 263, 297
 design variable
 dependent, 25
 independent, 14, 25
 detail design, 4, 9, 13, 31, 37
 deterministic method, 212
 development process, 8
 direct lift control, 181
 direct operating costs, 218, 276, 365
 direct search, 210
 discrete-variable optimization, 200
Index

<table>
<thead>
<tr>
<th>Terms</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>discrete wing and body, 128, 129</td>
<td></td>
</tr>
<tr>
<td>diversion distance, 388</td>
<td></td>
</tr>
<tr>
<td>downwash angle, 86</td>
<td>167</td>
</tr>
<tr>
<td>downwash gradient, 167</td>
<td></td>
</tr>
<tr>
<td>drag</td>
<td></td>
</tr>
<tr>
<td>area, 88, 103</td>
<td></td>
</tr>
<tr>
<td>bucket, 97</td>
<td></td>
</tr>
<tr>
<td>build-up technique, 84</td>
<td></td>
</tr>
<tr>
<td>coefficient, 82</td>
<td></td>
</tr>
<tr>
<td>count, 83, 131, 300</td>
<td></td>
</tr>
<tr>
<td>creep, 98</td>
<td></td>
</tr>
<tr>
<td>divergence, 241, 300</td>
<td></td>
</tr>
<tr>
<td>due to lift, 47, 87, 95, 131, 240, 287, 299</td>
<td></td>
</tr>
<tr>
<td>inflation, 85</td>
<td></td>
</tr>
<tr>
<td>parameter, 130, 139</td>
<td></td>
</tr>
<tr>
<td>polar, 47, 91, 95–97, 100, 105, 240</td>
<td></td>
</tr>
<tr>
<td>rise, 138, 299, 366</td>
<td></td>
</tr>
<tr>
<td>drag area, 130, 240, 241, 287</td>
<td></td>
</tr>
<tr>
<td>drag-divergence Mach number, 99</td>
<td></td>
</tr>
<tr>
<td>durability, 36</td>
<td></td>
</tr>
<tr>
<td>dynamic pressure, 82, 87, 131</td>
<td></td>
</tr>
<tr>
<td>dynamic programming, 200</td>
<td></td>
</tr>
<tr>
<td>dynamic viscosity, 398</td>
<td></td>
</tr>
<tr>
<td>elastic axis, 327</td>
<td></td>
</tr>
<tr>
<td>empennage, 158</td>
<td></td>
</tr>
<tr>
<td>empty weight, 13</td>
<td></td>
</tr>
<tr>
<td>enabling technology, 7, 22, 31</td>
<td></td>
</tr>
<tr>
<td>end plate, 161</td>
<td></td>
</tr>
<tr>
<td>energy efficiency, 32, 51, 159, 230, 233, 252, 374</td>
<td></td>
</tr>
<tr>
<td>energy height, 386</td>
<td></td>
</tr>
<tr>
<td>energy transfer efficiency, 64</td>
<td></td>
</tr>
<tr>
<td>engine</td>
<td></td>
</tr>
<tr>
<td>cycle, 15</td>
<td></td>
</tr>
<tr>
<td>failure, 18, 268</td>
<td></td>
</tr>
<tr>
<td>figure of merit, 276</td>
<td></td>
</tr>
<tr>
<td>nacelle, 1</td>
<td></td>
</tr>
<tr>
<td>noise, 71, 77</td>
<td></td>
</tr>
<tr>
<td>rating, 65</td>
<td></td>
</tr>
<tr>
<td>rubberizing, 15, 26</td>
<td></td>
</tr>
<tr>
<td>selection, 7</td>
<td></td>
</tr>
<tr>
<td>engine-airframe matching, 138</td>
<td></td>
</tr>
<tr>
<td>engine-out altitude capability, 262</td>
<td></td>
</tr>
<tr>
<td>environmental issues, 32, 35</td>
<td></td>
</tr>
<tr>
<td>equality constraint, 134, 201, 204</td>
<td></td>
</tr>
<tr>
<td>equivalent</td>
<td></td>
</tr>
<tr>
<td>power, 291</td>
<td></td>
</tr>
<tr>
<td>range, 245, 277, 288, 296</td>
<td></td>
</tr>
<tr>
<td>shaft power, 68</td>
<td></td>
</tr>
<tr>
<td>skin friction, 102, 107</td>
<td></td>
</tr>
<tr>
<td>skin thickness, 324</td>
<td></td>
</tr>
<tr>
<td>exhaust emissions, 51</td>
<td></td>
</tr>
<tr>
<td>experimental design, 211</td>
<td></td>
</tr>
<tr>
<td>expert system, 212</td>
<td></td>
</tr>
<tr>
<td>fairing, 323</td>
<td></td>
</tr>
<tr>
<td>fairing geometry, 394</td>
<td></td>
</tr>
<tr>
<td>fan, 61</td>
<td></td>
</tr>
<tr>
<td>fatigue, 349</td>
<td></td>
</tr>
<tr>
<td>feasible design, 201</td>
<td></td>
</tr>
<tr>
<td>feasible region, 21, 201, 205</td>
<td></td>
</tr>
<tr>
<td>figure of merit, 19, 198, 200, 214, 233, 251, 254, 263, 283, 290</td>
<td></td>
</tr>
<tr>
<td>fineness ratio, 88, 394</td>
<td></td>
</tr>
<tr>
<td>finite element method, 12, 37, 295</td>
<td></td>
</tr>
<tr>
<td>fixed</td>
<td></td>
</tr>
<tr>
<td>leading edge, 345</td>
<td></td>
</tr>
<tr>
<td>trailing edge, 346</td>
<td></td>
</tr>
<tr>
<td>weight, 42</td>
<td></td>
</tr>
<tr>
<td>flat plate analogy, 88, 103</td>
<td></td>
</tr>
<tr>
<td>flat rating, 267</td>
<td></td>
</tr>
<tr>
<td>flight</td>
<td></td>
</tr>
<tr>
<td>envelope, 145, 325</td>
<td></td>
</tr>
<tr>
<td>manual, 268</td>
<td></td>
</tr>
<tr>
<td>profile, 17</td>
<td></td>
</tr>
<tr>
<td>flight control</td>
<td></td>
</tr>
<tr>
<td>device, 348</td>
<td></td>
</tr>
<tr>
<td>system, 12, 24</td>
<td></td>
</tr>
<tr>
<td>flow mixer, 62</td>
<td></td>
</tr>
<tr>
<td>fly-by-wire, 3</td>
<td></td>
</tr>
<tr>
<td>flying wing, 121, 159</td>
<td></td>
</tr>
<tr>
<td>controversy, 123, 124, 127</td>
<td></td>
</tr>
<tr>
<td>hybrid, 146, 163, 175</td>
<td></td>
</tr>
<tr>
<td>foreplane, 126, 162, 170</td>
<td></td>
</tr>
<tr>
<td>form drag, 85, 87, 106, 160</td>
<td></td>
</tr>
<tr>
<td>form factor, 88, 103</td>
<td></td>
</tr>
<tr>
<td>forward swept wing, 311</td>
<td></td>
</tr>
<tr>
<td>freighter, 44</td>
<td></td>
</tr>
<tr>
<td>friction drag, 106, 128, 299</td>
<td></td>
</tr>
<tr>
<td>front spar, 322</td>
<td></td>
</tr>
<tr>
<td>Froude equation, 65, 377</td>
<td></td>
</tr>
<tr>
<td>fuel</td>
<td></td>
</tr>
<tr>
<td>energy efficiency, 307</td>
<td></td>
</tr>
<tr>
<td>load, 38</td>
<td></td>
</tr>
<tr>
<td>tank capacity, 39, 286</td>
<td></td>
</tr>
<tr>
<td>weight, 32, 41</td>
<td></td>
</tr>
<tr>
<td>weight flow, 62, 65</td>
<td></td>
</tr>
<tr>
<td>fuel tank</td>
<td></td>
</tr>
<tr>
<td>volume, 107</td>
<td></td>
</tr>
</tbody>
</table>
fully stressed structure, 338
functional group, 37
functional sensitivity, 286
fuselage cross-section, 10
future projects, 6
g geared turbofan, 23, 51, 71, 76, 277
genetic algorithm, 212
geometric programming, 207
global model, 208
global optimizer, 204
gradient search, 208
gross weight, 37, 82, 107
gross wing area, 83
ground load limit, 165
gust
 alleviation factor, 325
 load, 236, 325
 speed, 325
harmonic range, 40, 45, 52, 253, 254
heuristic method, 212
high speed cruising, 384
holding period, 388
horizontal tail, 2, 16, 34
 volume coefficient, 166
hybrid laminar flow control, 111
hydrogen fuelled engine, 24
ideal weight, 323, 357
inactive constraint, 205
inboard profile, 10
independent variable, 199, 203, 286, 368
induced drag, 24, 86, 87, 114, 128
inequality constraint, 201, 204
inertia relief, 236, 289, 322, 336, 351, 358
inherent stability, 167, 168
inoperative engine, 18
installed thrust, 240, 244, 251, 255
installed thrust lapse, 263
integer optimization, 199
integrated
 configuration, 11, 24, 135, 140, 149
 product development, 198, 215
wing body, 128, 129, 141, 146
interference drag, 100, 161
joined wing, 115, 159, 161, 162, 177, 178
joined-wing aircraft, 177
knowledge-based engineering, 21
Korn’s equation, 301
Krueger flap, 345
Lagrange multiplier, 206
Lagrangian function, 206
laminar boundary layer, 108
laminar flow control, 24, 104, 110, 293
laminar flow technology, 15
landing
 climb, 267
 distance, 273
 field length, 35, 262, 273
 gear, 16
 weight, 38
leading edge, 34, 165
 flap, 313
 suction, 85
lift
 coefficient, 82
 curve slope, 167, 326
 dumper, 348, 356
 gradient, 286
 lifting off, 266
 lifting system, 160
 limit load, 324
 factor, 236, 308, 354
 liquid hydrogen, 77, 186
 load and balance, 16
 load factor, 324
 loading cases, 323
 loading diagram, 165
 local
 minimizer, 203
 model, 207
 optimizer, 132, 202, 208
 logarithmic derivative, 368
 long-coupled canard, 170
 long-range cruising, 379, 383
 lost fuel, 44, 288, 386
 lost range, 44, 46, 245, 387
manhole, 340
manoeuvre load, 324
manoeuvring, 324
manufacturer’s empty weight, 234
manufacturing capabilities, 7
market analysis, 7
mass engineering, 37
Index

<table>
<thead>
<tr>
<th>Theme</th>
<th>Pages</th>
</tr>
</thead>
</table>
| maximum | cruise rating, 244
landing weight, 39
payload, 253
range, 40, 296
take-off weight, 230, 290, 319
zero fuel weight, 39
mean aerodynamic chord, 165
merit function, 201
minimum drag, 96
minimum drag speed, 366
minimum unstick speed, 168
miscellaneous items, 323, 349
missed approach, 266
mission analysis, 17
mission fuel, 17, 26, 38, 39, 43, 45, 113, 245, 288, 292, 365, 386
mission range, 44
modified Oswald factor, 106
momentum equation, 60
monoplane, 90, 160, 161
multi-body configuration, 141
multidisciplinary optimization, 114
multiplane, 160
multiple station method, 231, 232, 289
Munk, M., 91
Munk stagger theorem, 173
narrow body aircraft, 33
natural laminar flow, 24, 90, 108, 163, 173
noise footprint, 77
noise shielding, 51
non-ideal weight, 310, 324
nonplanar wing, 11, 24
normal force, 85
object-oriented engineering, 21
objective function, 25, 27, 129, 198, 200, 203, 222, 232, 233, 283, 285
objective space, 218
obstacle height, 268
open rotor engine, 23, 51, 70, 72, 74, 140, 159, 364, 369
operating costs, 2, 12, 32
operating empty weight, 37, 230
operational research, 7
operator’s items, 37
optimal control, 199, 379
optimization | algorithm, 197
multi-objective, 198, 214, 218, 223, 276, 285
multidisciplinary, 190, 213, 215
multilevel, 211, 217
multivariate, 206, 207
problem structure, 25
optimizer, 200
Oswald factor, 47, 96, 105, 114, 299
overall efficiency, 15, 32, 43, 45, 49, 63, 65, 102, 245, 276, 277, 291, 364, 369, 374
parametric survey, 5, 21, 128, 134, 198, 207
parasite drag, 87, 125, 128, 130, 140, 162, 172, 180, 184, 240, 287
Pareto front, 218
partial optimum, 203
payload, 38, 325
accommodation density, 44
fuel efficiency, 51
versus range diagram, 40
peaky airfoil, 301
penalty function, 211
pitch up, 145
planar wing, 160
planform area, 285, 320
power loading, 221
power plant, 12
Prandtl, L., 91
Prandtl Plane, 174
pre-assigned parameter, 199, 221, 233, 291
pre-conceptual study, 7, 221
pre-flight fuel, 39
preliminary design, 4, 9, 11, 18, 84, 97, 214, 231, 283, 299
pressure cabin, 14, 150
pressure drag, 85, 299
primary structure, 158, 178, 321
product data model, 215
product development, 8
profile drag, 87, 287
project go-ahead, 9, 13
propeller | diameter, 244
efficiency, 291, 379
propfan, 23, 70, 72
propulsion | function, 246, 276, 289, 307
weight penalty, 243, 245, 252, 276, 289, 294 |
propulsive efficiency, 59, 64, 74, 376
pure flying wing, 130, 138
radiative forcing, 54
ram drag, 60
range, 40
range parameter, 45, 46, 365, 374, 382
reduced lift coefficient, 132
regional jet aircraft, 33
regional propeller aircraft, 33
rejected take-off, 268
relative
density, 397
pressure, 65, 397
temperature, 65, 397
relative ambient pressure, 242
relaxed stability, 169
reliability, 36
reserve fuel, 17, 38, 39, 45, 250, 385
response surface, 202, 203, 207, 209, 230
resulting aerodynamic force, 85
reverse thrust, 273
rhomboidal wing, 163
rib weight, 324
riblets, 108
rigid structure, 323
rotation speed, 269
rubberizing, 66, 240, 244, 262
ruddervon, 147
drag, 143
saddle point, 203
safety speed, 265
scale effect, 47
scissor plot, 168, 170
screen height, 273
sea level, 48, 397
second segment climb, 267
secondary structure, 322, 324
selection diagram, 283
selection variable, 21, 31, 37, 199, 202, 220, 232, 233, 283, 285, 286
sensitivity information, 208
sequential linear programming, 210
sequential quadratic programming, 210
shear load, 324
shear stress, 352
sheared wing tip, 104, 312, 326, 349, 352
shock wave, 86
shroudless propeller, 67
side constraint, 201
simple sweep theory, 302
simplex algorithm, 210
single-level optimization, 214
single-objective optimization, 201, 206
skin friction drag, 47, 85, 98, 160
slat, 345
slotted flap, 313
span distributed loading, 182
span efficiency factor, 90, 92, 100, 115, 117, 179
span loader, 147, 162
span loading, 114, 127, 272, 286, 296, 306, 336
spanwise camber, 115
specific
fuel consumption, 15, 48, 59, 62, 364, 366
range, 40, 43, 46, 49, 51, 138, 379
thrust, 60, 65, 70, 71, 74, 267, 395
spillage drag, 100
spoiler, 348, 356
square cube law, 42, 148, 236, 237, 333
stability augmentation system, 169
stability margin, 100, 167, 169
stagger theorem, 92
stalling speed, 265
standard atmosphere, 66, 262, 397, 398
static margin, 180
station analysis method, 321
steepest descent, 209
stepped cruise/climb, 381, 384
straight jet engine, 59, 60, 364
straight-taper, 284
structural
classification, 16
divergence, 311
efficiency, 52
index, 332, 351
material, 32
payload, 39
root, 322
span, 328
structure
damage tolerant, 340
fail safe, 340
strut-braced wing, 11, 141, 163, 284
subsonic aircraft, 284
supercritical
airfoil, 301
flow, 284
technology, 15
sweep angle, 88, 221, 298
sweepback angle, 284
synthesis program, 5, 197, 234, 253
system decomposition, 215
system engineering, 12, 197, 216

T-tail, 34, 169
tail volume coefficient, 168
tailless aircraft, 121, 141, 162
take-off
 distance, 268
 field length, 32, 35, 262, 268, 273
 run, 269
 thrust, 14, 15, 66, 262
 weight, 37, 39, 127
tandem wing, 162
tangential force, 85
taper ratio, 221, 236, 329, 393
technology assessment, 22
tensile stress, 332
thermal efficiency, 59, 64, 376
thermodynamic efficiency, 64
thickness ratio, 88, 140, 221, 236, 298, 301,
 393
two-surface aircraft, 11, 162, 172, 176
thrust, 60, 61
 gross, 60
 ideal, 60
 net, 60
 propeller, 48
 standard net, 60
thrust lapse, 244, 263
 parameter, 66
 rate, 15, 66, 67, 262, 289
thrust loading, 221
tip extension, 352
tool development, 6
top level requirements, 6, 7, 31, 35, 205,
 262
top of climb, 262
torsion, 324
torsional stiffness, 324
total fuel, 39
total thrust horsepower, 67
transonic aircraft, 284
transonic biplane, 115
transport capability, 40
trim drag, 100, 169, 310, 314
triplane, 94
tropopause, 263
tube and wing, 108, 125, 157, 232, 282
tumbling, 145
turbofan engine, 34, 61, 375
turboprop engine, 33, 67
turbulent boundary layer, 108
twin-fuselage aircraft, 11, 163, 182
type specification, 12, 37

ultimate load, 324
 factor, 236, 237, 308, 331, 358
ultimate range, 40
ultimate stress, 324
ultra-high bypass ratio, 364
unconstrained optimization, 261
unducted fan, 3, 23, 73
unity equation, 41, 42, 45
useful load, 37, 102, 126, 128, 165, 230, 249,
 282
useful volume, 128
V-tail, 162
V-wing, 161
variable weight, 42
vertical gap, 160
vertical gust, 324
vertical tail, 16
viscous drag, 85
volume ratio, 129, 132, 134
volumetric efficiency, 130
volumetric payload, 39
vortex drag, 86, 106, 160, 161, 173, 299,
 312
wake vortex, 149
wave drag, 48, 86, 99, 107, 114, 180
weight
 and balance, 10
 empty, 32
 engineering, 36
 fraction, 41
 growth, 13
 limit, 39
 reduction, 37
 sensitivity, 32
 statement, 36
well-tempered design, 276, 389
wetted area, 47, 71, 107
wide body aircraft, 33
<table>
<thead>
<tr>
<th>wing</th>
<th>winglet, 24, 48, 104, 148, 161, 162, 172, 180, 312, 321, 326, 349, 352</th>
</tr>
</thead>
<tbody>
<tr>
<td>area, 221</td>
<td>X-wing, 162</td>
</tr>
<tr>
<td>bending, 323</td>
<td>yield stress, 324</td>
</tr>
<tr>
<td>box, 158</td>
<td>zero fuel weight, 38, 325</td>
</tr>
<tr>
<td>loading, 14, 221, 232, 233,</td>
<td>zero-lift drag, 87, 95, 101, 130, 240, 299</td>
</tr>
<tr>
<td>250, 256, 285</td>
<td></td>
</tr>
<tr>
<td>planform, 10</td>
<td></td>
</tr>
<tr>
<td>position, 10</td>
<td></td>
</tr>
<tr>
<td>span, 86, 135, 140, 221, 222, 286, 320</td>
<td></td>
</tr>
<tr>
<td>wing and tail, 162, 165</td>
<td></td>
</tr>
<tr>
<td>wing penalty function, 290, 300</td>
<td></td>
</tr>
</tbody>
</table>