INDEX

A
Abrasive operations, 76
Accelerated cooling (ACC), 163, 170–172, 189, 229, 230, 613, 651
Accidental limit states (ALS), 38
Acidic corrosive environments, 344
Acid producing bacteria (APB), 427, 499
AC power system, 364
AC resistance, 537
Aging pipeline infrastructure managing, 609
closure, 631–633
construction era/incident frequency
 qualitative assessment, 616
 quantitative assessment, 616–618
early/vintage pipelines, aspects, 619
 construction practices, 620–624, 624–627
 modern construction era, 627–629
energy development, risk, 610
 internal corrosion (IC), 610
line pipe steel, 611–614
management approach/challenges, 629
 inspection/condition monitoring, 630–631
 life-cycle management, 631
 threat identification/assessment, 630
pipeline codes, evolution of, 618
 regulations, 619
 standards, 618–619
pipelines transporting oil/natural gas, 609
pipeline system expansion, 614–616
steel-making processes, evolution, 611
 transmission pipeline systems, 610
AGM boxes, with GPS location, 519
AIChe chemical process quantitative risk analysis (CPQRA)
 guidelines, 704
Air quality, 149

ALARP approach
 based solutions, 744
to risk management, 717
Alberta Energy Regulator (AER), 3
Alternating current (AC) corrosion, 363
current density, 364
DC current density, 364
and DC parameters, 363
evaluation, 380
IR-free potential, 364
mechanistic approach, 370–373
mitigation measures, 374–379
 adjusting CP level, 377
effect of resistance to earth of earth electrodes, 377
electrical components circuitry, 376
induction modeling for short pipeline, 376–377
polarization cell replacement, 376
pylons, 375
monitoring and management, 379
corrosion rate and electrical parameters measured, 379
corrosion rates and electrical data, simultaneously measured, 378
criteria based on AC and DC current densities, 380
criteria based on AC voltage and DC ON potentials with, 381
ON potential, 364
risk assessment and management, 373
criteria based closely on section 7 in EN 15280:2013, 373
criteria on potential approach, 373–374
scheme for AC corrosion assessment, 380, 381
spread resistance, 364–365
standards and recommended practices, 382
voltage, 363
Alternating current field measurement (ACFM), 358
American Concrete Pipe Association, 60

© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
American Petroleum Institute (API), 3, 6, 587, 618, 670
codes, 699
Recommended Practice 1173, 11
standard, 237
American Society of Mechanical Engineers (ASME), 587
Boiler and Pressure Vessel Code, 239
American Welding Society (AWS) method, 241
Anode, over active, 729
Arch bridge transporting crude oil, 629
Arch pipeline bridge, 626
Arctic locations, 99
Areas of responsibility (AORs), 19
Armadillo sleeve, photographs, 646
As low as reasonably practicable (ALARP), 727
Asphalt/coal tar epoxy coatings
typical problems, 558
Asset management, 4, 5, 328
"apparent/long-term" corrosion rate, 328
defined in PAS 55-1:2008, 5
estimation of uncertainty/variability, in corrosion
losses/maximum pit depth, 328
for predicting pitting corrosion, 328
to review models for, 328
ASTM E797/E797M-10 standards, 571
Audit, 6–8, 10, 443, 619, 709, 710, 731
Austenitic alloys, 79
Automated ultrasonic testing (AUT), 237, 772

B
Barlow’s formula, 51
Bentonite clay, 269
Bessemer processes, 613
B31G method, 581
B31G procedure, 581
Biaxial stresses, 83
Bidirectional geometry tool, 549
Bimodal grain size distribution, 165
Biocides, 393
application of, 495
fluid sample analyses, 512
nonoxidizing, 392
prevention equivalence, 731
Black powder, 423, 601, 602
analysis techniques, 427–428
compositions, 423, 428–429
control valve, eroded by, 425
forms, 423
guidance on handling and disposal, 433–434
decay scheme uranium radionuclide, 433
exemption levels for radionuclides, 433
NOM analysis, 434
impacts on operations, 430
management, 423, 424
methods, 430–431
prevention methods, 432–433
removal methods, 431–432
particulate size and size distribution, 428
physical and mechanical properties, 429–430
source, 423, 428–429

tar-like, 424
workers protection and contamination control, 434
Bolt-on sleeve, typical, 662
Boom recover oil on water, 674
Bowtie methods, 744
Brazier effect, 62
British Gas, 660
British Standards Institution (BSI), 5
Brittle fracture, 27
Buckle/collapse failures, 762–764
bad coating, 764
epoxy coating, 764
internal corrosion, 764
photograph of, 764
Buckle/collapse repair, cost-effective solution, 761
Buried pipeline system, 100
α-method, 106
pipe/soil interaction models, 104
relationship among system demand, response, and capacity
for, 100
Burst pressure
with FAD method, 584
notch acuity, effect of, 580
original and modified log-secant models, 584
toughness/notch acuity, combined effect of, 581

C
CA. See Corrosion allowance (CA)
Calcium carbonate (CaCO₃), 427
Caliper sensors, 292
Caliper tools, 292
Canada’s underground oil pipeline network, 668
Canadian Energy Pipeline Association (CEPA), 587
Canadian Standards Association (CSA), 587
Capillary action, 267
Capital expenditures (CAPEX), 613
Carbonate (CO₃) cracking, 78
Carbon dioxide (CO₂) corrosion, 327
Carbon fiber-based composite materials, 648
Carbon steels, 4
Case studies
black powder, 423
buckling under repair sleeves, 761
cleaners/diluents, 605
corrosion failure investigations, 736–744
check sheet listing, 742–744
corrosion failures, 739–740
failure analysis, 747
failure mechanisms, 737–738
fit-for-purpose solutions, 736–747
integrity and corrosion risk, 738–739
localized corrosion mechanisms, 740
pictorial gallery, 740–742
dents
effectiveness of approach, 316
prediction vs. excavation findings, 317
fatigue performance, improvements
of corrosion and damage tolerance of 410 Stainless Steel, 93–95
corrosion and fretting damaged 4340 Steel, 88–91
downhole tubular components, 95–96
human factors, 144
ILI data, 515
residual stress and cold work, 87–96
SCC in stainless steel weldments, 91
strain-based, 310
sulfide stress cracking in P110 oil field couplings, 91–93
unpiggable pipelines, 545
USS Vincennes, 152–153
water injection pipelines, 338–339
Catastrophic pipeline failures, 3
Cathodic protection (CP), 4, 268, 272, 328, 457, 728, 761
applications, 462
anode material, 463
impressed current system, 463–465
sacrificial anode cathodic protection system, 462
sacrificial anode design, 463
sacrificial anode vs. impressed current systems, 467
sacrificial vs. impressed current systems, 466
criteria, 478–482
minimum potentials of iron and steel for CP as based on, 482
100mV polarization criterion, 480–481
–850mV vs. Cu/CuSO4 with, 479
net current flow criterion, 481
polarized potential of –850mV measured to a Cu/CuSO4
reference electrode, 480
use of criteria, 481
current distribution, 272
design principles of, 467
current requirement, 467
impressed current systems, 468
protective current distributed over Structure, 468
sacrificial anode systems, 467–468
fundamentals, 458
E-pH Pourbaix diagram, 460–461
mechanism, 458–460
historical foundation, 457–458
monitoring systems, 470
annual compliance surveys, 471
close interval potential surveys, 475–476
coating fault gradient, 475
commissioning of system, 470
corrosion coupons, 477–478
direct current voltage gradient surveys, 471–472
%IR severity, 472–475
monitoring test stations (test points), 470–471
soil resistivity, 476–477
protective coatings and, 468–469
requirements, 468–469
used in conjunction with coatings
adverse effects, 469
beneficial effects, 469
Cauchy models, 122
Cavitation, 742
pipeline mechanical damage mechanisms, 714
stresses, 742
ultra high velocity, 742
CEPA (Canadian Energy Pipeline Association), 27
CF. See Corrosion, fatigue (CF)
Chain–clamp device, 638, 639
Charpy shelf energy, 28
“Charpy” test, 28, 31, 182, 579
Check (assurance and verification), 10
Chemical inhibition, 5
Chopped strand mat (CSM), 662
Circumferential MFL (CMFL), 549
Classical plasticity models, 126
advancement, for application in soil mechanics, 128
deviatoric stress invariants, 126
Lode angle/deviatoric polar angle, 126
Mohr–Coulomb model
failure criterion, 127
parameters, 127
rucker-Prager model
cohesion, 128
inscribed Lode angle, 128
yield function, 128
Tresca and von Mises constitutive models, 126
eyield function, 126
yield surfaces
for Drucker–Prager, Mohr–Coulomb, and Tresca plasticity
models, 127, 128
for von Mises and Tresca plasticity models, 127
Cleaning pig (CLP), 780
Cleanup techniques, 680
Clock spring repair, 650
CMS. See Corrosion, management strategy (CMS)
Coating application, 4
Coating performance, 439
assessment, need of, 439
construction/operating temperatures, 440
pipe diameter/long seam type, 439–440
product availability, 441
project economics, 440
soil conditions, 440
Coating selection, 5
CO2 corrosion, montage of, 734
Code-based test, 628
Code language, 625
Code of Federal Regulations (CFR), 619
Coil width, 195
Coincident damage sensing technologies, 292–293
Cold cutting, 659
Cold machining, 76
Cold working
areas, 79
influences corrosion behavior, 79
inflates stability of residual stresses, 79
minimizing, 79
and resulting dislocation density, 79
in sour gas, 79
Collaboration, 5
Communication media, 22
Cat5 Data Cable, 22
dial-up line, 23
leased line, 22–23
microwave, 23
optical fiber, 23
satellite, 23
Communications, 5, 6
Company-specific welding procedure specifications (WPSs), 239
Compliance, 6
Components of stress, determination, 51
 equivalent stress, 56
 expansion and flexibility, 58
 flexibility and stress intensification factors, 58
 hoop and radial stresses, 51
 limits of calculated stress, 56
 allowable equivalent stress, 56
 allowable hoop stress, 56
due to expansion loads, 57
due to occasional loads, 57
due to sustained loads, 56–57
longitudinal stress, 51–52
 bending stress, 53–54
 assumptions, 53–54
 beam configurations, 54
 engineer’s theory, 54
 stages of stresses, connected with bending, 54
due to occasional loads, 54–55
due to sustained loads, 54
due to thermal expansion, 55
 fully restrained pipeline, 52
 axial compressive force, 52
 partially restrained pipeline, 53
total, 52
 unrestrained pipeline, 53
shear stress, 55
due to spanning, 56
due to torsion, 55–56
thick cylinders, 51
 Lamé constants, 51
thin wall pipeline, 51
Comprehensive Economic Partnership Agreement (CEPA), 587
Consequence of failure (COF), 699
Construction welding applications, 234
double-joint welding, 234
mainline welding, 234–236
 aspects determine economics, 234
consumables, 235
tie-in and repair welding, 236–237
Control room management (CRM), 18
Conventional controlled rolling (CCR), 163
Conventional toughness tests, 29
Corroded pipe, maximum allowable operating pressure (MAOP), 581
Corrosion, 267
coupons, 497
CP codes, 730
due to H2S, CO3, and O2, 426
electrochemical, 267
inhibitions, 4
inhibitors, 4
localized, 267
microbial-induced, 271
monitoring coupons, 507
monitoring/inspection technique, 5, 511
monitoring locations, for three-phase gathering system, 506
monitoring point, 504
performance analysis, 736
pitting, 78, 327
probe designs, 500
rates, 79, 399, 400
resistance against hydrocarbons containing, 159
steel in seawater, factors to influence, 333
Corrosion allowance (CA), 59, 727
 external, 59
 formulas, 59
 internal, 59
Corrosion fatigue (CF), 77, 78, 93–95, 735, 738, 741–742
Corrosion management strategy (CMS), 728
Corrosion resistant alloys (CRAs), 350, 400, 727
classes of materials, 349
erosion–corrosion, 410
carbon steels vs. CRAs, 410–412
 with CRAs under high erosivity conditions, 412–413
repassivation, 413–415
Corrosion risk management (CRM), 733
equipment failure, 748
life-cycle perspective, 749
quality assurance, 750
responsibility, 733
strategies and plans, 735
Corrosion under deposits, 737–738, 742
Corrosion under insulation (CUI), 541, 738
Corrosive environments, identification, 271–272
CP. See Cathodic protection (CP)
Crack driving force, 28
Cracking, 78, 289
centerline, microstructure of, 229
effects of tension, 117
environmental, 353
in HAZ, 245
H2S environment, 93
 schematic illustration, 226
hydrogen stress, 343–345
prevention of, 241
resistance, 225
stability, diagram, 583
stress corrosion, 489, 738
tensile stress, 227
welding procedures, 236
Crack mouth opening displacement (CMOD), 32
Crack-tip opening displacement (CTOD), 29, 32, 238
CRAs. See Corrosion, resistant alloys (CRAs)
CRM. See Corrosion, risk management (CRM)
Cross rolling technology, 212–213
design types of cross-roll piercing mills, 213
diescher discs/guide shoes in, 213
material stresses in cross-roll piercing, 214
Crystal lattice, 82
Crystallographic texture, 159
Crystallography effect, on erosion–corrosion, 416
Crystal structures, of iron, 219
CSA Z662 Safety Loss Management, 11
Curved wide-plate (CWP) testing, 45, 243
Cyclic redundancy checks (CRCs), 24
Damage

cathodic protection (CP) conditions, 268
evolution stages for buried pipeline/coating systems, 268
mechanical, 289
categories, 289
incidents, 289–290
parameters in soil, affecting, 268
potential factor, 708
DCS (distributed control system), 14

Defects, repair options, 649
Deflection limitations, 60

Deformation, 79, 167
buried pipeline/soil interaction events, analysis of, 104
cross-sectional, 42
cyclic plastic, 243
degree of plastic, 74, 79
dents, 561
EC technology, 773
effect of, 181
geohazards drive technology, 100
geometrical profile, 54, 291
geometry tools, 517
load coupling, 119
local geometry, 306
near-surface ground, 40
nonlinear plastic, 124
nonuniform plastic, 76
POD and sizing performance, 292
sensing technology, 293
shear, 129
soil behavior, 107
strains, 304
tensile, 177

Dents, 289, 319, 561
Design factor, 50–51
Design pressure, 49
maximum operating pressure, 50
allowable, 49–50
surge pressure, 50
test pressure, 50

Desulfovibrio desulfuricans, 393

Deterministic vs. probabilistic design methods, 38
Det Norske Veritas (DNV) test, 33, 38, 61
Developing management systems, 3
DFDI. See Ductile failure, damage indicator (DFDI)

Diffraction methods, 81
Digital radiography, 237
Direct assessment, 487–488
Direct current (DC), 363
CP system for pipelines, 457
polarization behavior, 368
effect of AC on, 368–369
SAW process, 234
voltage gradient, 470–472, 488
Displacement control vs. load control, 38–39
Ditching, by hand, 621
Divisionary booms, uses, 673

Documentation, 10
Double-joint welding, 234
Double submerged arc welding (DSAW), 613
Drainage, 269–270
Dresser coupling, 624
Drilling riser pipe, hydrogen embrittlement (HISC) of, 741
Drive chemical treatment, 507
Drop weight tear (DWT) test, 208
Drucker–Prager models, 126
Dry fluorescent magnetic testing (DFMT), 358
Di ratio, 71

Ductile failure
damage indicator (DFDI), 320
fibrous gray appearance, 741

Ductile fracture, 27
Ductile-to-brittle transition temperature (DBTT), 32, 182
Duplex stainless steels, 349

E
EC. See Eddy current (EC); External corrosion (EC)
ECA. See Engineering critical assessment
ECDA. See External corrosion direct assessment (ECDA)
ECN monitoring techniques, 497
Eddy current (EC), 292, 358, 547
distribution of, 771
low-frequency eddy current testing, 539
magnetic, 539, 540
pipelines, geometry, 777
sensing technology, 538, 540
sensors, 541
synergetic use of, 772–773
technology, 771–772

Eddy current testing (ECT), 537
AC magnetic field, 537
electromagnetic theory, 537
enhancement of
magnetic eddy current (MEC) testing, 540
pulsed eddy current (PEC) testing, 539–540
remote field, 539
nondestructive testing (NDT), 537
pipeline inspection, applications, 540
magnetic eddy current testing, 541–542
pulsed eddy current, 541
remote field/low frequency testing, 541
standard EC applications, 540–541
pipeline inspection, limitations, 538–539

E-glass/polyester resin-based composite material, 648, 662
Elastic constants, 83
Elastomeric gaskets, 621
Electrical resistance (ER) probes, 505
corrosion probes, 495
on pipeline, 505
remote data collector, 501
styles of, 501
tubular loop probes, 502

Electric resistance welding (ERW)-pipe, 67, 203
applicability, typical fields of, 208–209
manufacturing process, 203–204
Electric resistance welding (ERW)-pipe (Continued)

- high-frequency induction process, 205
- welding, 205
- quality control procedures, 204–205
- destructive material testing, 208
- finishing line, 206–207
- flattening test on HFI pipe, 207
- merging strip edges and formation of the HFI weld, 206
- ultrasonic testing device, 207
- welding line, 205–206
- range of grades and dimensions, 208
- three-layer coating, 208

Electric welding, 624

Electrochemical noise (ECN), 496

Electroendosmosis, 469

Electromagnetic acoustic transducers (EMATs), 291, 293, 524, 526, 541, 547, 549, 568, 595
- configurations, 526
- crawler, 554
- sensing technology, 541
- sensors, 526

Electron backscatter diffraction (EBSD) analysis, 169

Electropolishing, 82

EMATs. See Electromagnetic acoustic transducers (EMATs)

E' modulus of soil reaction, 61

Encryption, 24

Energy development vs. scenarios, risk, 610

Energy dispersive spectroscopy (EDS), 737

Energy dispersive X-ray (EDX) technique, 427

Energy pipelines, 99

Engineering critical assessment (ECA), 29, 32–33, 43–45, 237–239, 243, 626, 736

Engineer's theory of bending, 54

EN14127:2011 standards, 571

Entropy, 418

Environmental cracking in aqueous sour (wet H2S) service, 345

Environmental damage, 3

Environmentally assisted cracking. See Stress corrosion cracking (SCC)

Epoxy coating system, 761

Epoxy-filled shell repair, 660

Epoxy filler, 661

Epoxy resin, 208

Ergonomics, 143

Erosion-corrosion
- carbon steel piping in a CO2 environment with sand, 405–406
- severe pitting in elbow specimens, 406
- threshold velocity and corrosion penetration rate, 406
- chemical inhibition of, 416–417
- effect of sand erosion on, 417
- modeling and prediction of inhibited, 417–419
- corrosion-resistant alloys, 410–415
- effect of microstructure and crystallography on, 416
- model development, 408–409

- flow chart for computational procedure, 409
- flow conditions for multiphase case, 409
- prediction of erosion rate/formation rate, 409
- thermodynamic conditions, 408

modeling and characterization of iron carbonate erosivity, 406–407
- CO2 partial pressure, 407
- erosion of scale, 407
- erosivity at testing conditions, 408
- flow velocity, 407
- pH of solution, 407
- scale erosion rates, 408
- solubility of iron carbonate, 407
- supersaturation, 407
- temperature, 407
- in oil and gas industry, 399

Erosion rate, 399, 400

Erosion, ultra high velocity, 742

Erosivity factors, 400

ERW-pipe. See Electric resistance welding (ERW)-pipe

eSCC. See Ethanol stress corrosion cracking (eSCC)

ETC. See Eddy current testing (ETC)

Ethanol, 78

Ethanol stress corrosion cracking (eSCC), 353

- crack depth in SSR tests, 360
- documented, 357
- factors affecting susceptibility, 353
- guidelines for, 358
- identification, 358
- steel showing areas of intergranular fracture, 358
- inspection, 358–359
- ultrasonic testing (UT) methods, 358
- mitigation, 359
- coatings, 359
- crack growth rate/crack depth, 359–360
- potential mitigation techniques, 359–360
- stress reduction and postweld heat treatment, 359

influence of NaCl concentration, 355

occurrences and consequences of, 357–358

critical stress intensity factors, for N-SSR testing, 357

documented instances of SCC, 357

lone eSCC failure report, 357

Ethernet, 16, 20

Euler–Bernoulli beam theory, 104

Excavation (dig) programs, 5

“Excellent” system, 6

Expansion
- and flexibility, 58
- stress intensification factor (SIF), 58
- joints, 58

Expectancy, 146

External corrosion (EC), 59, 268, 270, 271, 311, 327, 394, 553, 560, 614, 694, 761
- allowance, 59

buried onshore ferrous piping, 488

feature, typical, 560

localized areas, 761

of pipelines in soil, 267

soil types/resistivity, 270

typical feature, 560
External corrosion direct assessment (ECDA), 487, 488, 592
advantages, 489
limitations, 489
overview of technique/standard, 488–489
status of standard, 489
technique/standard in integrity management, 489

F
Factor of safety (FoS), 616
FAD. See Failure assessment diagram (FAD)
Failure assessment diagram (FAD), 29, 583–585, 584
log-secant models, 583
sound fracture mechanics principals, 583
for stress-based design, 29
Failure mode effects and criticality analysis
(FMECA), 727
Failure modes and effect analysis (FMEA), 144
Failure stress, 28
Fatigue, 20, 21, 39, 42, 57, 71, 74, 76–78, 90, 94, 95, 148, 258, 623, 718, 742
cracks, 540
influenced by strength, 580
life, 57
limit, 57
model, 317, 319
S–N curve, 57–58
tests, 317
Fatigue design diagram (FDD), for P110 steel, 77
under applied mean/residual compression, 77
Goodman line, 77
“SAFE” triangle, 77
Fatigue failure, 77
initiation, 77
low cycle/high cycle, 77
Fatigue life, of unconstrained plain dent, 318
Fatigue limit states (FLS), 38
Fault/event tree analysis (FTA/ETA), 752
FDD. See Fatigue design diagram (FDD)
FEA. See Finite element analyses (FEA)
FEED. See Front-end engineering design (FEED)
Ferritic pipeline steels, 78
FGE. See Fuel grade ethanol (FGE)
Fiber reinforced composite repairs
hardenable fillers, 638
mechanical loading, 638
pressure reduction, 637–638
submerged-arc-welded and flash-welded line
pipe, fit-up, 638–640
vs. steel sleeves, 649–651
advantages/disadvantages, 650–651
applicability to defect types, 649–650
Fiber-reinforced plastic (FRP), 661
Fillet weld leg length recommendations, 647
Finance, 5
Finishing lines, 221
Finite element analyses (FEA), 27, 41, 243
Fire-resistant booms, 678
Fitness for service (FFS), 6, 312, 717, 736

Flaw assessment, 237–239, 579
classification, 580
crack assessment, 582
failure assessment diagram (FAD), 583–585
longitudinal cracks, log-secant model, 582–583
pressure cycle fatigue analysis, 585
dents, 585–586
effective area, 581
finite element models, with color stress maps, 580
fracture mechanics, 582
fundamental reason, 579
material properties, 579–580
metal loss, 581–582
crack-like flaws, 579
flaw, sketch of, 581
notch acuity, effect of, 580–581
overview, 579
river-bottom profile, 581
toughness, effect of, 580
Flaws detrimental, 579
“Flow stress-dependent” fracture, 28
Fluid sample analysis
internal corrosion monitoring, 497
monitoring/inspection techniques, relative
responsiveness of, 511
Flush mounted ER probes, 502
FMEA. See Failure modes and effect analysis (FMEA)
FMECA. See Failure mode effects and criticality analysis (FMECA)
Forging, 218
Fossil fuels, 159
Fourier transformed infrared (FTIR), 427
“Fracture control,” 27
brittle fracture, 27
ductile micromechanisms, 27
“initiation control,” 28
“propagation control,” 28
Fronius Cold Metal Transfer (CMT™), 236
Front-end engineering design (FEED), 102, 734
Frumkin inhibitor adsorption isotherm, 418
Fuel grade ethanol (FGE), 353–356, 359, 360
environmental variables, 354
corrosion potential, 354–355
impurities, 355
oxygen, 354
mechanical variables, 355
critical stress intensity values, 356
plastic strain and dynamic stress, 356
tensile stress, 355–356
metallurgical variables
steel grade/composition, 355
specification per ASTM D4806, 354
Full-encirclement steel sleeves, 636
defect repair, using composite materials, 648
epoxy-filled shells, 640
installation and inspection, 646–648
steel compression sleeves, 640
type A (reinforcing) sleeve, 636–641
chain–clamp device, 639
Full-encirclement steel sleeves (Continued)
hardenable filler, 640
illustration of, 636
jack-and-chain method, 639
seam weld reinforcement, 640
tight-fitting, mechanical methods, 639
type B sleeve, 641–646
armadillo sleeve, 645–646
couplings, 644–645
encapsulation/leak box repairs, 646
girth welds, 643–644
installation of, 642
leaking defects, 643
sleeve configurations, for curved (field-bent) pipe, 645
sleeve-on-sleeve repair, 645

Full-scale tension (FST) testing, 45
Full stress tensor determination, 84
Fusion bonded epoxy (FBE), 208, 209, 439, 441, 444, 445, 559
couplings, 644–645
girth welds, 643–644
installation of, 642
leaking defects, 643
sleeve configurations, for curved (field-bent) pipe, 645
sleeve-on-sleeve repair, 645

Gas industry
GRI guide, 390
local corrosion mechanisms, 740
piping failure, 409
pulsed eddy current (PEC) testing, 539
technological improvements and risk management, 4

Gas line rupture, 3
Gasoline pipeline failure, 3
Gas pipelines, 692
ASME B31.8, 306
cleaning methods for natural, 692
CO2 and sour H2S corrosion, 733
high-strength low-alloy (HSLA) steels, development of pipeline steels as example of HSLA steel research, 163
timescale of development of different grades and corresponding level of yield strength, 161

Geotechnical engineering, 101
Geotechnical investigations, 102–103

Geohazards, 39, 40, 100, 102, 103
management, 101

Geomagnetically induced currents (GIC), 276
induced in transmission lines flow, 276
Geometry tools mechanical, 518

Gouges, 27, 289, 290, 301, 315, 316, 319, 561, 562, 580, 657
 Grain refinement, 160
Grinding, 74, 76, 78, 657, 659, 660, 663
Grooved PE liners, 453
Gumbel plot, 335

H
Haigh diagram, 77
Hardenable filler, 640
Hazard analysis/assessment, 752
Hazard analysis/management steps, 751
Hazard and operability (HAZOP), 701, 727, 751, 752
Hazard assessment techniques
formal/structured, 750–755
Hazard identification (HAZID), 727
Hazard management process
performance-based, 747
Hazard management process, conventional, 746
Hazardous liquid pipeline
threat matrix, 630
Hazardous liquid pipeline facilities, 593
HAZ hardness, 241
HAZ hydrogen cracking, 240
HAZID/HAZOP/What-If workshops, 751
HAZOP. See Hazard and operability (HAZOP)
HCAs. See High-consequence areas (HCAs)

Health and Safety Executive (HSE), 50
Heat-affected zone (HAZ), 240, 343
Heat treatment, 219–221
by hardening and tempering, 220
Heavy plate material, 195
HEC. See Hydrogen embrittlement cracking (HEC)
Helical two-step (HTS) manufacturing, 196, 197
Helix crawler, 554
HFI/electric resistance welding (ERW)-pipe mills, 204
HIC. See Hydrogen-induced cracking (HIC)
High-consequence areas (HCAs), 629, 631, 632
High-frequency ERW (HF-ERW), 613
High-frequency induction (HFI) welded line pipes, 67
Highly tensioned suspended pipeline (HTSP), 627
High, medium, low (HML) risk, 732
traffic light system, 738

High-resolution ER probes, 503
High sensitivity ER probes, 503
High-strength low-alloy (HSLA) steels, 160
development of pipeline steels as example of HSLA steel research, 163

Hooke’s law, 122
Horizontal directional drilled (HDD) pipeline, 627
INDEX

HSC. See Hydrogen stress cracking (HSC)

HTP (high-temperature processing) steels, 167

Human error, 143, 146, 151, 154, 702

likelihood, 146

Human factors, 143, 748, 751, 752, 754, 755

assessment techniques, 144

case study, 144

contribution to incidents in pipeline industry, 153–154

and decision making, 144

availability heuristic, 150–151

case study: USS Vincennes, 152–153

cognitive tunneling, 151

confirmation bias, 151

cue primacy and anchoring, 150

decision-making challenges, management of, 151–153

factors influencing, 151

framing bias, 151

heuristics and biases in, 150

information processing, 146–147

stressed, 147–149

tips to manage, 148–149

information receipt, 146

methods to improve decision making, 151–152

representativeness heuristic, 151

satisficing heuristic, 150

selective attention, 150

guidance, application of, 149–150

hazard and operability study (HAZOP), 701

incorporating at design stage, benefits of, 144

life cycle, 143, 145

approach to manage, 144

revisited, 154

in SCADA systems, 20–21

Hydrated ethanol, 357

Hydrogen-assisted cracking

prevention of, 240–242

in welds, 240

Hydrogen control, in welds, 240–242

Hydrogen embrittlement cracking (HEC), 343

Hydrogen environmental damage, 714

Hydrogen-induced cracking (HIC), 193, 224, 225, 650

effect of sulfur content on the extent of, 228

fracture surfaces, 228

in full-scale test, 225–226

martensite-austenite constituent (MA phase), 229–230

mechanisms of hydrogen-induced cracking, 227–228

process, 228

specimen and apparatus of, 227

standardized laboratory evaluation method for, 227

Hydrogen stress cracking (HSC), 343, 344, 345

in pipelines, basics of, 343–345

susceptibility of C-Cr-Mo low-alloy steel (HRC 32), 344

Hydrogen sulfide (H2S), 78. See also Sulfide stress cracking (SSC)

containing environments, 224, 344

produced by bacteria, 426

serviceability diagram, 347

Hydro-Québec power system, 276

Hydrotest conditions, check for, 64

Hyperbaric welding, 236

Hypoelastic models, 122–123

HYSYS simulation, 426

I

IC. See Internal corrosion (IC)

ILI. See In-line inspection (ILI)

ILI tool, multi-diameter, 552

IM. See Integrity management (IM) program

Impingement, ultra high velocity, 742

Incident realization—physical model, 749

Independent third-party (ITP), 731, 740

In-ditch laserscan technology, 301

data processing, 302–304

hardware, 301–302

In-ditch mechanical damage characterization, 301

application of state-of-the-art, measurement technology, 305

calibration of depth-based ILI technologies, 305

evaluation of strain-based tool performance for ILI runs, 306–307

evaluation of the depth-based tool performance for ILI runs, 305

improved technologies for, 301

Induced bending moment, calculation, 61

for known curvature, 61

Inherent safe design (ISD), 727, 734

Inhibitor selection, 733

Inhibitor treatments

alkaline corrosion inhibitors, 605

ethylene glycol dimethyl ether (EGDME), 359

Frumpkin inhibitor, 418

imidazoline-based, 416

logic diagram, 508

2-metylxyethanol (2-MOE), 359

In-line inspection (ILI), 4, 5, 154, 515, 540, 558, 579, 601, 614, 769–771, 777

caliper technologies, 291–292

capabilities and performance, 293

characterization of dents and DMLs, 294

coincident metal loss sizing performance, 300

dent depth sizing

performance evaluation (lod—limit of detection), 295

tolerance evaluation, 295

dent length and width performance for data collected, 298

dent sizing performance

operators’ data, 295

vendors’ data, 295

dents with metal loss, 298

for dents with metal loss (DML)

POD of current ILI-based technologies, 299

POFC of the current ILI-based technologies, 300

POI of the current ILI-based technologies, 299

parameters, defined as, 294

performance measures, 293

sizing accuracy

for coincident metal loss, 298

length and width, 297

pull test data, 296
In-line inspection (ILI) (Continued)
categorization, 293
cathodic protection current measurement, 528
cathodic protection, inspecting, 528
combined technologies, for reliable results, 769
 eddy current (EC)-based technology, 771–772
 magnetic flux leakage, 769–771
 synergetic use of, 772–773
combined technology tools, 526–527, 528
continuous inspection, 774–775
current status of, 290–291
data/verification, utilizing, 528
design/operating conditions, challenging, 769
direct arm measurement sensing technologies, 291
distance challenge, overcoming, 774–775
emagnetic flux leakage (MFL) ILI technology, 290, 292, 293
mechanical damage, detection of, 527
MFL metal loss, 527
MFL tool, multiple data set, 528
multi-diameter challenge, 773–774
multiple geometry ILI tools, 291
non-destructive testing (NDT), 515
pipeline
 high product flow velocity, challenge, 774
pipeline inspection questionnaire, sample, 529–535
place of, 515–516
running tools, 516
survey conducting, 517
tool fits, pipeline, 516–517
tool type selection, 516
standard, 545
tools, types of, 517
 crack detection, 523–526
 geometry (deformation) tools, 517–518
 mapping/GPS tools, 518–519
 metal loss tools, 519–523
ultrasonic technologies, 290
WM ILI tool, and bidirectional UT geometry, 549
Inspection effectiveness factor (IF), 709
Inspection programs, 9, 470, 589, 590, 595, 702, 707, 713, 725
Inspection, risk-based (RBI), 699–726, 734, 736
Installation analysis, and design methodologies, 259
 global installation analysis, 259
 methodologies, 259
 dynamic analysis, 260
 static analysis, 259–260
Installation, critical factors governing, 257
damage to coatings, 258
fatigue damage, 258
integrity criteria, 258–259
local buckling failure, 258
pipeline integrity criteria, 257–258
vessel restrictions, 257
Installation methods and pipeline behaviour, 253
critical factors governing, 257–259
J-lay method, 256
Reel-lay method, 256–257
S-lay method, 254–256
Installation of offshore pipelines, 253
deep water on installation, implications of, 261
design implications, 261–262
increased tension, 261–262
plastic strains, 262
potential for local buckling, 261–262
prolonged fatigue exposure, 262
monitoring analysis software, 261
advantages, 261
monitoring process and remedial action, 261
underwater ROV, 261
Installation strains, 39
Institute of Asset Management, 5
Insulated component testing (INCOTEST™), 541
Integrated technology framework, 129
Integrity management (IM) program, 3, 4, 6, 8, 103, 305, 489, 515, 587, 596, 620, 699, 727, 745
API standards, 596–597
business work flow schematic, 754
codes, standards, and practices, 589–592
facility building, 595
certainty safety consequences, 594
business consequences, 594
environmental consequences, 594
reputation consequences, 594
gas pipelines, outline, 588
integrity assessment methodologies, 595–596
overview, 587
scopes, 588
failure frequency, 593
generic threats, 588
interactive threats, 588–592
root cause, 592
specific facility threats
 complexity, 593
 fatigue, 593
 temperature, 593
Integrity management system, 3
 for conventional oil and gas assets, 5
Integrity verification process (IVP), 620
Intelligent pigging. See In-line inspection (ILI)
Internal corrosion (IC), 311, 338, 389, 447, 497, 509, 559, 588, 595, 610, 630, 663
Internal corrosion DA (ICDA), 491–492, 592
dry gas, 492
improvements, 493
limitations, 493
liquid petroleum, 492
overview of technique/standard, 492
status of standards, 493
strengths, 493
Internal corrosion direct assessment (ICDA). See Internal corrosion DA (ICDA)

Internal corrosion, monitoring
corrosion coupons, 497
corrosion, definition, 498
corrosion monitoring coupons/electronic probes, orientation, 507
corrosion monitoring point, placement of, 504–507
coupons/ER probes/inspection techniques, relative time for, 511
electrical resistance corrosion probes, 497
corrosion rates, 499–500
metal coupons, 498
electrical resistance probes, 500
flush mounted ER probes, 502–503
high-resolution ER probes, 503
linear polarization resistance (LPR) probes, 503–504
resistance, measurements of, 500–502
tube/cylindrical ER probes, 502
tubular loop ER probes, 502
wire loop ER probes, 502
ideal location for monitoring, 504
integrity management tools, 497
metal coupons, 498
NDT, relative sensitivities of, 509–511
placing corrosion monitoring coupons/electronic probes, 504
relative time for monitoring and inspection, 511
typical exposure periods, 510–511
using coupons and ER probes, 495
UT/RT/MFL nondestructive inspection techniques, 510

Internal pipeline cleaning, 601
cleaners and diluents, 605–606
contaminates, 601–602
durometer, 604
mechanical and liquid (chemical) cleaning, 604
mechanical cleaning, 604
multi-diameter pipelines, 606–607
needs, 606
on-line/off-line, 604
PIG types, 602
poly foam, 602–603
polyurethanes, 603–604
steel mandrel, 603
unibody, 603
progressive pigging, 602
single diameter pipelines, 606
typical pigging procedures, 605

Joint industry projects (JIPs), 10

K
Key performance indicators (KPIs), 9, 729
color coded KPI bands, 729
I–P–F curve, 731
Kinematic hardening, 104, 125

L
Langeled pipeline, 769, 770, 773, 774
gauge tool, 774
route of, 770
Lattice spacing
measured at two or more angles, 83
for orientation, 83
stress of interest, 83
Layers of protection analysis (LOPA), 739
Leakage limit states (LLS), 38
Leak before break, 28
Leak detection, 13–14, 21–22, 528
Leak frequency, 701
Leaks, pipeline, 671, 761
Leak vs. rupture, 28
Lenz’s law, 537
LFET. See Low-frequency eddy current testing (LFET)
Life cycle approach, to human factors, 143
Life stress, 149
Lighting and noise, as environmental stressors, 148
Limit states, 38
serviceability limit states (SLS), 38
ultimate limit states (ULS), 38
Lincoln Electric Company Surface Tension Transfer (STT™), 236
Linear elastic methods, 79
Linear polarization resistance (LPR), 411, 495, 496, 503–504, 512
probes, 503–504
two-electrode, 503
Lined pipeline systems, 449, 452–454
Line pipe manufacturing
current trends in, 187–188
hydrogen-induced cracking (See Hydrogen-induced cracking (HIC))
material design, for sour service, 228–230
Line-pipe production, 612, 613, 615
Line pipe transportation, 620
Liner materials, 451–452. See also Thermoplastic liners
grooved PE liners, 453
in hydrocarbon flow lines, 453
operating pipeline with, 452
PA11 liners in sour gas pipelines, 454
in sour gas and gas condensate pipelines, 453–454
Liquid cleaning, 606
Liquid coupled UT crack detection tools
sensor carrier of, 524
Liquid penetrant inspection (LPI), 648
Liquid petroleum crude oil, 594
Liquid pipelines, 3
cleaning methods, 692
“In sec” equation, 29
Load and resistance factor design (LRFD), 38, 101
Log-secant model, for longitudinal cracks, 582–583
Longitudinal seam welding, 203
Longitudinal submerged arc welded (LSAW) pipes, 189
application, typical fields of, 192–193
manufacturing process, 189–191
forming stages of UOE process, 189
inside and outside welding process, 191
production scheme for UOE pipes, 190
quality control procedures, 191–192
automatic ultrasonic testing equipment, 192
digital radiography, 192
range of grades and dimensions, 192
Longitudinal submerged arc welding (LSAW), 163
Long-term memory, 146
material in, 146
Low-frequency eddy current testing (LFET), 539
LPI. See Liquid penetrant inspection (LPI)
LPR. See Linear polarization resistance (LPR)
LRFD. See Load and resistance factor design (LRFD)
LSAW-pipes. See Longitudinal submerged arc welded (LSAW) pipes
M
Macrosegregation, 165
MADB. See Master alarm database (MADB)
Magnetic Barkhausen noise method, 84–86
calibration of Barkhausen probe, 85
magneto-elastic parameter calibration curves, 85
noise caused by magnetic domain, 84
sensitivity, 85
Magnetic eddy current (MEC), 539, 540
principle of, 540
Magnetic flux leakage (MFL) technique, 221, 290, 292, 487, 496, 519, 539, 546
applications, 510
basic principle, 770
circumferential pipe magnetization, 521–522
combined with caliper, 293
data, 293, 602
drawback, 539
ILI technology, 290, 292, 520
and metal loss, 519–521, 527
in-line corrosion inspections, 777
in-line inspection (ILI), 769–771
magnetization, evolution of, 771
MFL crawlers, 553
limitations of, 553
multi-diameter, 779
nondestructive inspection techniques, 510
optimal sizing regimes, 772, 773
PDL measurements, 781
pipe wall, magnetic saturation of, 770–771
pump test, 782
signal, 293
synergetic use of, 772–773
test loop, 780
tool, for launch valve, 551
triaxial, 293
Magnetic particle inspection (MPI), 207, 563, 566, 567, 648, 717
Magnetic yoke, in pipe coupon, 563
Magnetizing, pipe circumferentially, 522
Mainline valves (MLVs), 617
Mainline welding, 234–236
Maintainability, availability dependency, 747
Maintenance, life cycle processes, 10
Maintenance pigging programs, 507
INDEX 805

Major accident events (MAEs), 728
Management of change (MoC), 6, 7, 731
documentation, 10
Management-related activities, 4
Management system
design, 754
for documentation, 718
features, 4
integrity, 7
life cycle processes, 10
safety, 710
workbook, 710
Mandrel mills, 216
Mandrel rolling, 216–218
Martensite-austenite (MA), 169–170, 229–230
Master alarm database (MADB), 17
Material design
of linepipe steel for sour service, 228
center segregation, effect of, 229
microstructure, 229
nonmetallic inclusions, effect of, 228–229
plate manufacturing condition, effect of, 229–230
accelerated cooling stop temperature and CLR, 230
Material resistance
with crack growth, 28, 44
to fracture, 44, 582
Material selection, 27, 28, 223, 225, 262, 732, 737, 744, 750
Maximum allowable operating pressure (MAOP), 49–50, 499, 595, 601, 661
Maximum operating pressure (MOP), 49, 661
overpressure, 50
MCS Kenny PipeLay software, 259, 260
Meandering winding magnetometer (MWM™), 541
Mean downtime (MDT), 748
Mean flow stress (MFS), 167
Mean time between maintenance (MTTR), 748
MEC. See Magnetic eddy current (MEC)
Mechanical damage, in pipelines, 289
assessment of severity of, 308
categories, 289
challenges, 322
combined approach to evaluate dent with metal loss, 315–317
dent strain severity-based criterion, 316
illustration of effectiveness, 316–317
MFL signal criterion, 316
fatigue assessment of dents, 317–319, 318
EPRG dent fatigue analysis method, 317–319
strain-based fatigue life, 319
improved strain calculation methods, 313–315
incidents, 289–291
in-line inspection (ILI), 290
categorization of technologies, 293
mitigation and repair, 319–322
ductile failure damage indicator (DFDI), 320
remediation options, 321–322
strain limit damage (SLD), 320–321
regulatory and industry standard guidance, 308–310
strain-based assessment methods, 310–315
Blade Energy Partners simplified model, 314–315
Lukasiewicz method, for improved strain calculation, 313–314
recommended by ASME B31.8, 310, 312, 313
Mechanized trenching machine, 621
MEC-HUG™, 542
Meso-stable emulsions, 671
Metacognition, 147
Metaknowledge, 147
Metal coupons, for monitoring internal corrosion, 498
Metallographic polishing, 78
Methylenebisphenyl diisocyanate (MDI), 603
Methyl ethyl ketone (MEK), 604
MFL-technique. See Magnetic flux leakage (MFL) technique
MIC. See Microbiologically influenced corrosion (MIC)
Microalloying strategy, 160
Microbial corrosion, iron oxidizing bacteria, 730
Microbial growth, requirements for, 388
electron donors and acceptors, 388–389
nutrients, 389
water, 388
Microbial-induced corrosion. See Microbiologically influenced corrosion (MIC)
Microbiologically active environments, 387
Microbiologically influenced corrosion (MIC), 271, 387, 427–429, 728–730, 732, 735–738, 742, 744
American Petroleum Institute (API)
Recommended Practice (RP) 38 390
culture-independent quantitative techniques, 390–391
current procedures, for testing, 391
external corrosion, 394
buried pipelines, 394–395
submerged pipelines, 395
Gas Research Institute (GRI) guide, 390
internal corrosion, 389
production, 389
transmission, 389–390
internal pipeline MIC—risk assessment flowchart, 392
liquid culture media, and culturing techniques, 390
molecular microbiological methods (MMM), 391, 392
requirements for microbial growth, 388–389
standard mitigation procedures for controlling, 392–393
altering potential electron acceptors to inhibit, 393–394
tactics to prevent MIC in oil production lines and equipment, 393
techniques for monitoring, 392
testing procedures, 390–391
Micro pitting corrosion, 741
Microscopic residual stresses, 78–79
Microsegregation, 165
Microstructures, 159
calculated curves for the precipitation, 166
change in composition of microalloy precipitates with increase in, 166
classical TMCP and HTP, 169
constituents as a function of cooling speed, 221
Microstructures (Continued)

dependence of average grain diameter on the TMCP parameters, 174
EBSD-orientation maps, 171
effect of elements on austenite recrystallization stop temperature, 167
effect on erosion–corrosion, 416
equal area plots BCC grains with respect to ND, RD, and TD planes, 172
ferrite and pearlite, in API X52 steel, 170
formation as a tool to control, 161
formation during, thermomechanically controlled processing, 163
finishing rolling/cooling, 164, 168–172
rough rolling, 166–168
slab reheating, 163–166
grain boundary maps, 173
grain diameter on the TMCP parameters, 174
grain refinement, 172
large eutectic Nb(C, N) particles, 165
optical micrographs, near-surface, centerline/segregation, 165
pipeline steel showing austenite grain size, 168
rolling reductions applied in different rolling schedules, 168
of steel and subsequently quenched, 171
three-dimensional EBSD reconstruction, 172
transformation-induced plasticity (TRIP) effect, 172
Miller Electric Regulated Metal Deposition (RMD™), 236
Miller indices, 83
Minimum pipe bend radius, 62
calculation based on concrete, 62
in-service condition, 62
pipeline located offshore, 63
installation condition, 62
minimum pipe bend radius calculation, based on steel, 62
rolling reductions, applied in different rolling schedules, 168
MoC. See Management of change (MoC)
Modern plug rolling mill, layout, 216
Modular brush drive, 554
Mohr–Coulomb models, 126, 127, 128
Monitoring access fitting, location, 508
Multiple monitoring points, 506
Multiple wire systems, 196
Multi trotter crawler, 553

N

Narrow axial external corrosion (NAEC), 522
National Association of Corrosion Engineers (NACE), 619
NACE RP-0775-2005, 498, 509
NACE Standard Practice, 509
National Energy Board (NEB) Pipeline Safety Forum, 4
National Transportation Safety Board (NTSB), 3, 153, 619
Natural gas pipelines, cleaning methods, 692
Natural gas transmission pipelines, 614
analysis of construction mileage, 615
rubber/elastomeric gaskets, 622
Natural gas transmission systems, 615
Naturally Occurring Radioactive Materials (NORM), 423, 692
NDE inspection techniques
overview of, 562
Nernst equation, 478
Neuber’s rule, 77
Neutron diffraction, 84
Niobium microalloyed steels, 160
Nitrate reducing bacteria (NRB), 393
Nitrate treatment, 393
Nominal pipe size (NPS), 244, 292
Nondestructive evaluation (NDE), 571
process, 657
Nondestructive inspection (NDI) systems, 237–239, 613
Nondestructive testing (NDT), 509, 537
Nonintrusive monitoring techniques, 497
Nonlinear elastic–plastic analysis, 39
Norsk Sokkels Konkuransposisjon (NORSOK) standard, 699
North American pipeline industry, 4
Notices of proposed rule makings (NOPRs), 619
Nucleation, 163, 169, 170, 172, 327, 329, 732

O

Offshore applications
challenges of, 68
design challenges, 68
collapse, 68
displacement-controlled loading, 68
fracture arrest, 68
materials and manufacturing, 69–70
stress analysis, 68–69
Offshore oil, localized corrosion mechanisms, 740
Offshore pipelines
case histories, 736–744, 769–783. (see also Case studies)
corrosion, 738–739
cracking, 740–742
failure analysis check sheet listing, 742–744
failure analysis, techniques, 737
failure mechanisms/excursions outside, 737–738
fit-for-purpose solutions, 736–737
integrity risk, 738–739
challenges, 729–730
codes/standards/recommended practices/regulations, 744
corrosion
case histories, 736–744, 769–783.
(see also Case studies)
corrosion, 738–739
context, risk/reliability, 745–750
failures, 739–740
mechanisms, 738
risk analysis, 744–755
essential properties, 777
failure modes for, 728
flowline relief header marine atmospheric localized corrosion, 743
flow regimes and water/oil wetting, 743
formal/structured hazard/risk assessment, 750–755
gas industry
limited corrosion mechanisms, 740
gauging, 779, 782–783
high-resolution geometry tool, 780, 781
high-risk systems, 727, 728
inspection, 744–755, 782–783
life cycle, 733
conventional/performance-based corrosion management, 733
corrosion management, 735
corrosion risk-based performance goals, 733–734
corrosion service, fitness, 733
inherent safe design (ISD), 734–735
life extension, 736
risk-based inspection/monitoring, 735–736
localized corrosion, pictorial gallery of, 740–742
monitoring methodologies, 744–755

offshore oil
localized corrosion mechanisms, 740
project requirements, 777
data evaluation, preparation of, 779
on-site activities, preparation of, 779
pipeline flow conditions, simulation of, 778–779
project communication, 779
testing, 778
tool development, 778
recommendations, 755
risk-based solutions, 730–731
solutions, 728
spiral welded pipe for, 67–71
subject matter expert (SME), 732
test loop, drawing of, 778
tool design, 779
challenges for, 779

Offshore spar, 731
Oil and gas (O&G) offshore industry, 67
Oil evaporation, 670
Oil production systems
carbon steel corrosion rates, 500
Oil seeps, into hole dug, 686
On-line cleaning, 604
Onshore soil side corrosion, 728
Open-circuit potential (OCP), 79
Operating expenditures (OPEX), 613
Operational pressure, 192
requirements for pipeline transportation systems, 100
Operational threats, 9
Organizational strategic plan, 5
Outside diameter (OD), 615
Over-ditch A-frame fulcrum, 621
Oxyacetylene process, 620

P
PA11 liners in sour gas pipelines, 454
Pcm formula, 241
PDCA cycle. See Plan-Do-Check-Act (PDCA) cycle
Permasense sensor, 575
Petroleum hydrocarbons, 671
PetroSleeve™, 641, 661
Phased array ultrasonic testing (PAUT), 631
PHMSA (pipeline and hazardous materials safety administration, department of transportation), 3, 245, 246, 592
Advisory Bulletin, summary, 245
database, 615, 617

Physical effects modeling (PEM), 753
Physical modeling techniques, 101
Pig launch valve, 551
Pilger rolling, 213–215
Pipe coating damage, 289. See also Damage
Pipe diameter, 195
Pipe forging, 218
Pipe forming, 195–198, 200, 203
and tack welding, 197
Pipe geometry, 197
Pipeline abandonment, 691
abandonment plan outline, 690–691
consultation, 690
contamination remediation, 691
defined, 689
pipeline cleaning, 691
facilities/apparatus removal, 692–693
guidelines, 691–692
right-of-way restoration, 693–694
transportation/utility crossings, 693
water bodies, 693
planning, 689
plug locations, guides, 695
postabandonment care, 695
financial resources, 696
land use changes, 695–696
liability, 696
monitoring/maintenance, 695
postabandonment physical issues, 694
ground subsidence, 694
pipe deterioration/collapse, 694
pipe exposure, 694–695
slope stability, 695
water conduit effect, 695
procedures, 691
removal/abandon in place, 689–690
Pipeline acid cleaners, 605
Pipeline asset integrity management system (AIMS) function map, 8
Pipeline asset management. See Asset management
Pipeline coatings (external), 439
coating performance, 439–441
coating types, and application, 444
composite coatings, 445
extruded olefins, 444–445
fusion bond epoxy, 444
girth weld coatings, 445
liquid epoxy and urethane, 445
repair coatings, 446
specialty coatings, 446
field-applied coatings, 443–444
historical perspective, 439–440
product testing, 441–443
simplified coating selection, 441
standards and application specification, 443
quality assurance, 443
Pipeline codes, 37
Pipeline corrosion. See also Corrosion
business work flow schematic, 754
damage mechanisms, 714
Pipeline damage, types and characteristics, 714
Pipeline Data Logger (PDL), 779
pump test, 780
Pipeline defects, 10, 649, 663
Pipeline design, for external pressure, 63
buried installation, 63
above-ground/unburied installation, 64
collapse criterion, 64
propagation criterion, 64
check for buckling, 63–64
Pipeline failures, 3, 9–11, 289, 442, 559
factors, 4, 9–10
rate, 4
Pipeline incidents, arising from welding defects and recent industry, 245
Pipeline industry applications, 21
batch tracking, 22
dynamic pipeline highlight, 22
leak detection, 22
Pipeline inspection techniques
assessing factors, 716
categories, 716
challenges, 548
to detect damage types, 715
Pipeline installation loading, and failure modes, 253–254
Pipeline integrity assessment
UT technologies, 564
Pipeline integrity management systems (PIMS), 3, 4
core structure, 6–7
defined, 4
elements, 6–7
function map, 8
key gate decisions, 745
PDCA cycle, 6
purpose of, 5
Pipeline leaks, 761
Pipeline life cycle, 5, 102
Pipeline mechanical damage mechanisms, 714
Pipeline oil spill cleanup, 665, 674
analysis/detection/remote sensing, 672
infrared sensors, 672
laser fluorosensors, 672
radar, 672
sampling/laboratory analysis, 672
visual sensors, 672
visual surveillance, 672
burning properties of fuels, 677
burn on northern pipeline, 677
cleanup, effectiveness of, 669
containment on water, 672
boom failures, 673
sorbet and barriers, 673
contingency plans, activation of, 668–669
decontamination, 675–676
hydraulic measures, 685
oil behavior in environment, 670
biodegradation, 671
emulsification/water uptake, 671
evaporation, 670–671
oil slicks movement on water, 671
sinking/over washing, 671–672
spill modeling, 672
spreading, 671
weathering, overview of, 670
oil, composition of, 669–670
oil, properties of, 670
oil recovery on water, 673
manual recovery, 674
skimmers, 674
sorbents, 674
oil spill contingency plans, 667–668
oil spill cooperatives, 669
oil spills on land, 681
behavior of, 682
excess oil, removal, 684–685
habitats/ecosystems, 683–684
movement on surfaces, 682–683
natural recovery, 684
subsurface spills, 685–687
surface spills, 684
oil spill statistics, 665–666
overview, 665–667
pipelines, 666–667
pumps, 675
recovery from water subsurface, 675
recovery wells, 687
response to oil spills, 667
shoreline cleanup assessment technique (SCAT), 679
shoreline cleanup/restoration, 678
behavior of oil, 678–679
cleanup methods, 679–680
recommended cleanup methods, 680–681
types of, 679
in situ burning, 676
advantages, 676
burn efficiency and rates, 677
containment, uses, 678
disadvantages, 676–677
emissions, from burning oil, 678
ignition, 677
spill-treating agents, 676
supporting studies/sensitivity mapping, 669
surface land spills, 684
temporary storage, 675
training, 669
Trans-Alaska pipeline, 667
USA, 667
vacuum systems, 675
viscous oils, 682
Pipeline operators, 11
Pipeline ovality, 61
Brazier effects, 62
ovality of a buried pipeline, 62
Pipeline potential attenuation data, 730
Pipeline pressure systems, 700
Pipeline repair, 244, 657
 applicability to defect types, 664
 cold cutting, pipe, 659
 composite reinforcement sleeves, 661
 architecture, 662
 fiber form, 662
 fiber type, 662
 resin selection, 661–662
 direct deposition welding, 662
 epoxy-filled shells, 660–661
 full-encirclement repair sleeves, 635–654
 full-encirclement steel sleeves, 660
 grinding/sanding, 659–660
 grind repair, 660
 hot tapping, 662
 options, 657
 pipeline defects and applicable repair methods, 663
 pipe replacement, 658–659
 protocols, 658
 safety, 657
 SCC, illustration of, 660
 steel compression sleeves, 661
 steel sleeve, 660
 stress concentration type defects, engineering assessment protocol, 658
 temporary repair, 662–664
 of leaks, 664
 tie-in weld, on cutout, 659
 typical bolt-on sleeve, 662
Pipeline repair manual (PRCI), 636–642, 649
Pipeline repair sleeves
 buckle/collapse, 762
 buckle/collapse failure, factors affecting, 766
 buckle/collapse problem, statement of, 761
 cost-effective solution, 761
 hydrogen gas trapped, 766
 hydrogen permeation
 inside the pipeline, 765
 outside, 765–766
 mitigate buckle/collapse failures, 767
 observations, 762–764
 rate of annulus pressure increase, 766
 sources of hydrogen, 765
Pipeline Research Council International (PRCI), 28, 244, 294, 587, 638, 642, 646
 sponsorship, 244
Pipeline, response to telluric electric fields, 279
Pipeline risk assessment, 9, 735
Pipeline risk-based analysis, 732
Pipeline routing, 102
Pipeline SCC damage mechanisms, 714
Pipeline/soil interaction analysis, 100, 103
 computational engineering tools, 104
 analytical solutions, 104
 structural pipe/spring models for buried pipelines, 104–108
 longitudinal axial soil response, 105–106
 transverse lateral soil response, 106–108
 transverse vertical downward soil response, 108
 transverse vertical uplift soil response, 108
 computational, guidance on best practice to enhance, 108–112
 influence of trench backfill and native soil, 109
 interaction factors, 109–112
 soil spring functional relationship, 109
 structure-based models, 109–112
 and design, 103–104
 emerging research, 112
 large deformations, 119
 loading rates, 119
 oblique loading, 112–119
 lateral–axial interaction, 116–119
 vertical–axial interaction, 113
 vertical–lateral interaction, 113–116
 pipe diameter, and model scale effects, 120–121
 physical model, 103–104
 soil constitutive models, 121–122
 critical state models, 128–129
 elastic parameters, 122–123
 plasticity models, 123–128
Pipeline spills, 665
 Canadian statistics, 666, 667
 underground oil pipeline network, 668
 contingency plans, activation of, 668
 in Northern Alberta, 671
Pipeline steel, 78
 development, 160
 grades, compositions, 162
 influence of alloying elements on properties of, 163
 microstructures
 austenite grain size, 168
Pipeline stiffness, 59
 calculation, 59
 data on loading, 60
 deflection, 60, 61
 modified Iowa formula, 60
 soil stiffness factor, values of E, 61
 Spangler assumptions, 60
 E-80 loading, 60
 HS-20 loading, 60
Pipeline, surface roughness, 606
Pipelines utilizing strain-based design, 40
Pipeline system integrity, 3
Pipeline–telluric interference, 275–276
 PRCI review, 276
Pipeline threat assessment, 630
Pipe manufacturing background, 187
Pipe properties, typical, 70
Pipe replacement, 658–659
Pipe-to-soil potentials (PSP), 275
 fluctuations, 279
 and rectifier current time variations for impressed current system, 284
 simultaneous recordings at different sites, 279
 for times with and without ground connections, 284
 variations, 275, 278
Pit depth, 327, 331
 factors influencing
 maximum depth development, 333
 for maximum, extreme value analysis, 334
 dependence between pit depths, 335
 EV distribution for deep pits, 335–336
 Gumbel distribution, 334–335
 implications for reliability analysis, 336
 model for long-term growth in, 331–333
 bimodal model for marine corrosion loss, 331
 calibrated variation of model parameter, 332
 typical growth of pit depth with, 331, 333
Pitting
 biological influences, 330
 corrosion, 327, 328 (See also Asset management)
 measured by mass loss for, 331
 trends with time, 330–331
 development, 329–330
 initiation and nucleation, 329
 terminology defined, 328
 at welds, 336
 long-term pitting development, estimates of, 337–338
 short-term exposures, 336
 weld pit depth, EV statistics for, 338
Plain dents, 319
 predictions of fatigue life made using EPRG model, 318
Planar anisotropy in Charpy V-notch energy, 182
Plan–Do–Check–Act (PDCA) cycle, 6, 7
 act: management, 10–11
 assessment processes, 10
 check (assurance and verification) step, 10
 design and construction, 10
 discontinue and abandonment, 10
 inputs, 7
 maintenance processes, 10
Plane stress elastic model, 82
Plan function map, 8
Plastic deformation, 78
Plate thickness, 160
Plug rolling, 215–216
Poisson’s effects, 38
Poisson’s ratio, 82, 122
Polyamide (PA), 208
Polyaromatic hydrocarbons (PAHs), 678
Polycrystalline metal, 78
Polyethylene (PE), 439
 plastic film of, 559
Polypropylene (PP), 208
Polyurethanes, 604
 advantages of, 603
 disadvantages, 603
 discs, 603
Polyvinyl-chloride (PVC)
 plastic film of, 559
Postweld thermal stress, 74
Potential impact radius (PIR), 594
Precipitation, 166, 167
 rate, 405
Pressure, temperature, velocity (PTV), 732
Primary installation methods with loading regions, 254
Probability of detection (POD), 517, 717
Probability of identification (POI), 517
Procedure qualification record(s) (PQR), 240
Process management, 9
Product testing, 441
 adhesion, 441
 water soak panel, 442
 aging, 441
 cathodic disbondment resistance, 441, 442
 cure, 443
 damage resistance, 442–443
 electrical isolation, 443
 flexibility, 441
 temperature rating, 442
PSP. See Pipe-to-soil potentials (PSP)
Psychological stress, 149
Publicly Available Specification (PAS), 5, 7, 587
Pulsed eddy current (PEC) testing, 539–540. See also Eddy current
subsea pipelines, inspection tool, 542
Pulsed gas metal arc welding (GMAW-P), 233
Pulse-echo ultrasonic testing (UT) technology, 540
Pylons, 375
Q
 Qualifying welding procedures, to a strain-based design, 242–243
 Qualitative thinning inspection risk, 721
 Quality and in-process checks, 221
 Quantitative risk analysis (QRA), 753
 Quantitative risk assessment (QRA), 704
 Quantitative risk matrix risk reduction, 724
 Quaternary amines, 392
 Quenching, 160, 220
R
 Radiographic testing (RT), 496
 RAM (reliability, availability, and maintenance), 732
 Ramberg–Osgood relationship, 122
 RBD. See Reliability (risk)-based design (RBD)
 RBI. See Risk-based inspection (RBI)
 RBI assessment inspection program, impact of, 721, 713
 R-curve behavior, 28
 Real-time radiography (RTR), 237
 Redox potential, 271
 Regulators, 4
 audit, 6
 Regulatory preventative action
 high–low misalignment, 247
 metallurgical investigation, 246
 pipeline incidents, arising from welding defects, 245–247
 PRCI report, 245, 246
 regulations, codes, and standards, 247
 strategies for managing hydrogen, 247
 study commissioned by API, 246
 Regulatory requirements, 5–6
 AER Pipeline Rule, 6
 Canadian and U.S. regulatory and industry bodies, 6
SCADA (supervisory control and data acquisition) systems, 13, 501
alarm rationalization, management, and analysis, 16–17
classified as, 13
telecommunication SCADA, 13
features distinguishing, 13
HMISCADA systems, 13
communication media, 22–23
communications infrastructure, 23–24
Ethernet connection, 23
hardware optional, 24
“6-pack modem,” 24
serial-based, 23
serial ports, 23
communications integrity, 24
counter computers, 14
counter workstations, 14, 15
database, 25
data quality, 17–18
and DCS, 14
defined, 13
fault tolerance, 15–16
“function-level”, 16
hierarchy, 15
human factors design in, 20–21
incident review and shift handover, 18
parts, 13
pipeline industry applications, 21–22
redundancy, 16
RTU/PLC integrity, 25–26
RTUs AND PLCs, 24–25
runtime and configuration databases, 15
security, 20
standards, 21
terminology and definitions, 14
training, 19
user-defined programs, 25
user permissions and AORs, 19
WEB connection, 19–20
Scanning electron microscopy (SEM), 737
SCAT. See Shoreline, cleanup assessment technique (SCAT)
SCC. See Stress corrosion cracking (SCC)
SCCDA. See Stress corrosion cracking DA (SCCDA)
SCF. See Stress concentration factor (SCF)
Scratches, 289
Seam weld reinforcement, 639
Secondary dendrite arm spacing (SDAS), 165
Security, 4, 19–21, 24
Seismic activity, 37
Self-shielded, flux-cored arc welding (FCAW-S) wires, 235
SENT test, 45
Shallow internal corrosion (SIC), 541, 553, 772, 773, 775
Shear modulus, 123
Shear stress, 55–56
due to spanning, 56
due to torsion, 55–56
Shielded metal arc welding (SMAW), 233
electrodes, 233
limitations, 233
Shoreline, 680
cleanup assessment technique (SCAT), 679
cleanup methods, 680
Shore test, 604
Short-circuiting gas metal arc welding (GMAW-S), 233
Shot peening (SP), 73, 86
SIC. See Shallow internal corrosion (SIC)
Single-edge-notched tensile (SE(T)), 33
Single-submerged-arc welded (SAW), 613
Site characterization, 101
Size-rolling mill, 218, 219
Sizing capabilities, 517
Skimmer
recover oil on water, 674
backhoe uses, 675
Sleep disruption, 148
Smith–Watson–Topper curve, 77
S–N curves, 742
Societal risk, 702
software-based alarms, 16
SOHIC. See Stress-oriented hydrogen-induced cracking (SOHIC)
Soil
chlorides and sulfates in soils, 270–271
effect on corrosion of buried steel pipelines, 271
constitutive models (See Soil constitutive models)
corrosivity affecting pipelines, critical factors, 268
differential aeration corrosion cells, 271
force–displacement, 105
index tests, 121
microorganisms in, 271
pH of soils, 270
effect on corrosion of buried steel pipelines, 271
redox potential, 271
spring load–displacement relationships, 105
spring parameters, 105
types and resistivity, 268–269
effect on external corrosion rate of bare carbon steel
with no cathodic protection, 270
Wenner four-pin technique, 269
venting, 686
water coverage due to vapor transportation and
Soil constitutive models, 121–122
critical state models, 128–129
CSSM conceptual framework, 129
elastic parameters, 122–123
bulk modulus, 122
constitutive relationship relating stress
with strain, 122
constrained soil elastic modulus, 123
elastic shear modulus, 122
isotropic hypoelastic relationship, 123
lateral coefficient of earth pressure at rest, 122
maximum shear strength, 123
modulus coefficient, 123
overconsolidation ratio, 122
Poisson’s ratio, 122
rigidity index, 123
undrained shear strength, 123, 124
plasticity models, 123–128
 classical plasticity models (See Classical plasticity models)
 flow rule, 124
 hardening or softening rule, 124
 von Mises yield surface, 125
 yield function, 124
 Yield surfaces, 125

Solidification rate, 165

Solid particle erosion, 401–405. See also Erosion-corrosion

Bourgoyne’s equation, 402

Brinell hardness, 403

CFD prediction in a bend carrying liquid and sand particles, 403

comparison of allowable flow rates in an elbow using, 405

DNV RP OS1 and SPPS prediction trends, 404

effect of liquid rate on erosion for, 404

effect of sand rate on threshold flow rates in elbow using SPPS, 405

equations used in CFD simulations, 403

scanning electron microscope (SEM) images, 401

schematic of erosion mechanism, 401

SEM image of 316 stainless steel, 401

tool for erosion prediction, 404

Solubility, 389

 of niobium, 166

Solute drag, 167

SP. See Shot peening (SP)

Spangler assumptions
 for pressure distribution, 60

 Specified minimum elongation criterion, 321

 Specified minimum tensile strength (SMTS), 319, 579

 Specified minimum yield strength, 244, 579, 636

 Specified minimum yield stress (SMYS), 37, 49, 613

 Speed control unit (SCU), 774

 Spill-treating agents, 676

 Spiral welded pipe (SAWH), 67, 195

applicability, typical fields of, 200

 collapse capacity, 68

 complicating factor for, 68

 dimensional quality, 68

 impact on resistance of, 70

 information on the suitability, 67

 limitations of technology feasibility, 68

 modeled using pipe elements, 69

 offshore applications (See Offshore applications)

pipe properties, 70–71

 principle scheme, 196

 of formation, 196

 productivity and costs, 198

 quality control procedures, 198

 range of grades and dimensions, 198–200

 resources, 71

 submerged arc welding, 197

 two-step manufacturing process, 196

 usage, 67

 weld seam, 198

 Spoolable composites, 4

 Spread resistance, 364–368

 dependency on coating fault size and geometry, 367–368

 dependency on DC current density, 365–367

SSC. See Sulfide stress cracking (SSC)

SSCC. See Sulfide stress corrosion cracking (SSCC)

Stainless steels, 79
 corrosion failures, 739

Standard operating procedures (SOPs), 593

Standards, for line pipe manufacturing and testing

 ABS, 37

 API RP 1111, 37

 API RP 14J, 750

 API SPEC 5L/ISO 3183, 223

 ASME B31.8, 37

 BS 8010, 37

 CSA Z662, 37, 223

 DNV-OS-F101, 37, 39, 42–44, 223

 Dutch standard NEN 3650, 38

 EFC Publication Number 16, 224

 ISO 10893-9—2011, 224

 ISO 16708:2006, 38

 ISO 17776:2000(E), 750

 ISO 31000, 699

 NACE Standard TM0177-2005, 224

 NACE Standard TM0284-2011, 224

 NORSOK, 699, 724, 750

 Steel body mandrel pigs, 603

 Steel compression sleeves, 640, 641, 661

 Steel-making process, 611

 thermal mechanical (TM) controlled, 612

 Steel sleeves, 660

 vs. fiber reinforced composite repairs, 649–651

Stiffness. See Pipeline stiffness

Strain-based design (SBD), 37–47, 242

applications, 39

Strain-based fatigue life, 319

Strain-based methods, 37

Strain capacity, 41–45

 compressive, 42

 CSA Z662-11, 42

 DNV-OS-F101, 42

 Dorey’s Model and discussion on, 43

 tensile, 43, 44

 CRES ECA framework, 45

 CSA Z662-11, 44

 DNV-OS-F101, 44–45

 ExxonMobil ECA framework, 45

Strain demand, 39

 challenging environments and, 39

 Strain levels, 39

 Strain limit damage (SLD), 320–321

 failure condition, 321

Strain relaxation, 83

Strains, due to ground movement, 40–41

Stray currents, 272–273

 and telluric effects, 268

Stress analysis challenges, 68–69

 finite element modeling, of spiral welded pipe, 69

 material anisotropic
 and principal directions of spiral welded pipe, 69

 running fracture paths, 69
Stress-based design (SBD), 29, 71, 200, 242, 243
Stress concentration factor (SCF), 579, 581, 586
Stress concentration type defects
engineering assessment protocol, 658
Stress corrosion cracking (SCC), 27, 73–74, 76–78, 88, 91–95, 345, 524, 540, 561, 580, 630, 635, 659–661, 718, 738
colony, 561
environmental degradation mechanisms, 580
failures, cause of, 76
influence of environmental variables on, 346
liquid water, 346
pH and H2S partial pressure, 346–347
Venn diagram, 78
Stress corrosion cracking DA (SCCDA), 489
important factors, considered in ranking susceptible valve segments, 490
improvement and future context, 491
overview of technique/standard, 490–491
status of standard, 491
strengths, 491
technique/standard in integrity management, 491
Stress-free lattice spacing, 82
Stress-oriented hydrogen-induced cracking (SOHIC), 345, 524
Stress relaxation, 74, 83, 87, 91, 450
Stress–strain relationship, 104, 121
Stretch-reducing mills, 218, 219
Strip yield, 28
Structural reliability, 333
failure conditions, 334
formulation, 333–334
Style 56 angled Dresser couplings, 622
Style 38 Dresser coupling, 622
Subject matter expert (SME), 732
Subsurface spills
cleanup methods for, 686
Sulfate-reducing bacteria (SRB), 269, 271, 387, 394, 499
Sulfide corrosion reactions, 343, 344
Sulfide stress corrosion cracking (SSCC), 225
Sulfide stress cracking (SSC), 193, 224, 225, 343
effect of environment temperature on, 347
H2S and pH limits in a modified alloy, 351
influence of metallurgical variables, in steels, 347–348
use of corrosion-resistant alloys to resist, 348–351
Sulfur-reducing bacteria (SRB), 428
Supersaturation, 407
Supervisory control and data acquisition (SCADA), 13–26, 501, 610, 614, 631
Surface damage, 76
Surface integrity, 74
Surge pressures, 50
Swiss cheese effect, 727, 732
Synchrotron, 83
x-ray, 84
Synergy, 400, 416
T
Tab-tied coupling, 622
Tape wrap coatings
typical problems, 559
Technological improvements, and risk management, 4
Technology qualification, 70–71
Telluric activity
earth resistivity influence on, 278
gemagnetic sources of, 276–278
Telluric currents, 268, 275, 276
Telluric effects, on pipelines, 276
Telluric hazard assessment, 279
earth conductivity structure, 280
one dimensional models, 281
gemagnetic activity, 279–280
gemagnetic data, 283
pipe line response, 280–281
PSP recordings without a flange and with a flange, 283
telluric fluctuations on pipelines, 282
telluric PSP variations, 283
telluric recordings, and simulations, 282
time of exceedance, of different telluric activity, 281
Temperature
impact performance and health, 149
requirements for pipeline transportation systems, 100
slab reheat ing, 166
Tensile residual stresses, 77
Tensile stresses, 74
Test pressures, 50
Tetraakis(hydroxymethyl)phosphonium sulfate (THPS), 605
Texture control, in pipeline steels, 172–182
austenite rolling fiber represented in 3D Euler space, 179
crystal of orientation, schematic representation, 174
discrete plot of orientations of a pipeline steel, 175
effect of austenite
pancaking on rolling texture, 178–180
recrystallization on plate texture, 177–178
FCC and BCC textures determined by EBSD on, 180
finish rolling in intercritical region, effect of, 181–182
fracture of pipeline steels, 175–177
ideal positions of most important BCC texture components of
Euler space, 176
ODF calculated from the discrete plot, 175
ODFs of heavy gauge plate, 181
orientation of a particular BCC grain with a pole figure
ND-inverse pole figure, and, 175
oriented grain in a rolled plate, schematic diagrams, 176
pancaked austenite grain of Br orientation, 180
percentage increase in DBTT as a function of, 182
phase transformation, on texture components, effect of, 177
planar anisotropy in Charpy V-notch energy, 182
recrystallized cube-oriented austenite grain, 178
Taylor factor map for plane strain tension along, 177
texture of an X80 grade pipeline steel, 182
texture on in-plane anisotropy, effect of, 182
transformation
of FCC cube texture into its BCC counterparts, 178
of FCC rolling fiber into its BCC counterparts, 179
Texture, X80 grade pipeline steel, 182
Thermal conductivity, 160
Thermal diffusion zinc (TDZ), 732
Thermal gas analysis (TGA), 427
Thermal spray aluminum (TSA) coatings, over active, 729
Thermodynamics approach, to centerline segregation, 165
Thermomechanically controlled processing (TMCP), 159, 162–164, 187
of microalloyed steels, 233
and microstructures, 164
Thermoplastic liners, 447
codes and standards, 447–448
CSA, comprehensive standard for, 447
installation process, 448–449
mechanical design aspects, 449
accordion buckling, 451
collapse pressure, of a tight fitting liner, 450
critical buckling pressure, 450
implications, 450
Thermoplastic pipe, 447
Tie-in and repair welding, 236–237
Tie-in weld, 659
Time-of-flight diffraction (TOFD), 564, 631
arrangement, 237
Timoshenko beam theory, 104
TMCP parameters, 161
Tolylenediisocyanate (TDI), 603
Tool loading, 550
Total acid number (TAN), 575
Total stress, 83
Total weight loss (TWL), 418
Toughness
initiation, 28–29
measurement, 31
impact tests, 32
J, CTOD, and CTOA, 32–33
propagation, 29–31
Training, safety management systems, 750
Transmission pipeline systems, 99
Transportation Safety Board of Canada (TSB), 666
Transverse field inspection (TFI) tools, 521
Triethylene glycol (TEG), 425
Tubular loop ER probes, 502
Two-step spiral welded pipe manufacturing process, 196
Typical low-constraint SE(T) J–R curves, 33

U
Ultimate strength design (USD), 616
Ultrasonic technology (UT), 510, 564
in-line corrosion inspections, 777
Ultrasonic thickness gauging
wall thicknesses determination techniques, 571–572
Ultrasonic wall thickness measurement, 523
UNIX servers, 14
Unpiggable installations, 546
Unpiggable pipeline
challenging/difficult to pig, 546–547
challenging pipeline inspection approach
cable operated inspection, 548
existing tools, modification of, 548
ILI tools, 549–551
pipeline modification, 547–548
selection process, 549
self-propelled inspection, 548–549
defined, 545
self-propelled inspection solutions, 551
helix, 554–555
MFL-based crawlers, 552–553
saturated low-frequency eddy current (SLOFEC), 553
UT-based crawlers, 552
timeline, 546
UOE pipes, 70, 189, 190
“Uptime: Strategies for Excellence in Maintenance Management”
(book), 6
UT. See Ultrasonic technology (UT)
UTCD. See UT crack detection (UTCD)
UT crack detection (UTCD), 524, 525, 549

V
Venn diagram, 5, 78
Vibration, as environmental stressor, 148
Vigilance, 148
Volumetric anomalies, 559

W
Wall thicknesses determination techniques
applications, 576
autonomous sensor, 572–574
constant wall thickness, 575
lab tests, 574–575
network considerations, 572–574
operating experience, 575–576
typical ultrasonic signal, 572
ultrasonic thickness gauging, 571–572
wireless ultrasonic sensor
on calibration plates, 574
Wax-based coatings, 559
Weather and outside force (WOF), 588
Web connection, 19–20
Welder qualification, 239
Welder training and qualification, 240
Welding, girth, 237, 238, 240–243, 245–248
Welding, in-service pipeline, 74, 239, 243–244, 651
burnthrough/blowout, 651
E7018-H4R electrodes, 653
in-service welding applications, 653
prevent hydrogen cracking, 652–654
preventing burnthrough, 651–652
primary concerns, 651
typical hydrogen crack, 651
Welding Institute of Canada (WIC) restraint test, 242
Welding, mechanized gas metal arc, 233, 235, 242, 245
Welding operations, 197, 239
Welding procedure specification (WPS), 239–240
Weld inspection, 4
Weldment corrosion, 743
Weld metal, 240
Wet fluorescent magnetic testing (WFMT), 358
Wet lay-up composite wrap, installation of, 648
WFMT. See Wet fluorescent magnetic testing (WFMT)
Windows operating system, 14
Winkler-type foundation, 112
model, 101
Wireless corrosion monitoring system, schematic, 572, 573
Wireless ultrasonic corrosion monitoring systems
long-range, 573
short-range, 573
Wire loop ER probes, 502
WM ILI tool, and bidirectional UT geometry, 549
Working memory, 146
 tips to manage, 146
Working stress design (WSD), 615
World energy consumption by fuel, 160
Wrinkle bends, 623
X
X-ray diffraction (XRD), 79, 427, 737
 stress measurement, 81, 83
 plane stress elastic model, 82–83
 principles of, 82
 sources of error, 83–84
Y
Yellow jacket (YJ), 559
Young’s modulus, 28, 54