Contents

PREFACE xi

1 INTRODUCTION 1

1.1 Multiprocessor and Multicomputer Systems 1

1.2 The Load Scheduling/Sharing Problem 3

1.3 Classification of Loads 4

1.3.1 Indivisible Loads, 5

1.3.2 Modularly Divisible Loads, 6

1.3.3 Arbitrarily Divisible Loads, 6

1.4 Divisible Loads: Applications 6

1.5 Communication Delay 9

1.6 Divisible Load Theory 10

Bibliographic Notes 11

2 THE SYSTEM MODEL 13

2.1 Processor Model 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Communication Link Model</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Some Definitions</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>An Illustrative Example</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Concluding Remarks</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Bibliographic Notes</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>General Description and Problem Formulation</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Load Distribution Equations: With Front End (Boundary Case)</td>
<td>23</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Load Distribution Equations: Without Front End (Boundary Case)</td>
<td>25</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Load Distribution Equations: With Front End (Interior Case)</td>
<td>26</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Load Distribution Equations: Without Front End (Interior Case)</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Motivation for Optimal Load Distribution</td>
<td>30</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Equal Division of Load</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Optimal Division of Load</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Recursive Equations for Optimal Load Distribution</td>
<td>34</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Load Origination at the Boundary: With Front End</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Load Origination at the Boundary: Without Front End</td>
<td>37</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Load Origination at the Interior: With Front End</td>
<td>40</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Load Origination at the Interior: Without Front End</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Inclusion of Solution Time</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Proof of Optimality Via Processor Equivalence Concept</td>
<td>48</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Load Origination at the Boundary: With Front End</td>
<td>48</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Load Origination at the Boundary: Without Front End</td>
<td>50</td>
</tr>
<tr>
<td>3.5.3</td>
<td>When to Distribute Load</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Ultimate Performance Limits</td>
<td>52</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Boundary Case: With Front End</td>
<td>52</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Boundary Case: Without Front End</td>
<td>53</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Interior Case: With Front End</td>
<td>53</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Interior Case: Without Front End</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Concluding Remarks</td>
<td>55</td>
</tr>
</tbody>
</table>
4 LOAD DISTRIBUTION IN TREE AND BUS NETWORKS

4.1 General Description and Basic Equations 57
 4.1.1 Load Distribution Equations: With Front End, 58
 4.1.2 Load Distribution Equations: Without Front End, 60

4.2 Motivation for Optimal Load Distribution 62

4.3 Optimal Load Distribution: Recursive Equations 64
 4.3.1 With-Front-End Processors, 64
 4.3.2 Without-Front-End Processors, 66
 4.3.3 An Illustrative Example, 68

4.4 Inclusion of Solution Time 70

4.5 Application to Bus Networks 73
 4.5.1 Architecture 1: Bus Network with Control Processor, 74
 4.5.2 Architecture 2: Bus Network without Control Processor (with Front End), 79
 4.5.3 Architecture 3: Bus Network without Control Processor (without Front End), 80
 4.5.4 Position of Processors in Bus Networks, 80
 4.5.5 Numerical Results, 81

4.6 Equivalent Processors in Homogeneous Tree Networks 84
 4.6.1 With-Front-End Processors, 84
 4.6.2 Without-Front-End Processors, 87

4.7 Performance Limits of a Binary Tree Network 88
 4.7.1 With-Front-End Processors, 88
 4.7.2 Without-Front-End Processors, 90

4.8 Concluding Remarks 91

5 OPTIMALITY CONDITIONS FOR LOAD DISTRIBUTION 93

5.1 Single-Level Tree Network 93
 5.1.1 With-Front-End Processors, 94
 5.1.2 Without-Front-End Processors, 96
 5.1.3 Concept of Equivalent Network, 97
 5.1.4 Rules for Optimal Load Distribution, 101
 5.1.5 Some Preliminary Results, 103
5.1.6 Main Results, 111
5.1.7 Extensions: Without-Front-End Processors, 115

5.2 Linear Network 118
5.2.1 With-Front-End Processors, 119
5.2.2 Without-Front-End Processors, 120
5.2.3 Rules for Optimal Load Distribution, 120
5.2.4 Some Preliminary Results, 121
5.2.5 Main Result, 123
5.2.6 Extensions: Without-Front-End Processors, 124

5.3 Effect of Inaccurate Modeling 125
5.4 Concluding Remarks 128
Bibliographic Notes 129

6 ANALYTICAL RESULTS FOR LINEAR NETWORKS 130
6.1 Definition and Some Remarks 130
6.2 Load Origination at the Boundary 131
6.2.1 Load Distribution Equations: With Front End, 131
6.2.2 Closed-Form Solution: With Front End, 132
6.2.3 Load Distribution Equations: Without Front End, 135
6.2.4 Closed-Form Solution: Without Front End, 135
6.3 Load Origination at the Interior 139
6.3.1 Load Distribution Equations: With Front End, 139
6.3.2 Closed-Form Solution: With Front End, 140
6.3.3 Load Distribution Equations: Without Front End, 143
6.3.4 Closed-Form Solution: Without Front End, 143
6.4 Concluding Remarks 146
Bibliographic Notes 146

7 OPTIMAL SEQUENCING AND ARRANGEMENT IN SINGLE-LEVEL TREE NETWORKS 147
7.1 Definitions and Some Remarks 148
7.2 With-Front-End Processors 149
7.2.1 Optimal Sequence, 150
7.2.2 Optimal Arrangement, 152
7.3 Without-Front-End Processors 155
7.4 Illustrative Examples 159
7.5 Concluding Remarks 160
Bibliographic Notes 161

8 ASYMPOTIC PERFORMANCE ANALYSIS: LINEAR AND TREE NETWORKS 162

8.1 Definitions and Some Remarks 163
8.2 Linear Networks With Front Ends 164
 8.2.1 Closed-Form Expressions, 164
 8.2.2 Asymptotic Analysis, 165
 8.2.3 Analysis of the Results, 167
8.3 Linear Networks Without Front Ends 170
 8.3.1 Closed-Form Expressions, 170
 8.3.2 Asymptotic Analysis, 171
 8.3.3 Analysis of the Results, 173
8.4 Single-Level Tree Networks with Front Ends 174
 8.4.1 Closed-Form Expressions, 174
 8.4.2 Asymptotic Analysis, 175
 8.4.3 Analysis of the Results, 176
8.5 Single-Level Tree Networks without Front Ends 177
 8.5.1 Closed-Form Expressions, 177
 8.5.2 Asymptotic Analysis, 178
 8.5.3 Analysis of the Results, 179
8.6 Concluding Remarks 180
Bibliographic Notes 181

9 EFFICIENT UTILIZATION OF FRONT ENDS IN LINEAR NETWORKS 182

9.1 Motivation and Some Remarks 182
9.2 Load Origination at the Boundary 184
 9.2.1 Closed-Form Solution, 184
 9.2.2 Asymptotic Analysis, 186
9.3 Load Origination at the Interior of the Network 188
 9.3.1 Closed-Form Solution, 188
 9.3.2 Asymptotic Analysis, 193
 9.3.3 Optimal Load Sequence, 195
 9.3.4 Optimal Load Origination, 195
9.4 Utility of the Infeasible Solution 200
9.5 Concluding Remarks 200
Bibliographic Notes 201
10 MULTI-INSTALLMENT LOAD DISTRIBUTION IN SINGLE-LEVEL TREE NETWORKS

10.1 Motivation and Preliminary Remarks 203
10.2 General Load Distribution Equations 204
 10.2.1 Load Distribution Equations: With Front End, 206
 10.2.2 Load Distribution Equations: Without Front End, 207
10.3 Closed-Form Solutions: With Front End 208
 10.3.1 Solution Using Rational Expansion Theorem, 210
 10.3.2 Solution Using Binomial Expansion, 211
10.4 Closed-Form Solutions: Without Front End 213
 10.4.1 Solution Using Rational Expansion Theorem, 214
 10.4.2 Solution Using Binomial Expansion, 216
10.5 Asymptotic Performance Analysis 217
 10.5.1 With-Front-End Processors, 218
 10.5.2 Without-Front-End Processors, 219
10.6 Discussion of the Results 220
10.7 Concluding Remarks 224
Bibliographic Notes 224

11 MULTI-INSTALLMENT LOAD DISTRIBUTION IN LINEAR NETWORKS

11.1 Motivation and Some Remarks 226
11.2 Analysis for With-Front-End Processors 229
 11.2.1 Closed-Form Expression for \(m = 1 \), 229
 11.2.2 Load Distribution Equations for \(m \geq 2 \), 231
 11.2.3 Closed-Form Expression for \(m \geq 2 \), 232
 11.2.4 Asymptotic Analysis, 235
11.3 Analysis for Without-Front-End Processors 246
 11.3.1 Closed-Form Expressions for \(m = 1 \) and 2, 248
 11.3.2 Load Distribution Equations for \(m \geq 3 \), 250
 11.3.3 Closed-Form Expression for \(m \geq 3 \), 252
 11.3.4 Asymptotic Analysis, 253
11.4 Concluding Remarks 259
Bibliographic Notes 259
12 MULTI-JOB LOAD DISTRIBUTION IN BUS NETWORKS 260

12.1 Bus Network With a Control Processor 260
 12.1.1 Closed-Form Solution for the Single-Job Scheme, 263
 12.1.2 Algorithm for the Multi-Job Scheme, 263
 12.1.3 Is This Multi-Job Scheme Optimal?, 269

12.2 Bus Network Without a Control Processor 269

12.3 Performance Evaluation 272

12.4 Concluding Remarks 274
 Bibliographic Notes 274

13 FUTURE RESEARCH DIRECTIONS 275
 Bibliographic Notes 280

BIBLIOGRAPHY 281

INDEX 286