Contents

List of Contributors xv
Preface xix

Section I: Concepts 1

1 The Concept of Green Analytical Chemistry 3
Miguel de la Guardia and Salvador Garrigues

1.1 Green Analytical Chemistry in the frame of Green Chemistry 3
1.2 Green Analytical Chemistry versus Analytical Chemistry 7
1.3 The ethical compromise of sustainability 9
1.4 The business opportunities of clean methods 11
1.5 The attitudes of the scientific community 12
References 14

2 Education in Green Analytical Chemistry 17
Miguel de la Guardia and Salvador Garrigues

2.1 The structure of the Analytical Chemistry paradigm 17
2.2 The social perception of Analytical Chemistry 20
2.3 Teaching Analytical Chemistry 21
2.4 Teaching Green Analytical Chemistry 25
2.5 From the bench to the real world 26
2.6 Making sustainable professionals for the future 28
References 29

3 Green Analytical Laboratory Experiments 31
Suparna Dutta and Arabinda K. Das

3.1 Greening the university laboratories 31
3.2 Green laboratory experiments 33
 3.2.1 Green methods for sample pretreatment 33
 3.2.2 Green separation using liquid-liquid, solid-phase and solventless extractions 37
 3.2.3 Green alternatives for chemical reactions 42
 3.2.4 Green spectroscopy 45
3.3 The place of Green Analytical Chemistry in the future of our laboratories 52
References 52
4 Publishing in Green Analytical Chemistry 55
Salvador Garrigues and Miguel de la Guardia

4.1 A bibliometric study of the literature in Green Analytical Chemistry 56
4.2 Milestones of the literature on Green Analytical Chemistry 57
4.3 The need for powerful keywords 61
4.4 A new attitude of authors faced with green parameters 62
4.5 A proposal for editors and reviewers 64
4.6 The future starts now 65
References 66

Section II: The Analytical Process 67

5 Greening Sampling Techniques 69
José Luis Gómez Ariza and Tamara García Barrera

5.1 Greening analytical chemistry solutions for sampling 70
5.2 New green approaches to reduce problems related to sample losses, sample contamination, transport and storage 70
 5.2.1 Methods based on flow-through solid phase spectroscopy 70
 5.2.2 Methods based on hollow-fiber GC/HPLC/CE 71
 5.2.3 Methods based on the use of nanoparticles 75
5.3 Greening analytical in-line systems 76
5.4 In-field sampling 77
5.5 Environmentally friendly sample stabilization 79
5.6 Sampling for automatization 79
5.7 Future possibilities in green sampling 80
References 80

6 Direct Analysis of Samples 85
Sergio Armenta and Miguel de la Guardia

6.1 Remote environmental sensing 85
 6.1.1 Synthetic Aperture Radar (SAR) images (satellite sensors) 86
 6.1.2 Open-path spectroscopy 86
 6.1.3 Field-portable analyzers 90
6.2 Process monitoring: in-line, on-line and at-line measurements 91
 6.2.1 NIR spectroscopy 92
 6.2.2 Raman spectroscopy 92
 6.2.3 MIR spectroscopy 93
 6.2.4 Imaging technology and image analysis 93
6.3 At-line non-destructive or quasi non-destructive measurements 94
 6.3.1 Photoacoustic Spectroscopy (PAS) 94
 6.3.2 Ambient Mass Spectrometry (MS) 95
 6.3.3 Solid sampling plasma sources 95
 6.3.4 Nuclear Magnetic Resonance (NMR) 96
6.3.5 X-ray spectroscopy 96
6.3.6 Other surface analysis techniques 97
6.4 New challenges in direct analysis 97
References 98

7 Green Analytical Chemistry Approaches in Sample Preparation 103
Marek Tobiszewski, Agata Mechlin'ska and Jacek Namieśnik

7.1 About sample preparation 103
7.2 Miniaturized extraction techniques 104
 7.2.1 Solid-phase extraction (SPE) 104
 7.2.2 Solid-phase microextraction (SPME) 105
 7.2.3 Stir-bar sorptive extraction (SBSE) 106
 7.2.4 Liquid-liquid microextraction 106
 7.2.5 Membrane extraction 108
 7.2.6 Gas extraction 109
7.3 Alternative solvents 113
 7.3.1 Analytical applications of ionic liquids 113
 7.3.2 Supercritical fluid extraction 114
 7.3.3 Subcritical water extraction 115
 7.3.4 Fluorous phases 116
7.4 Assisted extractions 117
 7.4.1 Microwave-assisted extraction 117
 7.4.2 Ultrasound-assisted extraction 117
 7.4.3 Pressurized liquid extraction 118
7.5 Final remarks 119
References 119

8 Green Sample Preparation with Non-Chromatographic Separation Techniques 125
Maria Dolores Luque de Castro and Miguel Alcaide Molina

8.1 Sample preparation in the frame of the analytical process 125
8.2 Separation techniques involving a gas–liquid interface 127
 8.2.1 Gas diffusion 127
 8.2.2 Pervaporation 127
 8.2.3 Membrane extraction with a sorbent interface 130
 8.2.4 Distillation and microdistillation 131
 8.2.5 Head-space separation 131
 8.2.6 Hydride generation and cold-mercury vapour formation 133
8.3 Techniques involving a liquid–liquid interface 133
 8.3.1 Dialysis and microdialysis 133
 8.3.2 Liquid–liquid extraction 134
 8.3.3 Single-drop microextraction 137
8.4 Techniques involving a liquid–solid interface 139
 8.4.1 Solid-phase extraction 139
 8.4.2 Solid-phase microextraction 141
 8.4.3 Stir-bar sorptive extraction 142
8.4.4 Continuous filtration
8.5 A Green future for sample preparation
References

9 Capillary Electrophoresis
Mihkel Kaljurand

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 The capillary electrophoresis separation techniques</td>
<td>153</td>
</tr>
<tr>
<td>9.2 Capillary electrophoresis among other liquid phase separation methods</td>
<td>155</td>
</tr>
<tr>
<td>9.2.1 Basic instrumentation for liquid phase separations</td>
<td>155</td>
</tr>
<tr>
<td>9.2.2 CE versus HPLC from the point of view of Green Analytical Chemistry</td>
<td>156</td>
</tr>
<tr>
<td>9.2.3 CE as a method of choice for portable instruments</td>
<td>159</td>
</tr>
<tr>
<td>9.2.4 World-to-chip interfacing and the quest for a 'killer' application for LOC devices</td>
<td>163</td>
</tr>
<tr>
<td>9.2.5 Gradient elution moving boundary electrophoresis and electrophoretic exclusion</td>
<td>165</td>
</tr>
<tr>
<td>9.3 Possible ways of surmounting the disadvantages of CE</td>
<td>167</td>
</tr>
<tr>
<td>9.4 Sample preparation in CE</td>
<td>168</td>
</tr>
<tr>
<td>9.5 Is capillary electrophoresis a green alternative?</td>
<td>169</td>
</tr>
<tr>
<td>References</td>
<td>170</td>
</tr>
</tbody>
</table>

10 Green Chromatography
Chi-Yu Lu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Greening liquid chromatography</td>
<td>175</td>
</tr>
<tr>
<td>10.2 Green solvents</td>
<td>176</td>
</tr>
<tr>
<td>10.2.1 Hydrophilic solvents</td>
<td>176</td>
</tr>
<tr>
<td>10.2.2 Ionic liquids</td>
<td>177</td>
</tr>
<tr>
<td>10.2.3 Supercritical Fluid Chromatography (SFC)</td>
<td>177</td>
</tr>
<tr>
<td>10.3 Green instruments</td>
<td>178</td>
</tr>
<tr>
<td>10.3.1 Microbore Liquid Chromatography (microbore LC)</td>
<td>179</td>
</tr>
<tr>
<td>10.3.2 Capillary Liquid Chromatography (capillary LC)</td>
<td>180</td>
</tr>
<tr>
<td>10.3.3 Nano Liquid Chromatography (nano LC)</td>
<td>181</td>
</tr>
<tr>
<td>10.3.4 How to transfer the LC condition from traditional LC to microbore LC, capillary LC or nano LC</td>
<td>182</td>
</tr>
<tr>
<td>10.3.5 Homemade micro-scale analytical system</td>
<td>183</td>
</tr>
<tr>
<td>10.3.6 Ultra Performance Liquid Chromatography (UPLC)</td>
<td>184</td>
</tr>
<tr>
<td>References</td>
<td>185</td>
</tr>
</tbody>
</table>

11 Green Analytical Atomic Spectrometry
Martín Resano, Esperanza García-Ruiz and Miguel A. Belarra

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Atomic spectrometry in the context of Green Analytical Chemistry</td>
<td>199</td>
</tr>
<tr>
<td>11.2 Improvements in sample pretreatment strategies</td>
<td>202</td>
</tr>
<tr>
<td>11.2.1 Specific improvements</td>
<td>202</td>
</tr>
<tr>
<td>11.2.2 Slurry methods</td>
<td>204</td>
</tr>
<tr>
<td>11.3 Direct solid sampling techniques</td>
<td>205</td>
</tr>
</tbody>
</table>
11.3 Basic operating principles of the techniques discussed
- 11.3.1 Basic operating principles of the techniques discussed 205
- 11.3.2 Sample requirements and pretreatment strategies 207
- 11.3.3 Analyte monitoring: The arrival of high-resolution continuum source atomic absorption spectrometry 208
- 11.3.4 Calibration 210
- 11.3.5 Selected applications 210

11.4 Future for green analytical atomic spectrometry
- 11.4 Future for green analytical atomic spectrometry 213

References
- 11.4 Future for green analytical atomic spectrometry 215

12 Solid Phase Molecular Spectroscopy

Antonio Molina-Díaz, Juan Francisco García-Reyes and Natividad Ramos-Martos

- 12.1 Solid phase molecular spectroscopy: an approach to Green Analytical Chemistry 221
- 12.2 Fundamentals of solid phase molecular spectroscopy 222
 - 12.2.1 Solid phase absorption (spectrophotometric) procedures 222
 - 12.2.2 Solid phase emission (fluorescence) procedures 225
- 12.3 Batch mode procedures 225
- 12.4 Flow mode procedures 226
 - 12.4.1 Monitoring an intrinsic property 227
 - 12.4.2 Monitoring derivative species 231
 - 12.4.3 Recent flow-SPMS based approaches 232
- 12.5 Selected examples of application of solid phase molecular spectroscopy 233
- 12.6 The potential of flow solid phase envisaged from the point of view of Green Analytical Chemistry 235

References
- 12.6 The potential of flow solid phase envisaged from the point of view of Green Analytical Chemistry 240

13 Derivative Techniques in Molecular Absorption, Fluorimetry and Liquid Chromatography as Tools for Green Analytical Chemistry

José Manuel Cano Pavón, Amparo García de Torres, Catalina Bosch Ojeda, Fuensanta Sánchez Rojas and Elisa I. Vereda Alonso

- 13.1 The derivative technique as a tool for Green Analytical Chemistry 245
 - 13.1.1 Theoretical aspects 246
- 13.2 Derivative absorption spectrometry in the UV-visible region 247
 - 13.2.1 Strategies to greener derivative spectrophotometry 248
- 13.3 Derivative fluorescence spectrometry 250
 - 13.3.1 Derivative synchronous fluorescence spectrometry 251
- 13.4 Use of derivative signal techniques in liquid chromatography 254

References
- 13.4 Use of derivative signal techniques in liquid chromatography 255

14 Greening Electroanalytical Methods

Paloma Yáñez-Sedeño, José M. Pingarrón and Lucas Hernández

- 14.1 Towards a more environmentally friendly electroanalysis 261
- 14.2 Electrode materials 262
 - 14.2.1 Alternatives to mercury electrodes 262
 - 14.2.2 Nanomaterial-based electrodes 268
- 14.3 Solvents 270
14.3.1 Ionic liquids 271
14.3.2 Supercritical fluids 273
14.4 Electrochemical detection in flowing solutions 274
 14.4.1 Injection techniques 274
 14.4.2 Miniaturized systems 276
14.5 Biosensors 278
 14.5.1 Greening biosurface preparation 278
 14.5.2 Direct electrochemical transfer of proteins 281
14.6 Future trends in green electroanalysis 282

References 282

Section III: Strategies 289

15 Energy Savings in Analytical Chemistry 291
Mihkel Koel

15.1 Energy consumption in analytical methods 291
15.2 Economy and saving energy in laboratory practice 294
 15.2.1 Good housekeeping, control and maintenance 295
15.3 Alternative sources of energy for processes 296
 15.3.1 Using microwaves in place of thermal heating 297
 15.3.2 Using ultrasound in sample treatment 299
 15.3.3 Light as a source of energy 301
15.4 Using alternative solvents for energy savings 302
 15.4.1 Advantages of ionic liquids 303
 15.4.2 Using subcritical and supercritical fluids 303
15.5 Efficient laboratory equipment 305
 15.5.1 Trends in sample treatment 306
15.6 Effects of automation and micronization on energy consumption 307
 15.6.1 Miniaturization in sample treatment 308
 15.6.2 Using sensors 310
15.7 Assessment of energy efficiency 312

References 316

16 Green Analytical Chemistry and Flow Injection Methodologies 321
Luis Dante Martínez, Soledad Cerutti and Raúl Andrés Gil

16.1 Progress of automated techniques for Green Analytical Chemistry 321
16.2 Flow injection analysis 322
16.3 Sequential injection analysis 325
16.4 Lab-on-valve 327
16.5 Multicommutation 328
16.6 Conclusions and remarks 334

References 334

17 Miniaturization 339
Alberto Escarpa, Miguel Ángel López and Lourdes Ramos

17.1 Current needs and pitfalls in sample preparation 340
17.2 Non-integrated approaches for miniaturized sample preparation 341
17.2.1 Gaseous and liquid samples 341
17.2.2 Solid samples 350
17.3 Integrated approaches for sample preparation on microfluidic platforms 353
 17.3.1 Microfluidic platforms in sample preparation process 353
 17.3.2 The isolation of analyte from the sample matrix: filtering approaches 356
 17.3.3 The isolation of analytes from the sample matrix: extraction approaches 360
 17.3.4 Preconcentration approaches using electrokinetics 365
 17.3.5 Derivatization schemes on microfluidic platforms 372
 17.3.6 Sample preparation in cell analysis 373
17.4 Final remarks 378
References 379

18 Micro- and Nanomaterials Based Detection Systems Applied in Lab-on-a-Chip Technology 389
Mariana Medina-Sánchez and Arben Merkoçi 389

 18.1 Micro- and nanotechnology in Green Analytical Chemistry 389
 18.2 Nanomaterials-based (bio)sensors 390
 18.2.1 Optical nano(bio)sensors 391
 18.2.2 Electrochemical nano(bio)sensors 393
 18.2.3 Other detection principles 395
 18.3 Lab-on-a-chip (LOC) technology 396
 18.3.1 Miniaturization and nano-/microfluidics 396
 18.3.2 Micro- and nanofabrication techniques 397
 18.4 LOC applications 398
 18.4.1 LOCs with optical detections 398
 18.4.2 LOCs with electrochemical detectors 398
 18.4.3 LOCs with other detections 399
 18.5 Conclusions and future perspectives 400
References 401

19 Photocatalytic Treatment of Laboratory Wastes Containing Hazardous Organic Compounds 407
Edmondo Pramauro, Alessandra Bianco Prevot and Debora Fabbri 407

 19.1 Photocatalysis 407
 19.2 Fundamentals of the photocatalytic process 408
 19.3 Limits of the photocatalytic treatment 408
 19.4 Usual photocatalytic procedure in laboratory practice 408
 19.4.1 Solar detoxification of laboratory waste 409
 19.5 Influence of experimental parameters 411
 19.5.1 Dissolved oxygen 411
 19.5.2 pH 411
 19.5.3 Catalyst concentration 412
 19.5.4 Degradation kinetics 412
 19.6 Additives reducing the e\(^{-}\)/h\(^{+}\) recombination 412
 19.7 Analytical control of the photocatalytic treatment 413
 19.8 Examples of possible applications of photocatalysis to the treatment of laboratory wastes 413
 19.8.1 Percolates containing soluble aromatic contaminants 414
19.8.2 Photocatalytic destruction of aromatic amine residues in aqueous wastes 414
19.8.3 Degradation of aqueous wastes containing pesticides residue 415
19.8.4 The peculiar behaviour of triazine herbicides 416
19.8.5 Treatment of aqueous wastes containing organic solvent residues 416
19.8.6 Treatment of surfactant-containing aqueous wastes 416
19.8.7 Degradation of aqueous solutions of azo-dyes 419
19.8.8 Treatment of laboratory waste containing pharmaceuticals 419
19.9 Continuous monitoring of photocatalytic treatment 420
References 420

Section IV: Fields of Application 425

20 Green Bioanalytical Chemistry 427
Tadashi Nishio and Hideko Kanazawa

20.1 The analytical techniques in bioanalysis 427
20.2 Environmental-responsive polymers 428
20.3 Preparation of a polymer-modified surface for the stationary phase of environmental-responsive chromatography 430
20.4 Temperature-responsive chromatography for green analytical methods 432
20.5 Biological analysis by temperature-responsive chromatography 432
20.5.1 Analysis of propofol in plasma using water as a mobile phase 434
20.5.2 Contraceptive drugs analysis using temperature gradient chromatography 435
20.6 Affinity chromatography for green bioseparation 436
20.7 Separation of biologically active molecules by the green chromatographic method 438
20.8 Protein separation by an aqueous chromatographic system 441
20.9 Ice chromatography 442
20.10 High-temperature liquid chromatography 443
20.11 Ionic liquids 443
20.12 The future in green bioanalysis 444
References 444

21 Infrared Spectroscopy in Biodiagnostics: A Green Analytical Approach 449
Mohammadreza Khanmohammadi and Amir Bagheri Garmarudi

21.1 Infrared spectroscopy capabilities 449
21.2 Infrared spectroscopy of bio-active chemicals in a bio-system 451
21.3 Medical analysis of body fluids by infrared spectroscopy 453
21.3.1 Blood and its extracts 455
21.3.2 Urine 457
21.3.3 Other body fluids 457
21.4 Diagnosis in tissue samples via IR spectroscopic analysis 457
21.4.1 Main spectral characteristics 459
21.4.2 The role of data processing 460
21.4.3 Cancer diagnosis by FTIR spectrometry 465
21.5 New trends in infrared spectroscopy assisted biodiagnostics 468
References 470
22 Environmental Analysis 475
Ricardo Erthal Santelli, Marcos Almeida Bezerra, Julio Carlos Afonso, Maria de Fátima Batista de Carvalho, Eliane Padua Oliveira and Aline Soares Freire

22.1 Pollution and its control 475
22.2 Steps of an environmental analysis 476
22.2.1 Sample collection 476
22.2.2 Sample preparation 476
22.2.3 Analysis 479
22.3 Green environmental analysis for water, wastewater and effluent 480
22.3.1 Major mineral constituents 480
22.3.2 Trace metal ions 481
22.3.3 Organic pollutants 483
22.4 Green environmental analysis applied for solid samples 485
22.4.1 Soil 485
22.4.2 Sediments 488
22.4.3 Wastes 492
22.5 Green environmental analysis applied for atmospheric samples 496
22.5.1 Gases 496
22.5.2 Particulates 497
References 497

23 Green Industrial Analysis 505
Sergio Armenta and Miguel de la Guardia

23.1 Greening industrial practices for safety and cost reasons 505
23.2 The quality control of raw materials and end products 506
23.3 Process control 510
23.4 Effluent control 511
23.5 Working atmosphere control 514
23.6 The future starts now 515
References 515

Index 519