Contents

Contributors ix
Preface xiii

1 Evolution of DNA Marker Technology in Plants 3
 Robert J. Henry
 Introduction 4
 Early Marker Technologies 4
 Evolving Range of Applications of DNA Markers in Plants 12
 Applications 13
 Future Developments 15
 References 15

2 Whole-Genome Sequencing for Marker Discovery 21
 Mark Edwards
 Sequencing Strategies 22
 Sequencing Technologies 23
 Epigenetic Markers 31
 Genome-Wide Selection 32
 Data Analysis Resources 32
 References 33

Color plate section located between pages 34 and 35.

3 Amplicon Sequencing for Marker Discovery 35
 Timothy R. Sexton and Frances M. Shapter
 Introduction 36
 Background 36
 Maximizing Efficiency Through Sample Pooling 38
 Limitations of Amplicon-Based MPS 44
 Bioinformatics 51
 Concluding Remarks 52
 Acknowledgments 52
 References 53

4 Transcriptome Sequencing for Marker Discovery 57
 Susan Gillies
 Introduction 58
 Basic Approach
Contents

Conclusions 64
References 64

5 Molecular Markers in Plant Improvement 67
Peter J. Prentis, Edward K. Gilding, Ana Pavasovic, Celine H. Frere, and Ian D. Godwin
Introduction 68
Plant Domestication and Traditional Breeding 68
Application of Molecular Markers to Breeding 70
Next-Generation Approaches to QTL Discovery 75
Conclusion 77
References 78

6 Applications of Molecular Markers in Plant Conservation 81
Maurizio Rossetto and Paul D. Rymer
Introduction 82
Traditional Approaches 86
The Way Forward 91
Conclusion 95
References 96

7 Molecular Markers for Plant Biosecurity 99
Andrew D.W. Geering
Introduction 100
The Present—PCR for Specific Diagnosis and for DNA Barcoding 101
The Future—Next-Generation Sequencing Methods to Revolutionize Plant Quarantine Diagnostics 105
Conclusions 110
Acknowledgments 111
References 111

8 Molecular Markers for Harnessing Heterosis 119
Gopala S. Krishnan, A.K. Singh, Daniel L.E. Waters, and Robert J. Henry
Introduction 120
Molecular Markers for Understanding the Genetic Basis of Heterosis 122
Molecular Diversity and Heterosis—Molecular Markers for Predicting Heterosis 123
Conclusion 131
References 132
<table>
<thead>
<tr>
<th>9</th>
<th>Genetic Variant Discovery and Its Use in Genome Characterization of Agronomically Important Crop Species</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stéphane Deschamps and Matthew A. Campbell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Sanger Resequencing</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Single Feature Polymorphisms</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Next-Generation Sequencing</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>High-Density Genotyping using the Illumina Golden Gate Platform</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Genotyping by Sequencing</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Genome Characterization and Haplotypes</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Conclusions and Perspectives</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>160</td>
</tr>
</tbody>
</table>

10	Future Prospects of Molecular Markers in Plants	169
	Reyazul R. Mir and Rajeev K. Varshney	
	Introduction	170
	Molecular Markers: The Past	172
	Molecular Markers: The Present	173
	Molecular Markers: The Future	175
	Novel Approaches or Platforms for Plant Breeding	180
	Conclusions	183
	Acknowledgments	184
	References	184

Index | 191 |