Contents

Preface ix
Acknowledgements x

Part 1
Energy metabolism

1. Introduction to metabolic pathways 2
2. Biosynthesis of ATP I: ATP, the molecule that powers metabolism 4
3. Biosynthesis of ATP II: mitochondrial respiratory chain 6
4. Oxidation of cytosolic NADH: the malate/aspartate shuttle and glycerol phosphate shuttle 8
5. Metabolism of glucose to provide energy 10
6. Metabolism of one molecule of glucose yields 31 (or should it be 38?) molecules of ATP 12
7. Anaerobic metabolism of glucose and glycogen to yield energy as ATP 14
8. 2,3-Bisphosphoglycerate (2,3-BPG) and the red blood cell 16
9. Metabolism of triacylglycerol to provide energy as ATP 18

Part 2
Carbohydrate metabolism

10. Metabolism of glucose to glycogen 20
11. Glycogen metabolism I 22
12. Glycogen metabolism II 24
13. Glycogen metabolism III: regulation of glycogen breakdown (glycogenolysis) 26
14. Glycogen metabolism IV: regulation of glycogen synthesis (glycogenesis) 28
15. Pentose phosphate pathway: the production of NADPH and reduced glutathione 30
16. Regulation of glycolysis: overview exemplified by glycolysis in cardiac muscle 32
17. Glycolysis in skeletal muscle: biochemistry of sport and exercise 34
18. Regulation of gluconeogenesis 36
19. Regulation of Krebs cycle 38
20. Mammals cannot synthesize glucose from fatty acids 40
21. Supermouse: overexpression of cytosolic PEPCK in skeletal muscle causes super-athletic performance 42
22. Sorbitol, galactitol, glucuronate and xylitol 44
23. Fructose metabolism 46
24. Ethanol metabolism 48

Part 3
Fat metabolism

25. Pyruvate/malate cycle and the production of NADPH 50
26. Metabolism of glucose to fat (triacylglycerol) 52
27. Metabolism of glucose to fatty acids and triacylglycerol 54
28. Glycolysis and the pentose phosphate pathway collaborate in liver to make fat 56
29. Esterification of fatty acids to triacylglycerol in liver and white adipose tissue 58
30. Mobilization of fatty acids from adipose tissue I: regulation of lipolysis 60
31. Mobilization of fatty acids from adipose tissue II: triacylglycerol/fatty acid cycle 62
32. Glyceroneogenesis 64
33. Metabolism of protein to fat after feeding 66
34. Elongation and desaturation of fatty acids 68
35. Fatty acid oxidation and the carnitine shuttle 70
36. Ketone bodies 72
Part 4 Steroid metabolism

42 Cholesterol 84
43 Steroid hormones and bile salts 86

Part 5 Amino acid metabolism

44 Biosynthesis of the non-essential amino acids 88
45 Catabolism of amino acids I 90
46 Catabolism of amino acids II 92
47 Metabolism of amino acids to glucose in starvation and during the period immediately after refeeding 94
48 Disorders of amino acid metabolism 96
49 Phenylalanine and tyrosine metabolism 98
50 Tryptophan metabolism: the biosynthesis of NAD+, serotonin and melatonin 100
51 Ornithine cycle for the production of urea: the ‘urea cycle’ 102

Part 6 Metabolic channelling

52 Metabolic channelling I: enzymes are organized to enable channelling of metabolic intermediates 104
53 Metabolic channelling II: fatty acid synthase 106

Part 7 Purines, pyrimidines and porphyrins

54 Amino acid metabolism, folate metabolism and the ‘1-carbon pool’ I: purine biosynthesis 108
55 Amino acid metabolism, folate metabolism and the ‘1-carbon pool’ II: pyrimidine biosynthesis 110
56 Krebs uric acid cycle for the disposal of nitrogenous waste 112
57 Porphyrin metabolism, haem and the bile pigments 114

Part 8 Integration of metabolic pathways and diabetes

58 Metabolic pathways in fasting liver and their disorder in Reye’s syndrome 116
59 Diabetes I: metabolic changes in diabetes 118
60 Diabetes II: types I and II diabetes, MODY and pancreatic β-cell metabolism 120
61 Diabetes III: type 2 diabetes and dysfunctional liver metabolism 122

Index 125