Contents

Preface xiii

1 Introduction 1
 1.1 What is a HAPS? 1
 1.2 Structure of the Book 3
 References 4

2 Overview on HAPS 5
 2.1 HAPS System Concepts 5
 2.1.1 HAPS Definition and Features 5
 2.1.2 Components of HAPS Communication Systems 7
 2.1.2.1 Stratospheric Segment 7
 2.1.2.2 Ground Segment 8
 2.2 Radio Regulations for HAPS 9
 2.3 Applications and Services 11
 2.3.1 Selection of Possible Applications 11
 2.3.2 Application and Service Requirements 12
 2.3.3 Narrowband Services 12
 2.3.4 Broadband Services 13
 2.4 HAPS Networks 14
 2.5 Terrestrial, Satellite and Stratospheric Communication Systems: A Comparison 15
 2.6 Survey of the Evolution and State-of-the-Art of HAPS in the World 17
 2.6.1 North American HAPS Projects 17
 2.6.1.1 SHARP 17
 2.6.1.2 Sky Station 20
 2.6.1.3 HALO-Proteus 21
 2.6.1.4 Pathfinder, Pathfinder Plus, HELIOS, SkyTower 21
 2.6.2 European Projects and Activities on HAPS 23
 2.6.2.1 HALE 24
2.6.2.2 STRATOS 24
2.6.2.3 HeliNet 25
2.6.2.4 CAPANINA 26
2.6.2.5 COST 297 – HAPCOS 27
2.6.2.6 USE HAAS 29
2.6.2.7 European Union Research Thematic Networks 29

2.6.3 Asia-Pacific Projects and Activities on HAPS 30
2.6.3.1 Japanese Activities 30
2.6.3.2 Korean Activities 31
2.6.3.3 International Cooperation Activities in Malaysia 32

References 33
3.4.2.2 Adaptive Modulation
3.4.2.3 Digital Transmission Rate Reduction
3.4.3 Diversity
3.4.3.1 Site Diversity
3.4.3.2 Platform Diversity
3.4.3.3 Frequency Diversity
3.4.3.4 Time Diversity
3.4.4 Fading Detection
3.4.4.1 Open Loop
3.4.4.2 Closed Loop
3.4.4.3 Hybrid Loop
3.5 Conclusions
References

4 Antennas for HAPS
4.1 Introduction
4.2 Antenna Requirements
4.2.1 Physical Requirements
4.2.2 Gain, Directivity and Efficiency
4.2.3 Sidelobe Performance
4.2.4 Footprint
4.2.5 Beam Steering
4.2.6 Scan Range
4.2.7 Coverage Area
4.2.8 Multiple Beam Functionality
4.2.9 Operating Frequency
4.3 Antenna Types for High-Altitude Platforms
4.3.1 Phased-Array Antennas
4.3.2 Aperture Antennas
4.3.2.1 Lens Antennas
4.3.2.2 Parabolic Reflectors
4.3.2.3 Horn Antennas
4.3.3 Broadband Printed Array Antennas
4.3.4 Smart (Adaptive) Antennas
4.4 Antenna Design Recommendations at Operating Frequencies Allocated to HAPS
4.4.1 Antennas for IMT-2000 Frequency Band (2.1 GHz)
4.4.2 Antennas for the Ka Frequency Band (27/31 GHz)
4.4.3 Antennas for the 47/49 GHz Frequency Band
4.5 Steering Mechanisms
4.5.1 Axis Control Gimbals
4.5.2 Antenna Positioning Systems
4.5.3 Research on Antenna Gimbals

4.6 Beamforming

4.6.1 HAPS-Based Beamforming

4.6.1.1 Adaptive Methods

4.6.1.2 Non-adaptive Methods

4.6.2 Ground-Based Beamforming

4.7 Challenges

References

5 Communication Systems Based on HAPS

5.1 Components of HAPS Communication Systems

5.1.1 Stratospheric Segment

5.1.1.1 Platforms

5.1.1.2 Telecommunications Payload

5.1.1.3 Telemetry, Tracking and Command

5.1.1.4 Attitude and Stabilisation Control

5.1.1.5 Electrical Power Subsystem

5.1.2 Ground Segment

5.1.2.1 Antennas

5.1.2.2 Low-noise Amplifier

5.1.2.3 High-power Amplifier

5.1.2.4 Software

5.1.2.5 People

5.2 Spectrum Allocation for HAPS

5.3 HAPS Link Budget

5.3.1 Uncoded Digital Transmission Analysis

5.3.1.1 Uplink

5.3.1.2 Transponder

5.3.1.3 Downlink

5.3.2 Coded Digital Transmission Features

5.3.3 IMT-2000 (2.1 GHz) Link Budgets

5.3.3.1 HAPS for IMT-2000 Systems

5.3.3.2 CDMA HAPS Link Budget for Voice

5.3.3.3 CDMA HAPS Link Budget for High-Speed Data Services

5.3.4 Ka-Band (27/31 GHz) Link Budgets

5.3.4.1 Clear Sky

5.3.4.2 Rain

5.3.5 SHF-Band (47/49 GHz) Link Budget

5.3.5.1 Frequency Planning

5.3.5.2 Transmission Characteristics of the Platform Station

5.3.5.3 User Terminals and Ground Stations
5.3.5.4 Radioelectric Emission Characteristics of HAPS

5.3.5.5 Link Budget Analysis

5.3.6 Link Budget Comparison

5.4 Conclusions

References

6 HAPS Networks

6.1 Introduction

6.2 Network Topologies

6.2.1 Point-To-Point Deployment Topology

6.2.2 Point-To-Multipoint Deployment Topology

6.2.3 Multipoint-To-Multipoint Deployment Topology

6.2.4 Hybrid Deployment Topology

6.3 Network Architectures for Service Candidates

6.3.1 Ring-Shaped Cell Clustering

6.3.2 Cell Scanning

6.3.3 Multiple-Beam Mobile Platform Scenario

6.3.4 Macrocell–Microcell–HAPS Topology

6.3.5 Cell Sectorisation Architecture

6.3.6 Standalone Platform

6.3.7 Network of Platforms Connected Via Ground Stations

6.3.8 Network of Platforms Connected Via Interplatform Links

6.3.9 Integrated Terrestrial–HAPS–Satellite Networks

6.3.9.1 Use of HAPS for Interactive Digital Broadcast System

6.3.9.2 Symmetric DVB-RCH Configuration

6.3.9.3 Asymmetric DVB-RCH Configuration

6.4 Interworking Requirements

6.4.1 Cell Planning

6.4.2 Call Admission Control

6.4.3 Handover Issues

6.5 HAPS Networks for Other Applications

6.5.1 Navigation

6.5.2 Emergency Services

6.6 Free Space Optical Links in HAPS

6.6.1 Stratospheric Relay and Integrated Satellite–HAPS Using Optical Links

6.6.2 Optical Satellite Downlinks for Earth Observation Satellites Using HAPS

6.7 Resource Management

6.7.1 Resource Allocation