CONTENTS

Preface xix
Acknowledgments xxv

PART I BASIC DIGITAL CIRCUITS

1 Gate-level combinational circuit 1
 1.1 Introduction 1
 1.2 General description 2
 1.2.1 Basic lexical rules 2
 1.2.2 Library and package 3
 1.2.3 Entity declaration 3
 1.2.4 Data type and operators 3
 1.2.5 Architecture body 4
 1.2.6 Code of a 2-bit comparator 5
 1.3 Structural description 6
 1.4 Testbench 8
 1.5 Bibliographic notes 9
 1.6 Suggested experiments 10
 1.6.1 Code for gate-level greater-than circuit 10
 1.6.2 Code for gate-level binary decoder 10

2 Overview of FPGA and EDA software 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>FPGA</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Overview of a general FPGA device</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Overview of the Xilinx Spartan-3 devices</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Overview of the Digilent S3 board</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Development flow</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Overview of the Xilinx ISE project navigator</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Short tutorial on ISE project navigator</td>
<td>19</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Create the design project and HDL codes</td>
<td>21</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Create a testbench and perform the RTL simulation</td>
<td>22</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Add a constraint file and synthesize and implement the code</td>
<td>22</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Generate and download the configuration file to an FPGA device</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Short tutorial on the ModelSim HDL simulator</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Bibliographic notes</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Suggested experiments</td>
<td>33</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Gate-level greater-than circuit</td>
<td>33</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Gate-level binary decoder</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>RT-level combinational circuit</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>RT-level components</td>
<td>35</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Relational operators</td>
<td>37</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Arithmetic operators</td>
<td>37</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Other synthesis-related VHDL constructs</td>
<td>38</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Summary</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Routing circuit with concurrent assignment statements</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Conditional signal assignment statement</td>
<td>41</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Selected signal assignment statement</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Modeling with a process</td>
<td>46</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Process</td>
<td>46</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Sequential signal assignment statement</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Routing circuit with if and case statements</td>
<td>47</td>
</tr>
<tr>
<td>3.5.1</td>
<td>If statement</td>
<td>47</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Case statement</td>
<td>49</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Comparison to concurrent statements</td>
<td>50</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Unintended memory</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>Constants and generics</td>
<td>53</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Constants</td>
<td>53</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Generics</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Design examples</td>
<td>56</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Hexadecimal digit to seven-segment LED decoder</td>
<td>56</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Sign-magnitude adder</td>
<td>59</td>
</tr>
</tbody>
</table>
3.7.3 Barrel shifter 62
3.7.4 Simplified floating-point adder 63
3.8 Bibliographic notes 69
3.9 Suggested experiments 69
3.9.1 Multi-function barrel shifter 69
3.9.2 Dual-priority encoder 69
3.9.3 BCD incrementor 69
3.9.4 Floating-point greater-than circuit 70
3.9.5 Floating-point and signed integer conversion circuit 70
3.9.6 Enhanced floating-point adder 70

4 Regular Sequential Circuit 71
4.1 Introduction 71
4.1.1 D FF and register 71
4.1.2 Synchronous system 72
4.1.3 Code development 73
4.2 HDL code of the FF and register 74
4.2.1 D FF 74
4.2.2 Register 77
4.2.3 Register file 78
4.2.4 Storage components in a Spartan-3 device Xilinx specific 79
4.3 Simple design examples 79
4.3.1 Shift register 79
4.3.2 Binary counter and variant 81
4.4 Testbench for sequential circuits 84
4.5 Case study 88
4.5.1 LED time-multiplexing circuit 88
4.5.2 Stopwatch 96
4.5.3 FIFO buffer 100
4.6 Bibliographic notes 104
4.7 Suggested experiments 105
4.7.1 Programmable square wave generator 105
4.7.2 PWM and LED dimmer 105
4.7.3 Rotating square circuit 105
4.7.4 Heartbeat circuit 106
4.7.5 Rotating LED banner circuit 106
4.7.6 Enhanced stopwatch 106
4.7.7 Stack 106

5 FSM 107
5.1 Introduction 107
5.1.1 Mealy and Moore outputs 107
5.1.2 FSM representation 108
5.2 FSM code development 111
5.3 Design examples 114
5.3.1 Rising-edge detector 114
5.3.2 Debouncing circuit 118
5.3.3 Testing circuit 122
5.4 Bibliographic notes 124
5.5 Suggested experiments 124
5.5.1 Dual-edge detector 124
5.5.2 Alternative debouncing circuit 124
5.5.3 Parking lot occupancy counter 125

6 FSMD 127
6.1 Introduction 127
6.1.1 Single RT operation 127
6.1.2 ASMD chart 128
6.1.3 Decision box with a register 129
6.2 Code development of an FSMD 131
6.2.1 Debouncing circuit based on RT methodology 132
6.2.2 Code with explicit data path components 134
6.2.3 Code with implicit data path components 136
6.2.4 Comparison 137
6.2.5 Testing circuit 138
6.3 Design examples 140
6.3.1 Fibonacci number circuit 140
6.3.2 Division circuit 143
6.3.3 Binary-to-BCD conversion circuit 147
6.3.4 Period counter 150
6.3.5 Accurate low-frequency counter 153
6.4 Bibliographic notes 156
6.5 Suggested experiments 157
6.5.1 Alternative debouncing circuit 157
6.5.2 BCD-to-binary conversion circuit 157
6.5.3 Fibonacci circuit with BCD I/O: design approach 1 157
6.5.4 Fibonacci circuit with BCD I/O: design approach 2 157
6.5.5 Auto-scaled low-frequency counter 158
6.5.6 Reaction timer 158
6.5.7 Babbage difference engine emulation circuit 159

PART II I/O MODULES
7 UART

7.1 Introduction 163
7.2 UART receiving subsystem 164
 7.2.1 Oversampling procedure 164
 7.2.2 Baud rate generator 165
 7.2.3 UART receiver 165
 7.2.4 Interface circuit 168
7.3 UART transmitting subsystem 171
7.4 Overall UART system 174
 7.4.1 Complete UART core 174
 7.4.2 UART verification configuration 176
7.5 Customizing a UART 178
7.6 Bibliographic notes 180
7.7 Suggested experiments 180
 7.7.1 Full-featured UART 180
 7.7.2 UART with an automatic baud rate detection circuit 181
 7.7.3 UART with an automatic baud rate and parity detection circuit 181
 7.7.4 UART-controlled stopwatch 181
 7.7.5 UART-controlled rotating LED banner 182

8 PS2 Keyboard

8.1 Introduction 183
8.2 PS2 receiving subsystem 184
 8.2.1 Physical interface of a PS2 port 184
 8.2.2 Device-to-host communication protocol 184
 8.2.3 Design and code 184
8.3 PS2 keyboard scan code 188
 8.3.1 Overview of the scan code 188
 8.3.2 Scan code monitor circuit 189
8.4 PS2 keyboard interface circuit 191
 8.4.1 Basic design and HDL code 192
 8.4.2 Verification circuit 194
8.5 Bibliographic notes 196
8.6 Suggested experiments 196
 8.6.1 Alternative keyboard interface I 196
 8.6.2 Alternative keyboard interface II 196
 8.6.3 PS2 receiving subsystem with watchdog timer 197
 8.6.4 Keyboard-controlled stopwatch 197
 8.6.5 Keyboard-controlled rotating LED banner 197

9 PS2 Mouse 199
9.1 Introduction
9.2 PS2 mouse protocol
 9.2.1 Basic operation
 9.2.2 Basic initialization procedure
9.3 PS2 transmitting subsystem
 9.3.1 Host-to-PS2-device communication protocol
 9.3.2 Design and code
9.4 Bidirectional PS2 interface
 9.4.1 Basic design and code
 9.4.2 Verification circuit
9.5 PS2 mouse interface
 9.5.1 Basic design
 9.5.2 Testing circuit
9.6 Bibliographic notes
9.7 Suggested experiments
 9.7.1 Keyboard control circuit
 9.7.2 Enhanced mouse interface
 9.7.3 Mouse-controlled seven-segment LED display

10 External SRAM
10.1 Introduction
10.2 Specification of the IS61LV25616AL SRAM
 10.2.1 Block diagram and I/O signals
 10.2.2 Timing parameters
10.3 Basic memory controller
 10.3.1 Block diagram
 10.3.2 Timing requirement
 10.3.3 Register file versus SRAM
10.4 A safe design
 10.4.1 ASMD chart
 10.4.2 Timing analysis
 10.4.3 HDL implementation
 10.4.4 Basic testing circuit
 10.4.5 Comprehensive SRAM testing circuit
10.5 More aggressive design
 10.5.1 Timing issues
 10.5.2 Alternative design I
 10.5.3 Alternative design II
 10.5.4 Alternative design III
 10.5.5 Advanced FPGA features
10.6 Bibliographic notes
10.7 Suggested experiments
11 Xilinx Spartan-3 Specific Memory

11.1 Introduction
11.2 Embedded memory of Spartan-3 device
 11.2.1 Overview
 11.2.2 Comparison
11.3 Method to incorporate memory modules
 11.3.1 Memory module via HDL component instantiation
 11.3.2 Memory module via Core Generator
 11.3.3 Memory module via HDL inference
11.4 HDL templates for memory inference
 11.4.1 Single-port RAM
 11.4.2 Dual-port RAM
 11.4.3 ROM
11.5 Bibliographic notes
11.6 Suggested experiments
 11.6.1 Block-RAM-based FIFO
 11.6.2 Block-RAM-based stack
 11.6.3 ROM-based sign-magnitude adder
 11.6.4 ROM based \(\sin(x)\) function
 11.6.5 ROM-based \(\sin(x)\) and \(\cos(x)\) functions

12 VGA controller I: graphic

12.1 Introduction
 12.1.1 Basic operation of a CRT
 12.1.2 VGA port of the S3 board
 12.1.3 Video controller
12.2 VGA synchronization
 12.2.1 Horizontal synchronization
 12.2.2 Vertical synchronization
 12.2.3 Timing calculation of VGA synchronization signals
 12.2.4 HDL implementation
12.2.5 Testing circuit 266
12.3 Overview of the pixel generation circuit 267
12.4 Graphic generation with an object-mapped scheme 268
12.4.1 Rectangular objects 269
12.4.2 Non-rectangular object 273
12.4.3 Animated object 275
12.5 Graphic generation with a bit-mapped scheme 282
12.5.1 Dual-port RAM implementation 282
12.5.2 Single-port RAM implementation 287
12.6 Bibliographic notes 287
12.7 Suggested experiments 287
12.7.1 VGA test pattern generator 287
12.7.2 SVGA mode synchronization circuit 288
12.7.3 Visible screen adjustment circuit 288
12.7.4 Ball-in-a-box circuit 288
12.7.5 Two-balls-in-a-box circuit 289
12.7.6 Two-player pong game 289
12.7.7 Breakout game 289
12.7.8 Full-screen dot trace 289
12.7.9 Mouse pointer circuit 290
12.7.10 Small-screen mouse scribble circuit 290
12.7.11 Full-screen mouse scribble circuit 290

13 VGA controller II: text 291
13.1 Introduction 291
13.2 Text generation 291
13.2.1 Character as a tile 291
13.2.2 Font ROM 292
13.2.3 Basic text generation circuit 294
13.2.4 Font display circuit 295
13.2.5 Font scaling 297
13.3 Full-screen text display 298
13.4 The complete pong game 302
13.4.1 Text subsystem 302
13.4.2 Modified graphic subsystem 309
13.4.3 Auxiliary counters 310
13.4.4 Top-level system 312
13.5 Bibliographic notes 317
13.6 Suggested experiments 317
13.6.1 Rotating banner 317
13.6.2 Underline for the cursor 317
13.6.3 Dual-mode text display 317
13.6.4 Keyboard text entry 317
13.6.5 UART terminal 317
13.6.6 Square wave display 318
13.6.7 Simple four-trace logic analyzer 318
13.6.8 Complete two-player pong game 319
13.6.9 Complete breakout game 319

PART III PICOBLAZE MICROCONTROLLER:

14 PicoBlaze Overview 323
14.1 Introduction 323
14.2 Customized hardware and customized software 324
 14.2.1 From special-purpose FSMD to general-purpose microcontroller 324
 14.2.2 Application of microcontroller 326
14.3 Overview of PicoBlaze 326
 14.3.1 Basic organization 326
 14.3.2 Top-level HDL modules 328
14.4 Development flow 329
14.5 Instruction set 329
 14.5.1 Programming model 331
 14.5.2 Instruction format 332
 14.5.3 Logical instructions 332
 14.5.4 Arithmetic instructions 333
 14.5.5 Compare and test instructions 334
 14.5.6 Shift and rotate instructions 335
 14.5.7 Data movement instructions 336
 14.5.8 Program flow control instructions 338
 14.5.9 Interrupt related instructions 341
14.6 Assembler directives 342
 14.6.1 The KCPSM3 directives 342
 14.6.2 The PBlazeIDE directives 342
14.7 Bibliographic notes 343

15 PicoBlaze Assembly Code Development 345
15.1 Introduction 345
15.2 Useful code segments 345
 15.2.1 KCPSM3 conventions 345
 15.2.2 Bit manipulation 346
 15.2.3 Multiple-byte manipulation 347
 15.2.4 Control structure 348
15.3 Subroutine development 350
15.4 Program development 351
15.4.1 Demonstration example 352
15.4.2 Program documentation 356
15.5 Processing of the assembly code 358
15.5.1 Compiling with KCSPM3 358
15.5.2 Simulation by PBlazeIDE 359
15.5.3 Reloading code via the JTAG port 362
15.5.4 Compiling by PBlazeIDE 362
15.6 Syntheses with PicoBlaze 363
15.7 Bibliographic notes 364
15.8 Suggested experiments 365
15.8.1 Signed multiplication 365
15.8.2 Multi-byte multiplication 365
15.8.3 Barrel shift function 365
15.8.4 Reverse function 365
15.8.5 Binary-to-BCD conversion 365
15.8.6 BCD-to-binary conversion 365
15.8.7 Heartbeat circuit 365
15.8.8 Rotating LED circuit 366
15.8.9 Discrete LED dimmer 366

16 PicoBlaze I/O Interface 367
16.1 Introduction 367
16.2 Output port 368
16.2.1 Output instruction and timing 368
16.2.2 Output interface 369
16.3 Input port 371
16.3.1 Input instruction and timing 371
16.3.2 Input interface 371
16.4 Square program with a switch and seven-segment LED display interface 373
16.4.1 Output interface 374
16.4.2 Input interface 375
16.4.3 Assembly code development 376
16.4.4 VHDL code development 384
16.5 Square program with a combinational multiplier and UART console 386
16.5.1 Multiplier interface 387
16.5.2 UART interface 387
16.5.3 Assembly code development 389
16.5.4 VHDL code development 398
16.6 Bibliographic notes 402
16.7 Suggested experiments 402
16.7.1 Low-frequency counter I 402
16.7.2 Low-frequency counter II 402
16.7.3 Auto-scaled low-frequency counter 402
16.7.4 Basic reaction timer with a software timer 403
16.7.5 Basic reaction timer with a hardware timer 403
16.7.6 Enhanced reaction timer 403
16.7.7 Small-screen mouse scribble circuit 403
16.7.8 Full-screen mouse scribble circuit 403
16.7.9 Enhanced rotating banner 403
16.7.10 Pong game 404
16.7.11 Text editor 404

17 PicoBlaze Interrupt Interface 405
17.1 Introduction 405
17.2 Interrupt handling in PicoBlaze 405
 17.2.1 Software processing 406
 17.2.2 Timing 407
17.3 External interface 408
 17.3.1 Single interrupt request 408
 17.3.2 Multiple interrupt requests 408
17.4 Software development considerations 409
 17.4.1 Interrupt as an alternative scheduling scheme 409
 17.4.2 Development of an interrupt service routine 410
17.5 Design example 410
 17.5.1 Interrupt interface 410
 17.5.2 Interrupt service routine development 411
 17.5.3 Assembly code development 411
 17.5.4 VHDL code development 413
17.6 Bibliographic notes 417
17.7 Suggested experiments 417
 17.7.1 Alternative timer interrupt service routine 417
 17.7.2 Programmable timer 417
 17.7.3 Set-button interrupt service routine 417
 17.7.4 Interrupt interface with two requests 417
 17.7.5 Four-request interrupt controller 418

Appendix A: Sample VHDL templates 419
A.1 General VHDL constructs 419
 A.1.1 Overall code structure 419
 A.1.2 Component instantiation 420
A.2 Combinational circuits 421
 A.2.1 Arithmetic operations 421
 A.2.2 Fixed-amount shift operations 422
A.2.3 Routing with concurrent statements 422
A.2.4 Routing with if and case statements 423
A.2.5 Combinational circuit using process 424
A.3 Memory Components 425
A.3.1 Register template 425
A.3.2 Register file 426
A.4 Regular sequential circuits 427
A.5 FSM 428
A.6 FSMD 430
A.7 S3 board constraint file (s3.ucf) 433

References 437

Topic Index 439