CONTENTS

Foreword xvii
Preface xix

1 Medical Device Design Quality 1
1.1 Introduction, 1
1.2 The Essence of Quality, 2
1.3 Quality Operating System and the Device Life Cycle, 5
 1.3.1 Stage 1: Idea Creation, 6
 1.3.2 Stage 2: Voice of the Customer and Business, 7
 1.3.3 Stage 3: Concept Development, 8
 1.3.4 Stage 4: Preliminary Design, 9
 1.3.5 Stage 5: Design Optimization, 9
 1.3.6 Stage 6: Verification and Validation, 9
 1.3.7 Stage 7: Launch Readiness, 10
 1.3.8 Stage 8: Mass Production, 10
 1.3.9 Stage 9: Consumption, 11
 1.3.10 Stage 10: Disposal or Phaseout, 11
1.4 Evolution of Quality, 11
 1.4.1 Statistical Analysis and Control, 12
 1.4.2 Root-Cause Analysis, 13
 1.4.3 Total Quality Management, 13
 1.4.4 Design Quality, 14
 1.4.5 Process Simplification, 15
 1.4.6 Six Sigma and Design for Six Sigma, 15
1.5 Business Excellence: A Value Proposition, 17
 1.5.1 Business Operation Model, 17
 1.5.2 Structure of the Medical Device Quality Function, 18
 1.5.3 Quality and Cost, 22
 1.5.4 Quality and Time to Market, 23
1.6 Summary, 23

2 Design for Six Sigma and Medical Device Regulation 25
 2.1 Introduction, 25
 2.2 Global Perspective on Medical Device Regulations, 25
 2.3 Medical Device Classification, 28
 2.4 Medical Device Safety, 29
 2.5 Medical Device Quality Management Systems Requirements, 31
 2.6 Medical Device Regulation Throughout the Product Development Life Cycle, 34
 2.6.1 Design and Development Plan, 36
 2.6.2 Design Input, 42
 2.6.3 Design Output, 44
 2.6.4 Design Review, 46
 2.6.5 Design Verification and Validation, 47
 2.6.6 Design Transfer, 49
 2.6.7 Design Changes, 50
 2.6.8 Design History File, 50
 2.6.9 QSIT Design Control Inspectional Objectives, 51
 2.7 Summary, 52

3 Basic Statistics 53
 3.1 Introduction, 53
 3.2 Common Probability Distributions, 53
 3.3 Methods of Input and Output Analysis, 56
 3.4 Descriptive Statistics, 58
 3.4.1 Measures of Central Tendency, 59
 3.4.2 Measures of Dispersion, 61
 3.5 Inferential Statistics, 63
 3.5.1 Parameter Estimation, 63
 3.5.2 Hypothesis Testing, 65
 3.5.3 Experimental Design, 69
 3.6 Normal Distribution and Normality Assumption, 70
 3.6.1 Violating the Normality Assumption, 72
 3.7 Summary, 72
CONTENTS

4 The Six Sigma Process 73
4.1 Introduction, 73
4.2 Six Sigma Fundamentals, 73
4.3 Process Modeling, 74
 4.3.1 Process Mapping, 74
 4.3.2 Value Stream Mapping, 75
4.4 Business Process Management, 76
4.5 Measurement Systems Analysis, 77
4.6 Process Capability and Six Sigma Process Performance, 78
 4.6.1 Motorola’s Six Sigma Quality, 82
4.7 Overview of Six Sigma Improvement, 84
 4.7.1 Phase 1: Define, 84
 4.7.2 Phase 2: Measure, 84
 4.7.3 Phase 3: Analyze, 85
 4.7.4 Phase 4: Improve, 85
 4.7.5 Phase 5: Control, 85
4.8 Six Sigma Gose Upstream: Design for Six Sigma, 86
4.9 Summary, 86
Appendix 4A: Cause-and-Effect Tools, 87

5 Medical Device Design for Six Sigma 89
5.1 Introduction, 89
5.2 Value of Designing for Six Sigma, 91
5.3 Medical Device DFSS Fundamentals, 94
5.4 The ICOV Process in Design, 96
5.5 The ICOV Process in Product Development, 98
5.6 Summary, 100

6 Medical Device DFSS Deployment 101
6.1 Introduction, 101
6.2 Medical Device DFSS Deployment Fundamentals, 102
6.3 Predeployment Phase, 103
 6.3.1 Predeployment Considerations, 105
6.4 Deployment Phase, 125
 6.4.1 Training, 126
 6.4.2 Project Financials, 127
6.5 Postdeployment Phase, 128
6.6 DFSS Sustainability Factors, 129
6.7 Black Belts and the DFSS Team: Cultural Change, 132
6.8 Summary, 135

7 Medical Device DFSS Project Road Map 137
7.1 Introduction, 137
7.2 Medical Device DFSS Team, 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Medical Device DFSS Road Map</td>
<td>143</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Phase 1: Identify Requirements</td>
<td>144</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Phase 2: Characterize Design</td>
<td>148</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Phase 3: Optimize Requirements</td>
<td>151</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Phase 4: Verify/Validate the Design</td>
<td>152</td>
</tr>
<tr>
<td>7.4</td>
<td>Software DFSS ICOV Process</td>
<td>154</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
<td>157</td>
</tr>
<tr>
<td>8</td>
<td>Quality Function Deployment</td>
<td>159</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>159</td>
</tr>
<tr>
<td>8.2</td>
<td>History of QFD</td>
<td>160</td>
</tr>
<tr>
<td>8.3</td>
<td>QFD Fundamentals</td>
<td>161</td>
</tr>
<tr>
<td>8.4</td>
<td>QFD Methodology</td>
<td>161</td>
</tr>
<tr>
<td>8.5</td>
<td>HQQ Evaluation</td>
<td>164</td>
</tr>
<tr>
<td>8.6</td>
<td>HQQ 1: The Customer’s House</td>
<td>165</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Kano Model</td>
<td>167</td>
</tr>
<tr>
<td>8.7</td>
<td>HQQ 2: Translation House</td>
<td>170</td>
</tr>
<tr>
<td>8.8</td>
<td>HQQ 3: Design House</td>
<td>171</td>
</tr>
<tr>
<td>8.9</td>
<td>HQQ 4: Process House</td>
<td>171</td>
</tr>
<tr>
<td>8.10</td>
<td>Application: Auto 3D</td>
<td>172</td>
</tr>
<tr>
<td>8.11</td>
<td>Summary</td>
<td>175</td>
</tr>
<tr>
<td>9</td>
<td>DFSS Axiomatic Design Method</td>
<td>177</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>177</td>
</tr>
<tr>
<td>9.2</td>
<td>Axiomatic Method Fundamentals</td>
<td>179</td>
</tr>
<tr>
<td>9.3</td>
<td>Introduction to Axiom 1</td>
<td>183</td>
</tr>
<tr>
<td>9.4</td>
<td>Introduction to Axiom 2</td>
<td>185</td>
</tr>
<tr>
<td>9.5</td>
<td>Axiomatic Design Theorems and Corollaries</td>
<td>189</td>
</tr>
<tr>
<td>9.6</td>
<td>Application: Medication Mixing Machine</td>
<td>192</td>
</tr>
<tr>
<td>9.7</td>
<td>Application: Axiomatic Design Applied to Design Controls</td>
<td>193</td>
</tr>
<tr>
<td>9.8</td>
<td>Summary</td>
<td>196</td>
</tr>
<tr>
<td>Appendix 9A</td>
<td>Matrix Review</td>
<td>196</td>
</tr>
<tr>
<td>10</td>
<td>DFSS Innovation for Medical Devices</td>
<td>198</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>198</td>
</tr>
<tr>
<td>10.2</td>
<td>History of the Theory of Inventive Problem Solving</td>
<td>198</td>
</tr>
<tr>
<td>10.3</td>
<td>TRIZ Fundamentals</td>
<td>200</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Overview</td>
<td>200</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Analytical Tools</td>
<td>204</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Knowledge-Based Tools</td>
<td>204</td>
</tr>
<tr>
<td>10.4</td>
<td>TRIZ Problem-Solving Process</td>
<td>209</td>
</tr>
<tr>
<td>10.5</td>
<td>Ideal Final Result</td>
<td>210</td>
</tr>
</tbody>
</table>
10.5.1 Itself Method, 210
10.5.2 Ideality Checklist, 211
10.5.3 Ideality Equation, 211
10.6 Building Sufficient Functions, 212
10.7 Eliminating Harmful Functions, 212
10.8 Inventive Principles, 213
10.9 Detection and Measurement Concepts, 219
10.10 TRIZ Root Cause Analysis, 220
10.11 Evolution trends in Technological Systems, 221
10.12 TRIZ Functional Analysis and Analogy, 224
10.13 Application: Using Triads to Predict and Conceive Next-Generation Products, 225
10.14 Summary, 234
Appendix 10A: Contradiction Matrix, 234

11 DFSS Risk Management Process 240

11.1 Introduction, 240
11.2 Planning for Risk Management Activities in Design and Development, 241
11.3 Risk Assessment Techniques, 244
 11.3.1 Preliminary Hazard Analysis, 245
 11.3.2 Hazard and Operability Study, 245
 11.3.3 Failure Mode and Effects Analysis, 245
 11.3.4 Fault Tree Analysis, 246
11.4 Risk Evaluation, 248
11.5 Risk Control, 250
11.6 Postproduction Control, 250
11.7 Summary, 250
Appendix 11A: Robust Design Failure Mode and Effects Analysis, 251
 11A.1 Parameter Diagram, 252
 11A.2 Robust Design FMEA Elements, 253

12 Medical Device Design for X 259

12.1 Introduction, 259
12.2 Design for Reliability, 262
12.3 Design for Packaging, 265
12.4 Design for Manufacture and Design for Assembly, 269
 12.4.1 DFMA Approach, 269
 12.4.2 DFMA in the ICOV DFSS Process, 271
 12.4.3 DFMA Best Practices, 274
 12.4.4 Example, 280
12.5 Design for Maintainability, 281
12.6 Design for Serviceability, 282
12.6.1 DFS Guidelines, 282
12.6.2 Application: Pressure Recorder PCB Replacement, 285
12.7 Summary, 290

13 DFSS Transfer Function and Scorecards 291
13.1 Introduction, 291
13.2 Design Mapping, 292
 13.2.1 Functional Mapping, 293
 13.2.2 Process Mapping, 294
 13.2.3 Design Mapping Steps, 297
13.3 Design Scorecards and the Transfer Function, 297
 13.3.1 DFSS Scorecard Development, 299
 13.3.2 Transfer Function Life Cycle, 299
13.4 Transfer Function Mathematics, 302
13.5 Transfer Function and Optimization, 306
13.6 Monte Carlo Simulation, 308
13.7 Summary, 309

14 Fundamentals of Experimental Design 311
14.1 Introduction, 311
14.2 Classical Design of Experiments, 314
 14.2.1 Study Definition, 314
14.3 Factorial Experiment, 324
 14.3.1 Mathematical Transfer Function, 325
 14.3.2 Interaction Between Factors, 325
14.4 Analysis of Variance, 327
14.5 2^k Full Factorial Designs, 332
 14.5.1 Design Layout, 333
 14.5.2 Data Analysis, 334
 14.5.3 DOE Application, 334
 14.5.4 The 2^3 Design, 341
 14.5.5 The 2^3 Design with Center Points, 342
14.6 Fractional Factorial Designs, 343
 14.6.1 The 2^{3-1} Design, 344
 14.6.2 Half-Fractional 2^k Design, 345
 14.6.3 Design Resolution, 346
 14.6.4 One-Fourth Fractional 2^k Design, 347
14.7 Other Factorial Designs, 349
 14.7.1 Three-Level Factorial Design, 349
 14.7.2 Box–Behnken Designs, 350
14.8 Summary, 350
Appendix 14A, 351
 14A.1 Diagnostic Plots of Residuals, 351
 14A.2 Pareto Chart of Effects, 351
14A.3 Square and Cube Plots, 351
14A.4 Interaction Plots, 352

15 Robust Parameter Design for Medical Devices 353

15.1 Introduction, 353
15.2 Robust Design Fundamentals, 354
 15.2.1 Robust Design and DFSS, 355
15.3 Robust Design Concepts, 357
 15.3.1 Concept 1: Output Classification, 357
 15.3.2 Concept 2: Quality Loss Function, 358
 15.3.3 Concept 3: Signal, Noise, and Control Factors, 361
 15.3.4 Concept 4: Signal-to-Noise Ratios, 362
 15.3.5 Concept 5: Orthogonal Arrays, 363
 15.3.6 Concept 6: Parameter Design Analysis, 365
15.4 Application: Dynamic Formulation, 368
15.5 Summary, 376

16 Medical Device Tolerance Design 377

16.1 Introduction, 377
16.2 Tolerance Design and DFSS, 378
 16.2.1 Application: Imprecise Measurements, 380
16.3 Worst-Case Tolerance, 382
 16.3.1 Application: Internal Pressures in Disposable Tubing, 383
16.4 Statistical Tolerances, 388
 16.4.1 Relationship of Tolerance to Process Capabilities, 389
 16.4.2 Linear Statistical Tolerance, 389
 16.4.3 Nonlinear Statistical Tolerance, 391
16.5 Taguchi’s Loss Function and Safety Tolerance Design, 394
 16.5.1 Nominal-the-Best Tolerance Design, 394
 16.5.2 Smaller-the-Better Tolerance Design, 396
 16.5.3 Larger-the-Better Tolerance Design, 397
16.6 High- vs. Low-Level Requirements’ Tolerance Relationships, 398
 16.6.1 Tolerance Allocation for Multiple Parameters, 399
16.7 Taguchi’s Tolerance Design Experiment, 400
 16.7.1 Application: Tolerance Design, 402
16.8 Summary, 404

17 Medical Device DFSS Verification and Validation 405

17.1 Introduction, 405
17.2 Design Verification Process, 408
 17.2.1 Building a Verification Prototype, 416
17.2.2 Prototype Testing, 417
17.2.3 Confidence Interval of Small-Sample Verification, 418
17.3 Production Process Validation, 419
17.3.1 Device Verification Analysis, 427
17.4 Software Validation, 428
17.5 Design Validation, 429
17.6 Summary, 430

18 DFSS Design Transfer 431
18.1 Introduction, 431
18.2 Design Transfer Planning, 432
18.3 Process Control Plan, 433
18.4 Statistical Process Control, 434
 18.4.1 Choosing the Control Chart, 435
 18.4.2 Interpreting the Control Chart, 437
 18.4.3 Taking Action, 438
18.5 Process Capability, 438
18.6 Advanced Product Quality Planning, 439
 18.6.1 APQP Procedure, 440
 18.6.2 Product Part Approval Process, 444
18.7 Device Master Record, 446
 18.7.1 Document for Intended Employees, 449
 18.7.2 Adequate Information, 451
 18.7.3 Preparation and Signatures, 452
18.8 Summary, 453

19 Design Change Control, Design Review, and Design
History File 454
19.1 Introduction, 454
19.2 Design Change Control Process, 455
 19.2.1 Pre- and Postdesign Transfer CCP, 455
19.3 Design Review, 457
19.4 Design History File, 459
19.5 Summary, 460

20 Medical Device DFSS Case Study 462
20.1 Introduction, 462
20.2 DFSS Identify Phase, 462
20.3 DFSS Characterize Phase, 467
20.4 DFSS Optimize Phase, 470
 20.4.1 DOE Optimization Analysis, 476
 20.4.2 DOE Optimization Conclusions, 476
 20.4.3 DOE Confirmation Run, 479
CONTENTS

20.5 DFSS Verify/Validate Phase, 480
20.6 Summary, 487

Glossary: DFSS Terminology 488
Appendix: Statistical Tables 497
References 510
Index 523