Contents

Preface xi

1 Tribological Assessment on Accelerated Aging Bones in Polymeric Condition 1
Ramdziah M. Nasir, Law C. Gan, and Abdul Y. Saad
 1.1 Introduction 1
 1.2 Bone 2
 1.3 Methodology 4
 1.3.1 Phase I: Planning 4
 1.3.2 Phase II: Design of Experiment 5
 1.3.3 Phase III: Conduct of Experiment 8
 1.3.4 Phase IV: Observation and Analysis 8
 1.4 Results and Discussion 9
 1.4.1 Accelerated Weathering Study 9
 1.4.2 Effects of Increase in Temperature and Decrease in Relative Humidity (RH) on Maximum Load Withstood by Bone 12
 1.4.3 Comparison of Bovine and Goat Bone Strength at Normal and Increased Temperatures 15
 1.5 Conclusion 28
 1.A Relative Humidity Chart 28
References 29

2 Nanofracture and Wear Testing on Natural Bones 33
Ramdziah M. Nasir, Muhammad A.A. Muhamad, and Abdul Y. Saad
 2.1 Introduction 33
 2.2 Methodology 38
 2.3 Results and Discussion 42
 2.4 Conclusion 51
References 51

3 Tribological Behaviors of Glass Fiber with Fillers Reinforced Hybrid Polymer Composites 53
T. P. Sathishkumar
 3.1 Introduction 53
 3.2 Wear and Mechanisms of Wear 54
3.2.1 Adhesion Wear 54
3.2.2 Abrasive Wear 54
3.3 Tribo Wear Test Methods 55
3.3.1 Wear and Friction Test Using Pin-on-disk 55
3.3.2 Wear and Friction Test Using Ball-on-disk 57
3.4 Tribo Characterization Hybrid Polymer Composites 57
3.4.1 Polyamide 6 and HDPE Glass Fiber Reinforced Hybrid Composites 57
3.4.2 Silicon Carbide, Graphite Particle, and Glass Fiber Reinforced Hybrid Composites 62
3.4.3 Case Study 67
3.5 Conclusion 69
References 70

4 Tribological Characterization of Jute/Glass Hybrid Composites 71
Narayanan Venkateshwaran, Aziz Alavudeen, and Vajjiram Santhanam
4.1 Introduction 71
4.2 Materials and Method 72
4.3 Results and Discussion 74
4.4 Micrograph Analysis 77
4.5 Conclusions 79
References 80

5 Glass Fiber Hybrid Effects in Assessing the Abrasive Wear Mechanisms of Naturally Woven Fabric/Polymer Composites Under Dry Conditions 83
Irulappasamy Siva, Manoharan Thirukumaran, Jebas T.W. Jappes, Bhimappa Suresha, Subramaniyan A. Kumar, and Buradagunta R. Sunil
5.1 Introduction 83
5.2 Experimental Details 84
5.2.1 Fiber and Matrix 84
5.2.2 Fiber Surface Treatment 84
5.2.3 Composite Fabrication 85
5.2.4 Mechanical Testing 85
5.2.5 Abrasive Wear Test 86
5.3 Results and Discussion 87
5.3.1 Mechanical Properties 87
5.3.2 Hardness (Shore-D) of Composites 88
5.3.3 Specific Wear Rate 88
5.4 Conclusion 93
Acknowledgement 94
References 94

6 Wear Properties of Acid and Silane Modified CNT Filled Hybrid Glass/Kenaf Epoxy Composites 97
Napisah Sapiai, Aidah Jumahat, and Jamaluddin Mahmud
6.1 Introduction 97
6.2 Methodology 99
6.2.1 Materials 99
6.2.2 Fabrication of Epoxy/Kenaf/Glass Fiber/CNT Composites 100
6.2.2.1 Acid Treatment and Silane Modification Process on CNT 100
6.2.2.2 Fabrication of the Composites 100
6.2.3 Abrasive Wear Test 100
6.2.4 Characterization of the Abraded Surface of the Composites 101
6.3 Results and Discussion 101
6.3.1 The Effect of Incorporating PCNT to Hybrid Glass/Kenaf Composites on the Wear Properties of the Composites 101
6.3.2 The Effect of Incorporating ACNT and SCNT to Glass/Kenaf Composite on the Wear Properties of the Composites 107
6.4 Conclusion 111
Acknowledgement 112
References 112

7 Hybrid Natural Fiber Composites as a Friction Material 115
Patric D. Neis and Ney F. Ferreira
7.1 Friction Material Components 115
7.1.1 Friction Materials Requirements 116
7.1.2 Braking Test Procedures 117
7.2 Natural Fibers Used in Friction Materials Composites 118
References 135

8 Comparative Wear Model on Hybrid Natural Fiber Composites as Substitutions for UHMWPE Made Knee Implants 139
Gusztáv Fekete and Mátyás Andó
8.1 Introduction 139
8.1.1 Basics of Reinforced Polymers, Composites, and Their Testing 139
8.1.2 Classification of Polymers 139
8.1.3 Classification of Composites 142
8.1.4 Basics of Tribo-testing 145
8.1.5 Hybrid Natural Fiber Composites and Their Possible Use in Total Knee Replacements (TKR) 147
8.2 Aims 148
8.3 Methods 149
8.3.1 Wear Modeling 149
8.3.2 Force Modeling for Wear Equation 150
8.3.3 Slide–Roll Modeling for Wear Equation 152
8.4 Results 157
8.5 Discussion 158
Acknowledgments 159
References 159

9 Fabrication and Tribological Behavior of Epoxy Hybrid Composites 163
Bheemappa Suresha and Rajashekaraiah Hemanth
9.1 Introduction 163
9.1.1 Matrix Material 163
9.1.2 Reinforcements 164
9.1.2.1 Fiber Reinforcements 164
9.1.2.2 Particulate Reinforcements 166
9.1.3 Friction and Wear 167
9.2 Materials and Methods 168
9.2.1 Matrix Material 168
9.2.2 Reinforcement Materials 168
9.2.3 Particulate Fillers 169
9.2.3.1 Molybdenum Disulfide 170
9.2.3.2 Aluminum Oxide 170
9.2.4 Composite Fabrication 171
9.2.5 Dry Sliding Wear Test 172
9.2.6 Three-Body Abrasive Wear Test 174
9.3 Results and Discussion 176
9.3.1 Dry Sliding Wear Performance of Carbon-Epoxy Composites 176
9.3.1.1 Wear Volume Loss 176
9.3.1.2 Specific Wear Rate 179
9.3.1.3 Coefficient of Friction 181
9.3.1.4 Worn Surface Morphology 183
9.3.2 Abrasive Wear Performance 184
9.3.2.1 Abrasive Wear Volume Loss 184
9.3.2.2 Specific Wear Rate 186
9.3.2.3 Consequences of Factors on Wear Volume Loss 187
9.3.2.4 Worn Surface Morphology 188
9.4 Conclusions 192
References 193

10 Dry Sliding Wear Behavior of Copper Based Hybrid Metal Matrix Composite 197
Ponnambalam Balamurugan, Marimuthu Uthayakumar, and Sundaresan Thirumalai Kumaran
10.1 Introduction 197
10.2 Materials and Methods 200
10.2.1 Materials 200
10.2.2 Preparation of the Composite by Powder Metallurgy Process 201
10.2.3 Wear Studies 202
10.3 Results and Discussion 203
10.4 Conclusion 210
References 211

11 Morphological Examination of Worn out Surfaces of Basalt Fiber-PEI Composites with Varying Loading Conditions 215
Kalimuthu Mayandi, Subramanian Karthikeyan, Nagarajan Rajini, and Azeez B. Alavudeen
11.1 Introduction 215
11.2 Materials Used 216
11.3 Fabrication of the Composite Materials 216
11.4 Testing of Composite Materials 217