Contents

Preface XVII
List of Contributors XIX

Part One Theory and Concepts 1

1 Accurate Dispersion-Corrected Density Functionals for General Chemistry Applications 3
Lars Goerigk and Stefan Grimme
1.1 Introduction 3
1.2 Theoretical Background 4
1.2.1 Double-Hybrid Density Functionals 4
1.2.2 London-Dispersion-Corrected DFT 6
1.3 Examples 8
1.3.1 GMTKN30 8
1.3.2 A Mechanistic Study with B2PLYP-D 10
1.3.3 Double-Hybrids for Excited States 11
1.4 Summary and Conclusions 12
References 14

2 Free-Energy Surfaces and Chemical Reaction Mechanisms and Kinetics 17
Jeremy N. Harvey
2.1 Introduction 17
2.2 Elementary Reactions 19
2.3 Two Consecutive Steps 20
2.4 Multiple Consecutive Steps 23
2.5 Competing Reactions 24
2.6 Catalysis 25
2.7 Conclusions 28
References 28
3 The Art of Choosing the Right Quantum Chemical Excited-State Method for Large Molecular Systems 29
Philipp H.P Harbach and Andreas Dreuw
3.1 Introduction 29
3.2 Existing Excited-State Methods for Medium-Sized and Large Molecules 30
3.2.1 Wavefunction-Based *ab initio* Methods 31
3.2.2 Density-Based Methods 33
3.3 Analysis of Electronic Transitions 34
3.4 Calculation of Static Absorption and Fluorescence Spectra 37
3.5 Dark States 40
3.5.1 Excited Electronic States with Large Double Excitation Character 40
3.5.2 Charge-Transfer Excited States 42
3.6 Summary and Conclusions 44
References 45

4 Assigning and Understanding NMR Shifts of Paramagnetic Metal Complexes 49
Markus Enders
4.1 The Aim and Scope of the Chapter 49
4.2 Basic Theory of Paramagnetic NMR 50
4.2.1 The Origin of the Hyperfine Shift 50
4.2.1.1 The Contact Shift 51
4.2.1.2 The Pseudocontact Shift 53
4.2.2 Relaxation and Line Widths 54
4.2.2.1 Electronic Relaxation 55
4.2.2.2 Dipolar Relaxation 55
4.2.2.3 Contact Relaxation 56
4.2.2.4 Curie Relaxation 56
4.2.3 Advice for Recording Paramagnetic NMR Spectra 56
4.3 Signal Assignments 58
4.3.1 Comparison of Similar Compounds 58
4.3.2 Separation of Contact and Pseudocontact Shift 58
4.3.3 Estimating the Dipolar Contributions 59
4.3.4 DFT-Calculation of Spin-Densities 59
4.4 Case Studies 60
4.4.1 Organochromium Complexes 61
4.4.2 Nickel Complexes 62
References 63

5 Tracing Ultrafast Electron Dynamics by Modern Propagator Approaches 65
Markus Pernpointner, Alexander I. Kuleff, and Lorenz S. Cederbaum
5.1 Charge Migration Processes 65
5.1.1 Theoretical Considerations of Charge Migration 68
5.2 Interatomic Coulombic Decay in Noble Gas Clusters 70
5.2.1 Theoretical Considerations of ICD 73
References 74

6 Natural Bond Orbitals and Lewis-Like Structures of Copper Blue Proteins 77
 Clark R. Landis and Frank Weinhold
6.1 Introduction: Localized Bonding Concepts in Copper Chemistry 77
6.2 Localized Bonds and Molecular Geometries in Polyatomic Cu Complexes 83
6.3 Copper Blue Proteins and Localized Bonds 86
6.4 Summary 88
References 88

7 Predictive Modeling of Molecular Properties: Can We Go Beyond Interpretation? 91
 Timothy Clark
7.1 Introduction 91
7.2 Models and Modeling 91
7.3 Parameterized Classical and Quantum Mechanical Theories 93
7.4 Predictive Energies and Structures 94
7.5 Other Gas-Phase Properties 94
7.6 Solvent Effects: The Major Problem 95
7.7 Reaction Selectivity 96
7.8 Biological and Pharmaceutical Modeling 97
7.8.1 SAR Modeling 98
7.8.2 Force Fields, Docking, and Scoring 99
7.9 Conclusions 100
References 102

8 Interpretation and Prediction of Properties of Transition Metal Coordination Compounds 107
 Peter Comba
8.1 Introduction 107
8.2 Molecular Structure Optimization 108
8.3 Correlation of Molecular Structures and Properties 110
8.4 Computation of Molecular Properties 111
8.5 A Case Study: Electronic and Magnetic Properties of Cyano-Bridged Homodinuclear Copper(II) Complexes 112
8.6 Conclusions 116
References 117
Part One

How to Realize the Full Potential of DFT: Build a Force Field Out of It

Robert James Deeth

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>9.2</td>
<td>Spin-Crossover in Fe(II) Complexes</td>
<td>124</td>
</tr>
<tr>
<td>9.3</td>
<td>Ligand Field Molecular Mechanics</td>
<td>126</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Training Data: Fe(II)–Amine Complexes</td>
<td>127</td>
</tr>
<tr>
<td>9.3.2</td>
<td>LFMM Parameter Fitting</td>
<td>128</td>
</tr>
<tr>
<td>9.4</td>
<td>Molecular Discovery for New SCO Complexes</td>
<td>129</td>
</tr>
<tr>
<td>9.5</td>
<td>Dynamic Behavior of SCO Complexes</td>
<td>131</td>
</tr>
<tr>
<td>9.6</td>
<td>Light-Induced Excited Spin-State Trapping</td>
<td>132</td>
</tr>
<tr>
<td>9.7</td>
<td>Summary and Future Prospects</td>
<td>135</td>
</tr>
</tbody>
</table>

References

136

Part Two

Applications in Homogeneous Catalysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium Cluster</td>
<td>139</td>
</tr>
<tr>
<td>Maren Podewitz, Thomas Weymuth, and Markus Reiher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>139</td>
</tr>
<tr>
<td>10.2</td>
<td>Shortcomings of Present-Day Density Functionals</td>
<td>139</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Delocalization Error/Self-Interaction Error</td>
<td>140</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Spin-Polarization/Static-Correlation Error</td>
<td>141</td>
</tr>
<tr>
<td>10.3</td>
<td>Strategies for Constructing Density Functionals</td>
<td>142</td>
</tr>
<tr>
<td>10.4</td>
<td>A Practical Example: Catalytic Water Splitting</td>
<td>144</td>
</tr>
<tr>
<td>10.4.1</td>
<td>A Binuclear Ruthenium Water-Splitting Catalyst</td>
<td>144</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Comparison of Different Density Functionals</td>
<td>147</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Comparison with Experimental Data</td>
<td>148</td>
</tr>
<tr>
<td>10.4.4</td>
<td>The Oxo and the Superoxo Structure of the Reactive $[\text{Ru}_2\text{O}_2]^{3+}$ Species</td>
<td>149</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Interaction with the Environment: Explicit Solvation of $[\text{Ru}_2\text{O}_2]^{3+}$</td>
<td>153</td>
</tr>
<tr>
<td>10.4.6</td>
<td>Formation and Structure of the $[\text{Ru}_2(\text{OH}_2)\text{O}_2]^{3+}$ Intermediate</td>
<td>154</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusions</td>
<td>158</td>
</tr>
<tr>
<td>10.5</td>
<td>References</td>
<td>159</td>
</tr>
</tbody>
</table>

References

159

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Rational and Efficient Development of a New Class of Highly Active Ring-Opening Metathesis Polymerization Catalysts</td>
<td>165</td>
</tr>
<tr>
<td>Martin August Otfried Volland, Thomas Schnetz, and Peter Hofmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>11.3</td>
<td>ROMP Activity of the Neutral Systems</td>
<td>170</td>
</tr>
<tr>
<td>11.4</td>
<td>Cationic Carbene Complexes: Synthesis and Structure</td>
<td>170</td>
</tr>
</tbody>
</table>

References

170
11.4.1 A Comparison of Carbene versus Carbyne Hydride Isomers: \(\text{L}_2\text{ClRu} = \text{CH}_2^+ \) versus \(\text{L}_2\text{Cl(H)}\text{Ru} \equiv \text{CH}^+ \) 171

11.4.2 DFT Calculations 171

11.5 Olefin Metathesis with Cationic Carbene Complexes: Mechanistic Considerations 175

11.5.1 A Gas-Phase Study of Cationic Carbene Complexes 176

11.5.2 Screening Results 179

11.5.3 Mechanistic Results 180

11.5.3.1 Isotope Effects 180

11.5.3.2 Olefin \(\pi \)-Complex Pre-Equilibrium 181

11.5.3.3 Backbiting 181

11.5.4 Direct Comparison of Active Species 182

11.6 ROMP Kinetics in Solution 183

11.6.1 Bite Angle Influence on ROMP Activity 183

11.6.2 ROMP Activity: A comparison with First- and Second-Generation Grubbs Systems in Solution 184

11.7 Summary and Outlook 186

References 187

12 Effects of Substituents on the Regioselectivity of Palladium-Catalyzed Allylic Substitutions: A DFT Study 191

Jevgenij A. Raskatov and Guenter Helmchen

12.1 Introduction 191

12.2 Computational Details 195

12.3 Results and Discussion 195

12.3.1 Calculations of the \(\pi \)-Allyl Complexes 195

12.3.1.1 Geometries of the \(\pi \)-Allyl Complexes 195

12.3.1.2 Charge Analysis of the \(\pi \)-Allyl Complexes 196

12.3.1.3 Frontier Orbital Analysis 197

12.3.2 Calculations of Transition States and Product Olefin Complexes 198

12.3.3 Transition State Analysis 199

12.3.4 Olefin Complexes 202

12.4 Conclusions 203

References 204

13 Dicopper Catalysts for the Azide Alkyne Cycloaddition: A Mechanistic DFT Study 207

Bernd F. Straub, Michael Bessel, and Regina Berg

13.1 Introduction 207

13.2 Theoretical Methods 209

13.3 Discussion of the CuAAC Mechanism 209

13.4 Conclusion and Summary 212

References 214
From Dynamics to Kinetics: Investigation of Interconverting Stereoisomers and Catalyzed Reactions

Oliver Trapp

14.1 Investigation of Interconversions by Gas Chromatography 215
14.2 Evaluation Tools 216
14.3 Investigation of Catalyzed Reactions 218
14.3.1 Catalytic Studies with On-Column Reaction Chromatography 220
14.4 Perspectives 224
References 225

Mechanistic Dichotomies in Coupling–Isomerization–Claisen Pericyclic Domino Reactions in Experiment and Theory

Thomas J.J. Müller, Daniel M. D’Souza, and Bernhard Mayer

15.1 Introduction 227
15.2 Computation of the Concluding Intramolecular Diels–Alder Reaction in the Domino Formation of (Tetrahydroisobenzofuran) spiro-Benzofuranones or spiro-Indolones 230
15.3 Computation of the Pericyclic Dichotomies of Propargyl Tritlethers 231
15.4 Conclusions 238
References 239

Part Three Applications in Pharmaceutical and Biological Chemistry

16 **Computational Design of New Protein Catalysts**

Gert Kiss, Scott A. Johnson, Geoffrey Nosrati, Nihan Çelebi-Ölçüm, Seonah Kim, Robert Paton, and Kendal N. Houk

16.1 Introduction 243
16.2 The Inside-Out Approach 244
16.3 Catalyst Selection and the Catalytic Unit 244
16.4 Theozymes 246
16.4.1 Background 246
16.4.2 Definition 247
16.4.3 Selection of Catalytic Groups 247
16.4.4 Theozyme Diversity 248
16.4.5 Applications of Theozymes 248
16.5 Scaffold Selection and Theozyme Incorporation 249
16.5.1 Overview and Background 249
16.5.2 RosettaMatch 249
16.5.3 Gess 250
16.6 Design 252
16.6.1 Overview 252
16.6.2 RosettaDesign 252
16.7 Evaluating Matches and Designs 253
16.7.1 Filtering and Ranking Matches 253
18.2.5 Indices to Characterize Flexibility and Rigidity 287
18.2.5.1 Global Indices 287
18.2.5.2 Local Indices 287
18.3 Application of Rigidity Analysis to Biomacromolecules 289
18.3.1 Coarse-Graining for Simulating Conformational Transitions in Proteins 289
18.3.2 Themostabilization of Proteins 290
18.3.3 Flexibility of Antibiotics Binding Sites and Allosteric Signal Transmission in Ribosomal Structures 291
18.3.3.1 Deriving a New Constraint Network Parameterization for RNA Structures 291
18.3.3.2 Analyzing the Ribosomal Exit Tunnel 292
18.4 Conclusions 294
References 294

19 Strained Molecules: Insights from Force Distribution Analysis 301
Frauke Gräter
19.1 Strain in Molecules 301
19.1.1 Strained Rings: Structure and Reactivity 302
19.1.2 Molecules Under Tensile Forces 303
19.2 Force Distribution Analysis 303
19.2.1 Concept 304
19.2.2 Applications 306
19.2.2.1 Muscle: Titin Immunoglobulin 307
19.2.2.2 Materials: Silk 308
19.2.2.3 Blood: von Willebrand Factor 308
19.2.2.4 Gene Expression: MetJ Repressor 308
19.3 Outlook 309
References 309

20 Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury–Carbon Bond Cleavage 311
Hao-Bo Guo, Jerry M. Parks, Alexander Johs, and Jeremy C. Smith
20.1 Introduction 311
20.2 Transcription Activation of MerOP by MerR upon Hg(II)-Binding 312
20.2.1 Comparisons between MD and SAXS 314
20.2.2 Global Dynamics of Hg(II)-MerR in Solution 314
20.2.3 Opening-and-Closing Dynamics of Hg(II)-MerR 315
20.2.4 Discussion and Implications of MD Simulations 317
20.3 Hg–C Bond Cleavage Catalyzed by the MerB 318
20.3.1 Background 318
20.3.2 Methods for DFT Calculations 320
20.3.3 Results of the DFT Calculations 320
20.4 Summary and Conclusions 322
References 323

21 Elucidation of the Conformational Freedom of Ferrocene Amino Acid (Bio)Conjugates: A Complementary Theoretical and Experimental Approach 325
Katja Heinze, Kristina Hüttinger, and Daniel Siebler
21.1 Introduction 325
21.2 Simple Ferrocene Amino Acid (Bio)Conjugates 328
21.3 Systems with Amide-Bridged Fca Units 336
21.4 Modeling Responses to External Stimuli 341
21.5 Conclusions 344
References 345

Part Four Applications in Main Group, Organic, and Organometallic Chemistry 347

22 Theoretical Investigation of the 13C NMR Chemical Shift–NCN Angle Correlation in N-Heterocyclic Carbenes 349
Michael Nonnenmacher and Doris Kunz
22.1 Introduction 349
22.2 Method Validation 350
22.3 13C-NMR Chemical Shift–N–C–N Angle Correlation Within Various Carbene Types 351
22.4 N–C–N Angle-Shielding Tensor Correlations: Carbene A 353
22.5 Correlation Between N–C–N Angle and HOMO-LUMO Gap ΔE: Carbene A 356
22.6 Correlations in N-Heterocyclic Carbenes 359
References 362

23 Structures of Azole-Containing Macrocyclic Peptides 365
Áron Pintér and Gebhard Haberhauer
23.1 Azoles in Nature and Civilization 365
23.2 Azole-Containing Macrocyclic Peptides in Nature: Opening New Boundaries in Science 366
23.3 Achiral Applications of Lissoclinum-Related Macrocyclic Peptides 386
23.4 Applications of Lissoclinum-Related Macrocyclic Peptides as Chiral Tools 387
References 393

24 Modeling of Complex Polyketides: Stereochemical Determination by a Combination of Computational and NMR Methods 397
Dirk Menche and Sandra Dreisigacker
24.1 Myxobacterial Polyketides 397
24.2 Development of Computational and NMR Methods for Stereochemical Determination: Case Studies with the Archazolids 399
24.2.1 J-Based Configurational Methods and Molecular Mechanics Studies 399
24.2.2 Restrained Molecular Modeling 403
24.2.3 Calculation and Determination of Residual Dipolar Couplings 403
24.3 Selected Applications of Combined Computational and NMR Methods for Stereochemical Determination 406
24.3.1 Etnangien 406
24.3.2 Rhizopodin 408
24.4 Conclusion and Perspectives 410
References 410

25 Quantifying Building Principles of Borane Clusters 413
Matthias Hofmann
25.1 Introduction 413
25.2 Structural Features and Energy Penalties 414
25.2.1 Six-Vertex Nido-Cluster 414
25.2.2 Ten-Vertex Nido-Cluster 416
25.2.3 Eleven-Vertex Nido-Cluster 416
25.2.4 Twelve-Vertex Closo-Cluster 418
25.3 Macropolyhedral Boranes 419
25.3.1 When is a Macropolyhedron Preferred? 420
25.3.2 What is the “Best” Cluster Fragment for Macropolyhedra? 421
25.3.3 What is the Most Stable Macropolyhedron for a Given Formula? 421
25.4 Conclusions 423
References 423

26 Hydrogenation and Dehydrogenation of Dinuclear Boron- and Gallium Hydrides: Quantum Chemical Calculations and Experiments 425
Hans-Jörg Himmel
26.1 Dihydrogen Activation with Main-Group Element Compounds 425
26.2 Preliminary Quantum Chemical Calculations 426
26.3 Experimental Studies in Concert with Quantum Chemical Calculations 430
26.3.1 Step 1: Adducts of Boranes and Gallanes to Bicyclic Guanidines 430
26.3.2 Step 2: Dehydrogenation to Give the Dinuclear Hydrides \([\text{H}_2\text{E(μ-guanidinate)}]_2\) 434
26.3.3 Step3: Repeated Dehydrogenation Leading to Double-Base-Stabilized Diborane(4) or Digallane(4) Molecules [HE(μ-guanidinate)]₂ 437

26.3.4 Quantum Chemical Calculations on the Possible Reaction Mechanism 440

26.3.5 Oxidative Insertion Reactions Into the B–B Bond of Double-Base-Stabilized Diborane(4) Molecules 443

26.3.5.1 Sulfuration and Reaction with Disulfides 443

26.3.5.2 B–B Bond Protonation 446

26.3.6 Alternative Access Routes to Double-Base-Stabilized Diborane(4) Molecules 450

References 452

27 Cages and Clusters of Indium: Spherical Aromaticity? 455

Gerald Linti, Martina Bühler, Kirill Monakhov, and Thomas Zessin

27.1 Introduction 455

27.2 Synthesis of Polyhedral Indium Clusters 456

27.3 Quantum Chemical Calculations 459

27.3.1 Methods 459

27.3.2 DFT-Calculations on [E₈H₈]⁺⁻ Clusters 459

27.3.3 Aromaticity of [EₙHₙ]²⁻ Clusters 460

27.4 Summary 462

References 466

28 Lipophilic Anions 469

Bernd F. Straub and Michael Wrede

References 472

Index 473