Contents

Preface x
Acknowledgements xi

1 INTRODUCTION 1
1.1 A selection of general books and reference material on geology 2
1.2 Books on geological field techniques 3

2 FIELD EQUIPMENT AND SAFETY 4
2.1 Introduction 4
2.2 The hand lens and binoculars 5
2.3 The compass-clinometer 6
2.3.1 Orientation of a dipping plane 11
2.3.2 Orientation of a linear feature 16
2.3.3 Triangulation: Determining location using a compass 20
2.4 Global positioning systems and altimeters 25
2.5 Measuring distance and thickness 26
2.5.1 Standard thickness and distance measurements 26
2.5.2 Use of the Jacob staff to measure the thickness of inclined strata 27
2.6 Classification and colour charts 28
2.7 Hammer, chisels and other hardware 31
2.8 The hardcopy field notebook 33
2.9 The laptop, netbook or PDA as a notebook 34
2.10 Writing equipment, maps and relevant literature 35
2.10.1 Writing equipment 35
2.10.2 Maps and relevant literature 35
2.11 Comfort, field safety and field safety equipment 36
2.11.1 Clothes, backpack/rucksack and personal provisions 36
2.11.2 Field safety 36
2.11.3 Field safety equipment 39
2.12 Conservation, respect and obtaining permission 40
2.13 Further reading 41

3 INTRODUCTION TO FIELD OBSERVATIONS AT DIFFERENT SCALES 42
3.1 Introduction: What, where and how? 42
3.1.1 Defining the fieldwork objectives 42
3.1.2 Deciding where to do the fieldwork 43
3.1.3 Locating your position 45
3.2 Scale of observation, where to start and basic measurements 45
3.2.1 Regional context 45
3.2.2 Whole exposure 46
3.2.3 Hand specimens 49
3.3 Overview of possible data formats 51
4 THE FIELD NOTEBOOK

4.1 Introduction: The purpose of field notes

4.2 Field notebook layout

4.2.1 Preliminary pages
4.2.2 Daily entries
4.2.3 General tips

4.3 Field sketches: A picture is worth a thousand words

4.3.1 General principles: Aims, space and tools
4.3.2 Sketches of exposures
4.3.3 Sketching metre- and centimetre-scale features
4.3.4 Sketch maps

4.4 Written notes: Recording data, ideas and interpretation

4.4.1 Notes recording data and observations
4.4.2 Notes recording interpretation, discussion and ideas

4.5 Correlation with other data sets and interpretations

5 RECORDING PALAEONTOLOGICAL INFORMATION

5.1 Introduction: Fossils are smart particles

5.1.1 Why are fossils important?
5.1.2 Collecting fossil data

5.2 Fossil types and preservation

5.2.1 Body fossil classification
5.2.2 Body fossil preservation
5.2.3 Trace fossils
5.2.4 Molecular fossils

5.3 Fossil distribution and where to find them

5.3.1 Transported or life position?

5.4 Sampling strategies

5.4.1 Sampling for biostratigraphic or evolutionary studies
5.4.2 Sampling of bedding surfaces and palaeoecology

5.5 Estimating abundance

5.5.1 Presence/absence and qualitative abundance estimates
5.5.2 Quantitative measures of abundance
5.5.3 How many samples are required?

5.6 Summary

5.7 Further reading

6 RECORDING FEATURES OF SEDIMENTARY ROCKS AND CONSTRUCTING GRAPHIC LOGS

6.1 Introduction

6.2 Description, recognition and recording of sedimentary deposits and sedimentary structures

6.2.1 Recording sedimentary lithology
6.2.2 Recording sedimentary structures

6.3 Graphic logs

6.3.1 Conventions for graphic logs
6.3.2 Constructing a graphic log

6.4 Rocks in space: Reconstructing sedimentary environments and their diagnostic features
6.5 Using sedimentary rocks to interpret climate change and sea-level change
 6.5.1 Climate change
 6.5.2 Sequence stratigraphy and relative sea-level change

6.6 Further reading

7 RECORDING FEATURES OF IGNEOUS ROCKS
 7.1 Equipment, basic tips and safety
 7.2 Field relationships of igneous rocks
 7.2.1 Relationships with surrounding rocks
 7.2.2 Internal architecture: Joints and veins
 7.2.3 Internal architecture: Other exposure-scale fabrics
 7.3 Mineralogy and small-scale textures of igneous rocks
 7.3.1 Petrologic type
 7.3.2 Mineral texture and fabric
 7.4 Recent and active volcanoes
 7.4.1 Equipment and safety
 7.4.2 Access
 7.4.3 Observations
 7.5 Further reading

8 RECORDING STRUCTURAL INFORMATION
 8.1 Equipment and measurement
 8.1.1 Structural measurements and notations
 8.2 Brittle structures: Faults, joints and veins
 8.2.1 Planar brittle features – orientation
 8.2.2 Determining past motion on brittle structures
 8.3 Ductile structures: Shear zones, foliations and folds
 8.3.1 Orientation of ductile planar features
 8.3.2 Direction of shear/stretching: Stretching lineations
 8.3.3 Sense of shear: Kinematic indicators
 8.3.4 Magnitude of shear strain
 8.3.5 Fold analysis
 8.4 Further reading

9 RECORDING FEATURES OF METAMORPHIC ROCKS
 9.1 Basic skills and equipment for metamorphic fieldwork
 9.1.1 Field relations and context
 9.2 Textures
 9.2.1 Banding
 9.2.2 Grain textures
 9.2.3 Reaction textures
 9.3 Mineralogy
 9.3.1 Identifying common metamorphic minerals
 9.3.2 Using mineral assemblages
 9.3.3 Classification of metamorphic rocks
 9.4 Unravelling metamorphism and deformation
 9.4.1 Pre-kinematic features
 9.4.2 Syn-kinematic features
 9.4.3 Post-kinematic features
 9.5 Further reading
10 MAKING A GEOLOGICAL MAP

10.1 Principles and aims 206
10.2 Preparation and materials 207
 10.2.1 Base maps and other aids 207
 10.2.2 Equipment for mapping 212
10.3 Location, location, location 214
 10.3.1 Equipment 214
 10.3.2 Using base maps 214
10.4 Making a field map 216
 10.4.1 Information to record on field maps 216
 10.4.2 The evolving map 218
 10.4.3 Sketch cross-sections 221
10.5 Mapping techniques 222
 10.5.1 Traverse mapping 223
 10.5.2 Contact mapping 225
 10.5.3 Exposure mapping 226
 10.5.4 Using other evidence 228
10.6 The geological map 233
 10.6.1 Inking in the field map 233
 10.6.2 Cross-sections 235
 10.6.3 Fair copy maps 235
 10.6.4 Digital maps and GIS 239
10.7 Further reading 240

11 RECORDING NUMERICAL DATA AND USE OF INSTRUMENTS IN THE FIELD 241

11.1 Data collection 241
 11.1.1 Instrument calibration and base stations 244
 11.1.2 Survey grids 244
11.2 Transport and protection of the instruments 245
11.3 Correlation with other data sets 245
11.4 Further reading 246

12 PHOTOGRAPHY 247

13 SAMPLING 250

13.1 Selecting and labelling samples 250
 13.1.1 Samples for thin-sections 251
 13.1.2 Orientated samples 251
 13.1.3 Samples for geochemical analysis 253
 13.1.4 Samples for mineral extraction 253
 13.1.5 Samples for fossils 253
 13.1.6 Sampling for regional studies 254
 13.1.7 High-resolution sample sets 254
 13.1.8 Labelling samples and their packaging 255
13.2 Practical advice 256
 13.2.1 Packing and marking materials 256
 13.2.2 Extraction of samples 257

14 CONCLUDING REMARKS 259

14.1 Further reading on scientific report writing 260
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>261</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A1: GENERAL</td>
<td>263</td>
</tr>
<tr>
<td>APPENDIX A5: FOSSILS</td>
<td>265</td>
</tr>
<tr>
<td>APPENDIX A6: SEDIMENTARY</td>
<td>273</td>
</tr>
<tr>
<td>APPENDIX A7: IGNEOUS</td>
<td>293</td>
</tr>
<tr>
<td>APPENDIX A8: STRUCTURAL</td>
<td>296</td>
</tr>
<tr>
<td>APPENDIX A9: METAMORPHIC</td>
<td>302</td>
</tr>
<tr>
<td>APPENDIX A10: MAPPING</td>
<td>306</td>
</tr>
<tr>
<td>Index</td>
<td>310</td>
</tr>
</tbody>
</table>