Index

Note: Page numbers followed by “f” indicate figures and those followed by “t” indicate tables.

a
AA, see arachadonic acid
abaxial/mid-body/central meniscal release, 303
Absolute Risk Increase (ARI), 318
Absolute Risk Reduction (ARR), 317
accelerometers, 319
ACL, see anterior cruciate ligament
adult mesenchymal stromal cells, 336
aLDFA, see anatomic lateral distal femoral angle
allografts
 DDFT, 210
 in intra-articular stabilization, 204–206, 205f–206f
amantadine, 335
analgesics, 335–336
anatomic lateral distal femoral angle (aLDFA), 262–263, 264f
angular limb deformities, 235–236
anterior cruciate ligament (ACL), 202
 rupture repair, 62, 202
anti-collagen type I and II antibodies, 89–90
anti-nerve growth factor antibody, 336
arachadonic acid (AA), 337
ARI, see Absolute Risk Increase
ARR, see Absolute Risk Reduction
arthroscopic appearance of stifle synovium in dogs, 97f
arthroscopic-assisted arthrotomy, 177–180
arthroscopic follow-up examination, stifle, 279–289
 after extracapsular stabilization, 287–288, 287f–288f
 after intra-articular stabilization, 288–289, 288f
 after tibial plateau leveling osteotomy (TPLO), 280–287, 280f–286f
arthroscopy, history, 171
aseptic loosening, 368–369, 369f
aspirin, 335
aspirin triggered lipoxins (ATLs), 335
ASUs, see avocado and soybean oil unsaponifiables
ATLs, see aspirin triggered lipoxins
autografts, in intra-articular stabilization, 203–204
avocado and soybean oil unsaponifiables (ASUs), 338

b
bilateral lameness, 115, 116f
biomaterials, 372
biomechanics of stifle, 227–231, 228f–231f
BioMedtrix total knee replacement (TKR) implant, 364–365, 364f
biplanar fluoroscopy, 272
bone
 screws, in tibial plateau leveling osteotomy, 219, 221
botulinum toxin A, 336
braces, 264

C
Canine Brief Pain Inventory (CBPI), 318
canine and human cruciate ligament rupture, 61–62
canine stifle joint disorders, 135
cartilage damage, 97
cartilage oligomeric matrix protein (COMP), 360
caudal cruciate ligament (CaCL), 40
CBPI, see Canine Brief Pain Inventory
CCWO, see closing cranial wedge ostectomy
chondroitin sulfate, 337–338
client-specific outcome measures (CSOM), 318
clinical outcomes, after surgical treatment of cruciate ligament rupture (CR), 313
affecting factors, 315
early postoperative, 313–314
mid- and long-term, 313f–314f, 314
clinical trial design
blinding and outcome assessment, 360
control group definition, 357
intervention versus control groups, assignment to, 357–358, 360
overview, 357
placebo effects, 359t, 360
study population definition, 357
closing cranial wedge ostectomy (CCWO), 221, 243, 246f, 252, 254, 254f, 256–259, 261, 272, 275
complications, 247
implant selection, 246–247
outcome for, 247–248
patient selection, 244–245
technique research, 243–244
planning, 244, 245f
Clostridium botulinum, 336
collagen turnover, 65
collagen type I and II, 89
relevance of antibodies to collagen types I and II, 90–91
COMP, see cartilage oligomeric matrix protein
comparative value of the canine model, 62
complete cruciate ligament rupture, dogs with, 292–293, 292f–293f
current meniscal pathology, 295
algorithm for decision-making of surgical treatment, 299f
diagnosis of, 295–296
resection procedures used in dogs, 297f
treatment of, 296–299, 298f
types, 295, 296f
cortical bone, 161
cranial cruciate ligament (CrCL), 89
cranial cruciate ligament (CrCL)-deficient minipig, 373
clinical presentation, 123–124
clinical outcome, 135
cranial traction, 172
deficiency, 39
deficient stifles, 35, 41–43, 189
diagnosis of, 120
fibers, 121
partial rupture of, 119–121
rupture of, 123
sectioning of, 120t
treatment, 124
treatment by tibial osteotomies, 271–276, 273f–276f
fixation, 207–208
future developments, 210, 210f–211f
graft selection
allografts, 204–206, 205f–206f
autografts, 203–204
prosthetics, 206–207
historical use, 202–203
ligament debridement for, 291–294
cranial cruciate ligament (CrCL) tensile strength, 101
cranial tibial thrust, 221
cruciate ligament
functional anatomy, 9
innervation, 8–9
macroanatomy, 3–5
microanatomy, 5–6
morphology, 3–5
synovial envelope, 68
vascular supply, 6–8
cruciate ligament matrix metabolism
in human beings and other species, 65
in ruptured canine cruciate ligaments, 68–69
cruciate ligament rupture (CR), 201
clinical outcomes after surgical treatment of, 313
affecting factors, 315
early postoperative, 313–314
mid- and long-term, 313f–314f, 314
clinical signs of, 116–118
epidemiology of, 109–112
bilateral, 111–112
genetics, 112
genetics of, 57–61
candidate gene analysis, 58–59
complex trait genetics, 58
gene-wide association, 59–61
heritability, 57
history, 115–116
with meniscal pathology, 295–299
morphological risk factors for, 73–77
distal femoral intercondylar notch, 73
fibula, 77
patella/quadriceps mechanism and Q-angle, 77
tibia, 76–77
obesity, 110
and osteoarthritis, 307
with patellar luxation
management of, 264–268, 265f–267f
pathophysiolo of, 261
patient evaluation, 262–264, 263f–265f
pathology of, 47
adaptation and repair, 51–54
histologic features of, 48
histopathology of canine, 49–51
pelvic limb lameness in dogs and, 279
rehabilitation for dogs with, 343
changes in posture, prevention and recovery from, 345, 347f
considerations, 347t
goals of, 343–347
limb use, promotion of, 344, 345f
management protocols, 349–351, 350f
mechanical complications after surgery,
prevention from, 345, 347
motor control, prevention and recovery from
loss of, 345, 345f–346f
muscle mass, prevention and recovery from
loss of, 345, 345f–346f
pain relief, 343–344
postoperative edema, elimination of, 344
proactive, 349–350
retroactive, 349–350
scientific evidence for, 349
stifle joint motion, maintaining/recovering, 344,
344f
strategies, 347–349, 347t, 348f
remodeling and repair, 23–28
healing potential of graft interface tissue,
25–28
healing potential of reconstructed cranial
cruciate ligament (CrCL) graft, 24–25
healing potential of ruptured cranial cruciate
ligament (CrCL), 22–23
healing potential of surgically repaired cranial
cruciate ligament (CrCL), 24
risk factors for, 111t
risk prediction of, 165–166
magnetic resonance imaging, 166
radiography, 165–166
subtle effusion, 116
surgical treatment outcomes, 201–202
CSOM, see client-specific outcome measures
cyclooxygenase (COX), 334–335, 337, 343
DDFT, see deep digital flexor tendon
debridement, for cranial cruciate ligament (CrCL)
rupture, 291–292
complete, 292–293, 292f–293f
partial, 293–294, 293f
decellularization, 205–206
depidural anesthesia, 141
distribution of proteoglycan, 32
doxycycline, 380
edema, 344
endothelial (eNOS) isoforms of nitric oxide synthase,
81
eTPA, see excessive tibial plateau angle
excessive tibial plateau angle (eTPA), 221, 233, 235,
253–259
closing cranial wedge osteotomy (CCWO) for,
253, 254f
outcome, 259
preoperative planning for, 253, 254f–257f, 255–258
surgical technique for, 258–259
tibial plateau leveling osteotomy (TPLO) for, 253,
254f
extracapsular stabilization (ES) technique, 189, 196
biological extracapsular stabilization, 190
case selection, 189
general care after surgery, 190
isometry, 194
surgical approach, 189–190
suture material, 193
extracellular matrix (ECM), 65
biomaterial, 372
proteins, 372
femoral condyles, 136
femoral and tibial attachment
clinical outcome, 196–197
methods of securing suture, 194–195
stifle position while securing suture, 195–196
fibular fractures, after tibial plateau leveling
osteotomy (TPLO), 222, 222f
first-generation tibial tuberosity advancement (TTA)
complications, 238–239
implants and techniques, 232
outcome, 238–239
flexion–extension motion, 39
force platform gait analysis, 320
fractures, as a complication of tibial plateau leveling
osteotomy (TPLO), 222, 222f
GABA, see gamma-aminobutyric acid
gabapentin, 335–336
gamma-aminobutyric acid (GABA), 335–336
Gelpi retractor, 172–173
glucocorticoids, 381
glucosamine, 337–338
grafts
allografts, 204–206, 205f–206f
autografts, 203–204
fixation, 207–208
intra-articular, use in restoration of joint stability,
207–210
non-destructive assessment of, 373, 373f
non-invasive assessment of, 373, 373f
patella tendon, 203–204
gram-positive aerobic bacteria, 328
Hoop tension theory, schematic depiction of, 36f
hyaluronic acid (HA), 337
implant
 closing cranial wedge osteotomy, 244–246
 selection, in tibial plateau leveling osteotomy (TPLO), 219, 220f, 221
 tibial tuberosity advancement, 232
inducible isoform of nitric oxide synthase (iNOS), 81
intra-articular corticosteroids, 185
intra-articular grafts, for restoration of joint stability, 207–210
intra-articular repairs, 202–203
intra-articular stabilization
 allografts, use in, 204–206
 autografts, use in, 203–204
 intra-articular ligament replacement, 204–206, 206f
 intra-articular repairs, 202–203
 prosthetics, use in, 206–207
isometry, 194
jig
 for tibial plateau leveling osteotomy, 257, 257f
 use in tibial plateau leveling osteotomy, 218
joint inflammation, 93
 clinical studies, 185–186
 mechanism for relief of, 186
 joints limit motion, 155
 joint tissues
 antigen-specific immune responses, 103
 innate immune responses, 103–105
knee replacement in dog, total, see total knee replacement in dog
Liverpool Osteoarthritis in Dogs (LOAD), 318
 LOAD, see Liverpool Osteoarthritis in Dogs
material properties of the meniscus, 35
 matrix metalloproteinases (MMPs), 379–380
MCL, see medial collateral ligament
 mechanical lateral distal femoral angle (mLDFA), 263, 264f
 mechanical medial distal tibial angle (mMDTA), 263
 mechanical medial proximal tibial angle (mMPTA), 263
mechanoreceptors, 291–292
medial collateral ligament (MCL), 368
medial meniscal release, 302–303
medial patella luxation (MPL), 250
meniscal cells, 32
meniscal damage, 123
meniscal injury, 295
 algorithm for decision-making of surgical treatment, 299f
diagnosis of, 295–296
 resection procedures used in dogs, 297f
 treatment of, 296–299, 298f
types, 295, 296f
meniscal release, 301–302
 clinical decision-making and, 305–306
 in dogs, 299f
 and joint biomechanics and biology, 302–303,
 303f–304f
 medial, 302–303
 surgical technique, 303–305, 304f
 and tibial plateau leveling osteotomy, 219
 and tibial tuberosity advancement (TTA), 238
types of, 303
meniscal structure, 31–36
 biomechanical and material properties, 34–35
 meniscal function, 35–36
 neurovascular anatomy, 32–34
 surgical anatomy, 31–32
meniscal tear, 138, 139f
menisci, extracellular matrix (ECM) of, 32
meniscotibial release, 303–305
mesenchymal stem cells (MSCs), 336, 381
mLDFA, see mechanical lateral distal femoral angle
mMDTA, see mechanical medial distal tibial angle
MMPs, see matrix metalloproteinases
mMPTA, see mechanical medial proximal tibial angle
morphology, 73
MPL, see medial patella luxation
MSCs, see menenchymal stem cells
multi-drug-resistant (MDR) bacteria, 325
neoplastic disorders, 146
nerve growth factor (NGF), 336
neuronal (nNOS) isoforms of nitric oxide synthase, 81
NGF, see nerve growth factor
nitric oxide (NO)
 in articular tissues, 82
 cranial cruciate ligament (CrCL) structure, 85–86
 influence of, 85–86
 matrix metalloproteinases (MMPs), 85–86
 overview, 84
 role of matrix metalloproteinases (MMPs), 84–85
nitric oxide synthase (NOS), 81
N-methyl-D-aspartate (NMDA) receptors, 335
NNH, see Number Needed to Harm
NNT, see Number Needed to Treat
nonsteroidal anti-inflammatory drugs (NSAIDs), 334–335, 381
NRS, see numeric rating score
NSAIDs, see nonsteroidal anti-inflammatory drugs
nucleotide-binding oligomerization domain (NOD), 103
Number Needed to Harm (NNH), 317–318, 318t
Number Needed to Treat (NNT), 317–318, 318t
numeric rating score (NRS), 319
OA, see osteoarthritis
omega-3 fatty acids, 337
orthopaedic disease, owner assessments in, 355–356
orthopaedic surgical infections of stifle, 323
definition, 323–324
diagnosis, 326
economic impact, 328
incidence of, 324–325
pathogens, 325–326
prognosis of, 328
rates, 324–325
treatment, 326–328, 327f
osteoaarthritis (OA), 202, 307
cranial cruciate ligament (CrCL) transection as
model of, 307, 308f
progression after stifle stabilization procedures, 308
causes, 308–310
comparison of methods, 310
radiographic progression, 309t
stifle, medical therapy for, 333–334
adjunctive therapies, 333
analgesics, 335–336
biological products, 336
care-giver placebo effect, 333–334
chondromodulating agents, 336–337
dietary supplements, 337–338
goals of, 333
NSAIDs, 334–335
weight management, 334
and stifle instability with cranial cruciate ligament
(CrCL) rupture, 308
over-the-top technique, 203
owner assessments, in orthopaedic disease, 355–356
patellar luxation
cranial cruciate ligament rupture with
management of, 264–268, 265f–267f
pathophysiology of, 261
patient evaluation, 262–264, 263f–265f
tibial tuberosity advancement (TTA), 236, 237f
patellar tendon
enlargement, after tibial plateau leveling
osteotomy, 221
insertion point, low versus high, 233, 235f
patella tendon angle (PTA), 217, 227–229, 228f–229f,
231, 231f
patella tendon autograft, 203–204
pathomechanics theory of osteoarthritis,
diagrammatic presentation, 43
patient morbidity, 182–183
patient size, tibial tuberosity advancement (TTA),
236–237, 237f
pedometers, 319
pivot shift, 221–222
placebo effects, 359t, 360
platelet-rich plasma (PRP), 336, 372
platelets, 372
polysulfated glycosaminoglycan (PSGAG), 336–337
polyunsaturated fatty acids (PUFAs), 337
postliminary tears, 301
pressure mat gait analysis, 353
prosthetics, use in intra-articular stabilization,
206–207
proteoglycans, 62
PRP, see platelet-rich plasma
PSGAG, see polysulfated glycosaminoglycan
PTA, see patella tendon angle
PUFAs, see polyunsaturated fatty acids
questionnaires, owner, 318–319
randomized controlled clinical trials (RCTs),
357
RCTs, see randomized controlled clinical trials
regenerative medicine, cranial cruciate ligament
(CrCL) and, 371
additional factors, 373, 375
arthritic degeneration, 373
cruciate ligaments, healing of, 371–372, 372f
biomaterial, 372
non-destructive assessment of graft properties,
373, 373f
non-invasive assessment of graft properties, 373,
373f
signaling, 372–373
preclinical studies for, 375–376
surgical treatments, comparative effectiveness of,
371
rehabilitation for dogs with cruciate ligament
rupture, 343
changes in posture, prevention and recovery from,
345, 347f
considerations, 347t
goals of, 343–347
limb use, promotion of, 344, 345f
management protocols, 349–351, 350f
mechanical complications after surgery, prevention
from, 345, 347
motor control, prevention and recovery from loss
of, 345, 345f–346f
rehabilitation for dogs with cruciate ligament rupture
(Continued)
- muscle mass, prevention and recovery from loss of, 345, 345f–346f
- pain relief, 343–344
- postoperative edema, elimination of, 344
- proactive, 349–350
- retroactive, 349–350
- scientific evidence for, 349
- stifle joint motion, maintaining/recovering, 344, 344f
- strategies, 347–349, 347t, 348f
- Relative Risk Reduction (RRR), 317
- reproductive status
 - as risk factor for cranial cruciate ligament (CrCL) rupture, 109
- RRR, see Relative Risk Reduction

s
- second-generation tibial tuberosity advancement (TTA)
 - complications with, 239–240, 239f
 - implants and techniques, 232
 - outcome, 239–240
- Securos tibial plateau leveling osteotomy (TPLO) plate, 219
- signaling, 372–373
- single-plane fluoroscopy, 272
- size of patient, and tibial tuberosity advancement, 236–237, 237f
- Slocum tibial plateau leveling osteotomy (TPLO) plate, 219
- SSI, see surgical site infections
- stifles
 - arthroscopic follow-up examination, 279–289
 - after extracapsular stabilization, 287–288, 287f–288f
 - after intra-articular stabilization, 288–289, 288f
 - after tibial plateau leveling osteotomy (TPLO), 280–287, 280f–286f
 - arthroscopy of, 174–177
 - overview, 171
 - biomechanics of, 227–231, 228f–231f
 - computed tomography (CT), 141–146
 - features of, 143–146
 - indications for, 141
 - technical aspects, 142–143
 - cranial cruciate ligament (CrCL)-deficient, 264–265, 265f
 - distraction, 180–181
 - instability associated with, 92–98
 - synovial assessment, 96
 - synovitis, 94–96
 - synovitis in cruciate ligament rupture, 96–98
 - joint motion, maintaining/recovering, 344, 344f
 - magnetic resonance imaging, 155–161
 - image acquisition, 155–156
 - meniscus, 156–161
 - synovial structures, 156
 - orthopaedic surgical infections, 323
 - definition, 323–324
 - diagnosis, 326
 - economic impact, 328
 - incidence of, 324–325
 - pathogens, 325–326
 - prognosis of, 328
 - treatment, 326–328, 327f
 - osteoarthritis, medical therapy for, 333–334
 - adjunctive therapies, 333
 - analgesics, 335–336
 - biological products, 336
 - care-giver placebo effect, 333–334
 - chondromodulating agents, 336–337
 - dietary supplements, 337–338
 - goals of, 333
 - nonsteroidal anti-inflammatory drugs (NSAIDs), 334–335
 - weight management, 334
 - stabilization surgery, 271–272
 - accelerometers, 319
 - data reporting, 320
 - force platform gait analysis, 320
 - owner questionnaires and, 318–319
 - pedometers, 319
 - residual lameness, 320–321, 321f
 - success and failure, 317–318
 - veterinary examination, 319
 - stress imaging of, 128–132
 - measuring subluxation, 128–129
 - standing radiography, 131
 - stress devices, 130
 - stress-magnetic resonance imaging (MRI), 131–132
 - tibial compression radiography, 129–130
 - ultrasonography, abnormal, 137–140
 - stress devices, 130
 - surgical site infections (SSI), 323–324, 324t
 - deep, 324t
 - organ/space, 324t
 - superficial, 324t
 - synovial immune responses, in stifle synovitis, 101–105
 - synovial inflammation, 379
 - synovial membrane, 93
 - synovitis, 94–96
 - Synthes tibial plateau leveling osteotomy (TPLO) plate, 219

f
- tartrate-resistant acid phosphatase-positive (TRAP) macrophages, 101, 102f
T-cell inhibitors, 380–381
technical failures, tibial tuberosity advancement (TTA), 238–239
tetracyclines, 379–380	implants and techniques, 232
tibia fractures, after tibial plateau leveling osteotomy (TPLO), 222, 222f
tibial osteotomies	outcome, 239–240
biomechanics of, 272–276, 273f–276f	stifle biomechanics, 227–231, 229f–231f
tibial plateau angle (TPA), 217–219, 218f, 221, 243–244
excessive, 221, 223, 233, 235, 236f, 253–259. See also
torsional limb deformities, 235–236
excessive tibial plateau angle (eTPA)
measurement, 218, 218f
total knee replacement (TKR) in dog	excessive tibial plateau angle (eTPA)
BioMedtrix, 364–365, 364f	measurement, 218, 218f
clinical results with cemented canine, 366–367
implants and techniques, 232
complications
aseptic loosening, 368–369, 369f
infection, 367, 367f
joint/implant instability, 368
neurovascular injury, 368
wear of ultra-high-molecular-weight polyethylene, 368
contraindications for surgery, 365, 365f
history of, 363–364
indications for surgery, 365
laboratory testing for, 369–370
postoperative pain management, 366
surgical technique, 365–366, 366f
TPA, see tibial plateau angle
total knee replacement (TKR) in dog
TPLO, see tibial plateau leveling osteotomy
tramadol, 335
traction of the meniscus, 35
transient receptor potential vanilloid 1 (TRPV1) receptor, 335
traumatic lesions, 146
total knee replacement (TKR) in dog, 248
triple tibial osteotomy (TTO), 248
complications, 250–251, 251f
implant selection, 249–250, 250f
outcome, 251
patient selection, 249
technique
intraoperative, 248–249, 249f
planning, 248
U
T-style plates, 246
TTA, see tibial tuberosity advancement
UHMWPE, see ultra-high-molecular-weight polyethylene
ultra-high-molecular-weight polyethylene (UHMWPE), 368f
T
VAS, see visual analog scale
transient receptor potential vanilloid 1 (TRPV1) receptor, 335
V
wedgie, spacer tool, 248
wedging phenomenon, 301–302
weight management, for osteoarthritis, 334
W