Index

A
accuracy, as core principle of risk infrastructure 13–15
Acerbi, C. 96
Acharya, V. 441
Adjusted CVA (ACVA) 340–342
advanced CVA calculations, CVA Greeks and 393–394
advanced CVA charge 397–398
aggregation process about 396
of copulas 497–498
firmwide risk 493–505
Aguais, S.D. 278
Alexander, S.T. 157n27
ALM
See asset and liability management (ALM)
Almgren, R. 142
alpha, general wrong-way risk and 396
Altman, E.I. 208, 249
Amato, J.D. 229
Amemiya, T. 246, 250
An, M.Y. 246
Andersen, L. 321
Anderson, T.W. 40
Anderson-Darling test 126
Anfuso, F. 397
Angelidis, T. 137
annuity 466n5
Applied Portfolio Migration 187–196
Arbenza, P. 498
Arbitrage Pricing Theory (APT) model 60–61, 61n12
Archimedean copulas 111–113, 119–121
ARMA (autoregressive moving average) models 98
Artzner, P. 79, 80
assessment, of counterparty default probability 343–345
asset and liability management (ALM)
about xiv
risk of 499
system for 509
asset inflows, from loans and investment assets 417–424
asset returns, multi-factor model for 196–199
Asset Value Distribution 184
asymmetry
of copulas 121–122
of GARCH Models 103
autoregressive moving average (ARMA) models 98

B
Babbs, S.H. 134
backtesting
model validation and 122–127
performance of the multivariate model 128–133
requirements for 396–397
balance sheet
about 417–424
breakdown of with funds transfer instruments 482–483
vulnerability of with contractual cash flows 442–445
balance sheet ratio 517–519
Bangia, A. 136, 137
Bank of England RAMSI model 511
banks
book fair value 486
evolution of capital regulation 4–9
funding facilities extended to 426–427
risk management and 1–4
bank-specific approach 517, 520–522
Bao, Y. 132–133
Barger, N. 210
Barone-Adesi, G. 109, 132–133
Basel accords 4–8, 395–396
Basel III liquidity risk regulation 7
Basel Regulatory Capital 271–272
Basket Credit Default Swaps 321, 323–324
Bates, T.W. 431
BCVA (Bilateral CVA) 339–342, 346–347
Belkin, B. 249
Benos, A. 137
Bensalah, Y. 106
Berger, R.L. 79, 290
Berkowitz, J. 126, 132–133, 154–155, 161
Bernoulli trials 123–124
Bertsimas, D. 160
Bervas, A. 136
best hedging position 36
Beta distribution 208n15
betas 87–88
Bhanot, K. 99
Bianchetti, M. 393
bilateral agreement 373–375
Bilateral CVA (BCVA) 339–342, 346–347
Binary Barrier option 55–56
Binomial Loss model 236–242
Bissada, Y.F. 403n1, 463n1
Black, F. 23, 27, 471, 472
Black and Scholes pricing formula 10, 49–50, 180n8, 335, 347
“black swan” risks 2
Black-Karasinski model 471
Bollerslev, T. 101–102, 104, 110, 133
Bollier, T. 346, 347, 348
bond convexity 44–45
bond portfolios, risk measures for 187–196
bond prices, default rates and 175–176
bond pricing equation 174–175
bond risk, computation of 30
bond sensitivity 26–27
bond value, in terms of spread 180–181
borrowing facilities 430–431
Box, G.E.P 18
Britten-Jones, M. 50
Brockmann, M. 494
Brooks, C. 132–133
Brownian bridge 367n10
Bruneton, J.P. 498
Burgard, C. 394
Burgisser, A.K. 296
business concentration 461

capital allocation
in mortgage portfolio 287–289
in risk aggregation 501–503
capital asset pricing model (CAPM) 36, 61n12, 511
capital conservation buffer 7n3
capital regulation, developments in the market risk internal models 165–167
CAPM (capital asset pricing model) 36, 61n12, 511
Capriotti, L. 394
Cardenas, J. 44
Carlehed, M. 278
Carling, K. 244
Carr, P.P. 184
Casella, G. 79, 290
Cash Capital Position (CCP) 459
cash flow deviation optimization 161–163
cash flow gaps 460
cash flows
main sources of 414–415
models for managing liquidity risk 403–461
profitability analysis of xv
profitability of 463–489
replication 161–165
Cash Hedging Capacity, liquidity exposure with 411–412
“cash last” liquidation strategy 441
Cash Liquidity at Risk (CLaR) 450–451, 480
cash liquidity need 412
cash liquidity risk
about 450–451
allocating 453–455
exposure 451–453
Castagna, A. 394
Castilacci, G. 53
CCAR (Comprehensive Capital Analysis and Review) 505, 505n3, 507, 524–526
CCP (Cash Capital Position) 459
CCP (Central Counterparty) 399
CDOs (Collateralized Debt Obligations) 321
CDX index 320–321
Cech, C. 494
Central Counterparty (CCP) 399
Central Limit Theorem, probability bounds using 78–79
Ceretta, P.S. 126–127
Cesari, G. 357, 394
Chang, E.C. 184
Chari, V.V. 430
Chen, R.R. 155, 161, 185

C
Cai, J. 431, 438n10, 442
calibration, of GARCH Models 103
Campbell, J.Y. 31, 98
Campello, M. 430
Canabarro, E. 346
Canals-Cerdà, J.J. 253
Cantor, R. 243n28
Cao, C.Q. 101–102
Cheung, Y.W. 99, 352
Cholesky decomposition 47–48, 58–59, 186
Chriss, N. 142
Christensen, P.E. 161
Christoffersen, P. 123, 124, 125, 135
CLaR (Cash Liquidity at Risk) 450–451, 480
Clayton copula 111–113, 118, 119–121, 227–229, 228n24, 361, 499–501
closeout time, with no liquidity cost 137–138
coherent measures of risk 79–80
collateral, decomposition with 392
collateral dynamics 368–375
collateralized models 396
Collateralized Debt Obligations (CDOs) 321
collateralized exposures
about 364–367
collateral dynamics 368–375
collateralized swap CVA 380–382
collateralized swap exposure 375–380
Lagged Collateral model 368–375
swap 375–380
collateralized swap CVA 380–382
Colletaz, G. 126–127
Comprehensive Capital Analysis and Review (CCAR)
about 505, 505n3, 507, 524–526, xv–xvi
firmwide stress testing 146n24
stress tests 8
comprehensiveness and relevance, as core principle of risk infrastructure 13–15
concave trading 136
collection
measuring 503
of risk contributions 86–87
conditional density function 29n5
conditional distribution (dCVA) 383
conditional independence approach xiii–xiv
Conditional Law of Large Numbers
about 255–258
firm pooling and 213–217
investigating appropriateness of 272–277
Conditional Prepayment Rate (CPR) model 475
Conditional Value at Risk (CVaR) 8n7, 28n4
consumer options, applying financial engineering approaches to 473–475
contagion models xiii–xiv
contingent CDS 337
contingent credit line 429–430
contingent liquidity risk 7
contractual cash flows 442–445
convex trading 136
copulas
about 110–113
aggregation of 497–498
Archimedean 111–113, 119–121
asymmetry of 121–122
elliptical 114–115
estimation of 115–121
Frank 111–113, 118n15, 119–121, 499–501
Gaussian 117
Gumbel 105, 111–113, 118, 119–121
measuring dependence 113–114
normal mixture 121–122
Cornish-Fisher Expansion 44, 52–53
corporate bonds, market pricing of 174–178
correlated default times, One-Factor Copula Model for 321–323
“correlation smile” 229n25
correlation symmetry 361
Cossin, D. 185
counterbalancing capacity 409, 461
counterparty credit risk
about 12n8, 333–335
Basel III capital requirements for 397
credit default swaps and 320
CVA risks 382–384
portfolios of derivatives 384–392
pricing and exposure 335–382
recent developments 392–395
regulation 395–399
counterparty default probability, assessment of 343–345
covariance matrix, estimating of risk factors 39–40
Cox, J. 351–352
Cox proportional hazard model 244–245
Cox-Ingersoll-Ross model 98, 355, 362
CPR (Conditional Prepayment Rate) model 475
credit default swaps
counterparty risk and 320
on portfolio indices 320–321
credit derivatives 209
credit factors, granularity of 314–315
credit margins, net credit portfolio losses taking into account 270–271
credit migration, stress testing of 217–218
credit models, for banking book 235–296
Credit Portfolio Losses, analysis of 266–270
credit risk
See also specific types
about 2, xiii–xiv
credit risk (Continued)
capital and 468–470
convergence of 221–224
firmwide portfolio credit risk and dependence 296–299
hedging 315–324
indirect and direct codependency in models 298–299
regulatory capital for 324–328
stress testing 299–309
system of 509
credit spread
bond value in terms of 180–181
components of 178
market risk VaR models and 176–178
Credit Support Annex (CSA) agreement 364–367
Credit Transition Matrix 247–248
Credit Transition Score models 242–243
Credit Valuation Adjustment (CVA)
See also counterparty credit risk about 333–335
expected exposure (EE) profile and 386–390
Exposure Simulation Framework for 346–360
market correlations and 360–361
new trade impact on 392
risks 382–384
swap exposure profiles and 351–360
trail risk analysis example 383–384
CreditMetrics 187
CreditRisk, Poisson Mixture model and 289–296
Crnkovic, C. 125–126
Crook, J.N. 243n29
cross-currency swaps 362
CSA (Credit Support Annex) agreement 364–367
cumulative density function 29n5
curve fitting, grid pricing and 71
customer deposit 430
CVA
See Credit Valuation Adjustment (CVA)
CVA Greeks 393–394
CVaR backtesting, density forecast and 125–126
CVaR risk contributions, calculation of 82–84
Czech national bank stress testing model 511
decompositions
with collateral 392
of profitability 482–485
default correlation, in Multifactor model 213
Default Probability Information 317–320
default rates, bond prices and 175–176
Default Risk Models 187–196
Default Time model 229
default times
modeling 225–229
Multifactor models and 229
delta method 24–25, 126–127
delta-gamma approximation 157n27
Demarta, S. 115
Denault, M. 39
density forecast, CVaR backtesting and 125–126
dependence, measuring of copulas 113–114
derivatives
OIS discounting for 392–393
portfolios of 384–392
Derman, E. 54, 123
Dermine, J. 403n1, 463n1
Dev, A. 424, 475
DFAST (Dodd-Frank Act Stress Testing) 507
diagonalization procedure, of quadratic portfolios 47–49
Diamond, D.W. 442
Diebold, F. 30, 134
Diebold, F.X. 2, 125–126
Dimakos, X. 494
Ding, Z. 98
direct codependency, in credit risk models 298–299
discrete distributions, risk information for 90–93
distribution, of quadratic portfolios 50–51
diversification measuring 503
of risk contributions 86–87
Dodd-Frank Act Stress Testing (DFAST) 507
double default, factor model and 209–213
Drachman, J. 125–126
Draper, N.R. 18
Drehmann, M. 407
DT (duration test) 125
Duane, M. 515
Duffie, D. 44, 44n8, 52, 173, 175, 298, 346, 432
Dullman, K. 198
Dunsky, R.M. 418
duration test (DT) 125

D
Danielsson, J. 108, 135
data, importance of quality with 2
Daul, S. 115
Davidson, J. 51–52, 473
dCVA (conditional distribution) 383
De Vries C. 108, 135
Debt Adjustments 184–185
Index

DVA, Bilateral CVA and 346–347
Dybvig, P.H. 442
dynamic codependency, multivariate GARCH and 133–134
Dynamic Markov Scoring models 243–248

E
EaR (Earnings at Risk) 488
earnings, losses and 311–313
Earnings at Risk (EaR) 488
EBA (European Banking Authority) stress tests 146n24, 505, 505n3, 524–526, xv–xvi
Economic Capital model
for loan portfolios 285–287
in mortgage portfolio 287–289
for portfolio of traded bonds 230–231
"economic correlation” 362
economic scenario generator 522
economic value added (EVA) 481–482
economic value view 483–485
Edelson, D.B. 243n29
EE (expected exposure) profile 376, 379, 386–390
Efron, B. 79
Eigenvalue Decomposition 48
Elliot, J. 407
elliptical copulas 114–115
Elton, E.J. 161, 176n6, 442
embedded optionality 470–477
Embrechts, P. 76, 105, 113
Emmer, S. 126–127
empirical market spreads, versus Merton Model spreads 182
Engle, R.F. 101, 103, 133
Epperlein, E. 86, 396
equity data, applying Multivariate Merton Model using 187
equity finding 469n6
equity options, sample quadratic VaR for 49–50
equity portfolio sensitivities 26
Ernst, C. 137
Errais, E. 299
estimating
copulas 115–121
risk using Extreme Value Theory 107–110
tail probability 67
Euler Contributions 95–96
Euler Risk Decomposition about 32–33, 32n7
economic interpretation of 37–39
hedging and 35–36
European Banking Authority (EBA) stress tests 146n24, 505, 505n3, 524–526, xv–xvi
European central bank stress test model 511
EVA (economic value added) 481–482
expected exposure (EE) profile 376, 379, 386–390
Expected Shortfall See Conditional Value at Risk (CVaR)
Exponential GARCH Model 103–104
“ex-post inclusion of the common credit factors” 248n32
exposure at default, as a regulatory risk component 326–327
Exposure Simulation Framework 346–360
exposure valuation models 396
extensibility, as core principle of risk infrastructure 13–15
Extreme Value Theory 105–110

F
Fabozzi, F.J. 27, 161, 174
facilities issued 425–426
factor model, double default and 209–213
fair values, with FTP 486
Fallon, W. 44
Faure sequence 57
Federal Financial Institutions Examinations Council (FFIEC) 523
feedback models xiii–xiv
Feuerverger, A. 51, 53
FFIEC (Federal Financial Institutions Examinations Council) 523
Fiedler, R. 408, 409–410, 432
finance view 428
Financial Conduct Authority 460n16
financial contagion 523–524
financial risk systems about 10–11
risk analytics 11–13
risk infrastructure 13–15
risk technology 15–17
financial system analysis 523–524
financial time series, modeling stylized facts of 97–134
Finger, C. 214, 222
firm pooling, Conditional Law of Large Numbers and 213–217
firmwide portfolio credit risk, credit risk dependence and 296–299
firmwide risk capital allocation in risk aggregation 501–503
capital measures 512–526
firmwide risk (Continued)
correlated aggregation and levels of 494–498
future of firmwide stress testing 524–526
management of xv
mixed copula aggregation 498–501
models for 510–512
regulatory stress scenario approach 516–524
risk aggregation and regulation 493–505
firmwide scenario analysis, stress testing
and 507–526
firmwide scenario model, approaches to 509–512
firmwide stress testing 524–526, xv–xvi
fixed execution costs, liquidity hedging with 434–436
floating rate note, example OAS for 472–473
Föllmer, H. 80
Fons, J. 231
forecasting, with GARCH models 102
Fourier transform 44, 50–52
Frank copula 111–113, 118n15, 119–121,
499–501
Frechet bound 111
Frey, R. 104, 135, 194
FTP
See funds transfer pricing (FTP)
full valuation, portfolio sensitivity analysis
and 143
funding
concentration of 460–461
facilities extended to banks 426–427
liability outflows and 424–427
Funding Value Adjustments (FVA) 394–395
funds transfer pricing (FTP)
concept of 465–467
defined 466
funds transfer rate 481–482
risk adjusted returns 481–482
risk-based 468–481
scope of 486–487
funds transfer rates 481–482, 486

G
Gamma function 208n15
GARCH models
See generalized autoregressive conditional
heteroskedasticity (GARCH) models
Garcia Cespedes, J.C. 86
Garman, M. 37
Gatev, E. 430
Gaussian copula 117
Gemming, G. 182
General Liquidity Hedging Capacity, liquidity
exposure with 408–410
general market illiquidity models 140–142
general wrong-way risk, alpha and 396
generalized autoregressive conditional
heteroskedasticity (GARCH) models
about 100–102
asymmetric 103
calibration of 103
Exponential 103–104
forecasting with 102
generalized liquidity coverage ratio 457
generalized Pareto distribution 105, 106, 108
Generator Matrix, Short-term Transition
Matrices and 232–233
Geske, R. 185
Gibson, M. 367
Gibson, M.S. 71, 93
Giesecke, K. 298, 299
Gil-Pelaez, J. 44, 51–52
Glasserman, P. 57, 59, 68, 148, 149, 151–153,
151n25, 153–154, 222
Global Systematically Important Banks
(G-SIBS) 503
Goldberg, L.R. 299
Gonzales-Rivera, G. 103
good model fit 18
Gordy, M. 222, 239, 327
Gordy, M.B. 293–294
governance, as core principle of risk
infrastructure 13–15
Granger, C.W.J. 98
Granito, M.R. 161
Grant, J. 464
granularity, of credit factors 314–315
Gregory, J. 321, 337, 357, 367
grid computing 16
grid pricing 69–70, 71
Gruber, M.J. 161, 442
Grundke, P. 148, 149, 153–154
G-SIBS (Global Systematically Important
Banks) 503
Gumbel copula 105, 111–113, 118, 119–121
Gunter, T. 125–126
Gurrieri, S. 349
Gyntelberg, J. 229

H
Haaf, H. 291, 293, 294
Hallerbach, W. 37, 86
Hamerle, A. 209
Hamilton, D. 243n28
Index

<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hart, I.</td>
<td>54n9</td>
</tr>
<tr>
<td>Haug, E.G.</td>
<td>45</td>
</tr>
<tr>
<td>Hawawini, G.A.</td>
<td>161</td>
</tr>
<tr>
<td>Hawkes process</td>
<td>299</td>
</tr>
<tr>
<td>He, C.</td>
<td>103–104</td>
</tr>
<tr>
<td>Hedging</td>
<td></td>
</tr>
<tr>
<td>credit risk</td>
<td>315–324</td>
</tr>
<tr>
<td>liquidity exposure</td>
<td>428–441</td>
</tr>
<tr>
<td>risk</td>
<td>3, 35–36</td>
</tr>
<tr>
<td>Heidorn, T.</td>
<td>229</td>
</tr>
<tr>
<td>Heitfield, E.</td>
<td>210</td>
</tr>
<tr>
<td>Herfindahl index</td>
<td>239–240, 240n26</td>
</tr>
<tr>
<td>Heterogeneous Portfolios/Small Portfolios</td>
<td>241–242</td>
</tr>
<tr>
<td>high-quality liquid assets (HQLA)</td>
<td>455</td>
</tr>
<tr>
<td>Hill, B.M.</td>
<td>106</td>
</tr>
<tr>
<td>Hill estimator</td>
<td>106–109, 135n20</td>
</tr>
<tr>
<td>Historical Default Rates</td>
<td>345–346</td>
</tr>
<tr>
<td>“hit sequence”</td>
<td>123</td>
</tr>
<tr>
<td>Ho, T.M.</td>
<td>418</td>
</tr>
<tr>
<td>Hölder’s inequality</td>
<td>100</td>
</tr>
<tr>
<td>Homescu, C.</td>
<td></td>
</tr>
<tr>
<td>Homogeneous Large Portfolio</td>
<td>236–240</td>
</tr>
<tr>
<td>Homogeneous Large Subportfolios</td>
<td>240–241</td>
</tr>
<tr>
<td>homogeneous property, of risk measures</td>
<td>79</td>
</tr>
<tr>
<td>HQLA (high-quality liquid assets)</td>
<td>455</td>
</tr>
<tr>
<td>Hull, J.</td>
<td>77n2, 159n28, 178n7, 320, 322, 347, 348n8, 362, 393, 394, 471</td>
</tr>
<tr>
<td>Hull-White model</td>
<td>337, 347–351, 355, 362, 471</td>
</tr>
<tr>
<td>Hult, H.</td>
<td>76</td>
</tr>
<tr>
<td>ICAAP (Internal Capital Adequacy Assessment Process)</td>
<td>503</td>
</tr>
<tr>
<td>idiosyncratic risk</td>
<td>37</td>
</tr>
<tr>
<td>Imai, K.</td>
<td>473–474</td>
</tr>
<tr>
<td>implied normal risk contributions</td>
<td>87–88</td>
</tr>
<tr>
<td>importance sampling, variance reduction by</td>
<td>66–69</td>
</tr>
<tr>
<td>incremental portfolio trades</td>
<td>386–392</td>
</tr>
<tr>
<td>incremental risk</td>
<td>82n4</td>
</tr>
<tr>
<td>Incremental Risk Charge (IRC)</td>
<td>6, 230–231, 233–235</td>
</tr>
<tr>
<td>independence test (IT)</td>
<td>124–125, 132</td>
</tr>
<tr>
<td>indirect codependency, in credit risk models</td>
<td>298–299</td>
</tr>
<tr>
<td>Interbank curve</td>
<td>465, 465n3</td>
</tr>
<tr>
<td>interest rate swap</td>
<td>468</td>
</tr>
<tr>
<td>Internal Capital Adequacy Assessment Process (ICAAP)</td>
<td>503</td>
</tr>
<tr>
<td>International Swaps and Derivatives Association (ISDA)</td>
<td>209, 364–367</td>
</tr>
<tr>
<td>in-the-money (ITM) payer swap exposure profile</td>
<td>353</td>
</tr>
<tr>
<td>inversion formula</td>
<td>44</td>
</tr>
<tr>
<td>investment assets, asset inflows from</td>
<td>417–424</td>
</tr>
<tr>
<td>IRC (Incremental Risk Charge)</td>
<td>6, 230–231, 233–235</td>
</tr>
<tr>
<td>ISDA (International Swaps and Derivatives Association)</td>
<td>209, 364–367</td>
</tr>
<tr>
<td>issuer credit risk, in wholesale exposures and trading book</td>
<td>174–235</td>
</tr>
<tr>
<td>IT (independence test)</td>
<td>124–125, 132</td>
</tr>
<tr>
<td>ITM (in-the-money) payer swap exposure profile</td>
<td>353</td>
</tr>
<tr>
<td>iTraxx index</td>
<td>320–321</td>
</tr>
<tr>
<td>Ivashina, V.</td>
<td>430</td>
</tr>
</tbody>
</table>

J

<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackel, P.</td>
<td>57</td>
</tr>
<tr>
<td>Jafry, Y.</td>
<td>194</td>
</tr>
<tr>
<td>Jamshidian, F.</td>
<td>71</td>
</tr>
<tr>
<td>Jankowitsch, R.</td>
<td>208</td>
</tr>
<tr>
<td>Jarrow, R.</td>
<td>175n4, 299, 475–476</td>
</tr>
<tr>
<td>joint codependency</td>
<td>297–298</td>
</tr>
<tr>
<td>joint defaults, probability of</td>
<td>213</td>
</tr>
<tr>
<td>Jones, E.P.</td>
<td>182</td>
</tr>
<tr>
<td>Jorion, P.</td>
<td>40, 172, 435</td>
</tr>
<tr>
<td>Josefsson, M.</td>
<td>128–130</td>
</tr>
<tr>
<td>jump diffusion model</td>
<td>44n8</td>
</tr>
</tbody>
</table>

K

<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahlert, D.</td>
<td>229</td>
</tr>
<tr>
<td>Kalkbrener, M.</td>
<td>494</td>
</tr>
<tr>
<td>Kang, L.</td>
<td>134</td>
</tr>
<tr>
<td>Kani, I.</td>
<td>54</td>
</tr>
<tr>
<td>Kapadia, S.</td>
<td>407</td>
</tr>
<tr>
<td>Karasinski, P.</td>
<td>471</td>
</tr>
<tr>
<td>Kashyap, A.K.</td>
<td>442</td>
</tr>
<tr>
<td>Kauffman, R.</td>
<td>135</td>
</tr>
<tr>
<td>Kendall's tau</td>
<td>113, 114–121, 118n15</td>
</tr>
<tr>
<td>Kerkhof, J.</td>
<td>126–127</td>
</tr>
<tr>
<td>Kernel smoothing</td>
<td>86</td>
</tr>
<tr>
<td>Kerr, S.</td>
<td>253</td>
</tr>
<tr>
<td>Kishore, V.M.</td>
<td>208</td>
</tr>
<tr>
<td>Kjaer, M.</td>
<td>394</td>
</tr>
<tr>
<td>Kocherlakota, R.</td>
<td>442</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov test</td>
<td>126</td>
</tr>
<tr>
<td>Kourouma, L.</td>
<td>105</td>
</tr>
<tr>
<td>Krainer, J.</td>
<td>246</td>
</tr>
<tr>
<td>Krokhmal, P.</td>
<td>157</td>
</tr>
<tr>
<td>Kuester, K.</td>
<td>132–133</td>
</tr>
<tr>
<td>Kullback, S.M.</td>
<td>88</td>
</tr>
</tbody>
</table>
Kuritzkes, A. 494
Kustner, M. 432
Kwan, S. 404

L
Laderman, E. 246
Lagged Collateral model 368–375
Lai, K.S. 352
Lancaster, T. 218, 246
Lando, D. 173, 175n4, 298
Laplace transform 51
Larsen, N.H. 157
Lawrence, C. 137
LCR (Liquidity Coverage Ratio) 405, 455–458
Least Squares Criterion, cash flow deviation
 optimization using 162–163
Least Squares Monte Carlo (LSMC) 72, 393
Ledoit, O. 40
Lesko, M. 296
Levin, A. 362, 473
Li, D.X. 187, 222, 225–226
liability outflows, funding and 424–427
LIBOR (London Interbank Offered Rate)
 392–393, 394–395, 404–405, 404n2
limits, risk reserve process and 409–410
Lindskog, F. 76
Linear Portfolio model 89–90
linear portfolios
 about 31–32
 basic model 24–25
 computing sensitivities 26–28
 estimating covariance matrix of risk factors
 39–40
 portfolio sensitivity analysis and 143
 probabilistic stress testing 41–43
 risk contributions 31–39
 risk measures 28–29
linear programming model 438n10
linear risk aggregation 495–497
liquidity buffer 7
liquidity cost, closeout time with no 137–138
Liquidity Coverage Ratio (LCR) 405, 455–458
liquidity exposure
 about 414–417
 balance sheet 417–424
 with Cash Hedging Capacity 411–412
 combining risk and finance views 428
 with General Liquidity Hedging Capacity
 408–410
 hedging 428–441
 off-balance sheet derivative flows 427–428
liothedy hedging
 components of 449–450, 449n13
 with fixed execution costs 434–436
 with repo possibility 441
 with tiered execution costs 435–441
liquidity horizons 8n6, 166n33
liquidity measure, components of 412–414
liquidity risk
 about 2, 477–481, xiv–xv
 managing with cash flow models 403–461
 measurement of 407–414
 regulation for 455–461
liquidity risk management
cash liquidity risk 450–451
hedging liquidity exposure 428–441
liquidity exposure 414–428
liquidity hedging program 449–450, 449n13
regulation for liquidity risk 455–461
structural liquidity planning 441–449
liquidity stress 416
Litterman, R. 36, 64
loan portfolios, Economic Capital model for
 285–287
Loan-Level models 314
loans
 asset inflows from 417–424
 example FTP for 466
London Interbank Offered Rate (LIBOR)
 392–393, 394–395, 404–405, 404n2
Longstaff, F. 184–185, 231
Longstaff, F.A. 72
loss given default, as a regulatory risk
 component 326–327
losses, earnings and 311–313
LSMC (Least Squares Monte Carlo) 72, 393
Lucas, A. 214, 221, 222
Lugannani, R. 52
Lundbergh, S. 102
Lutkebohmert, E. 239

M
Macroeconomic Credit Score model, stress
testing with 303–305
macroeconomic factors, recovery and 208–209
Madan, D.B. 184
management intervention, balance growth
 assumptions and 520
management overlay 523
Manning, M.J. 178, 182, 345
marginal EE 387–390
marginal portfolio trades 386–392
mark to model method 173n3
market bid-ask spread 435
market correlations 360–361
market credit spreads, matching 184–185
Market Default Rates 345–346
“market depth” 435
market effects 427
market funding 426–427
market liquidity risk 136–142
market models 347–352
market pricing, of corporate bonds 174–178
market risk
about 2, 23, xii–xiii
factor models 396
linear portfolios 24–43
with normal distribution 23–78
quadratic portfolios 43–53
simulation-based valuation 53–73
system of 509
VaR models 176–178
market risk analysis
about 75
developments in the market risk internal models capital regulation 165–167
market liquidity risk 136–142
modeling stylized facts of financial time series 97–134
portfolio optimization 155–165
risk contributions 75–96
risk information 75–96
risk measures 75–96
scenario analysis 142–155
stress testing 142–155
time scaling 134–136
VaR with trading 134–136
market scenarios, market models and 347–351
market standard pricing metrics 335–339
Markov, M. 155
Markov Iteration 254–258
Markov state transition model 218
Markov view, stress testing of credit migration and 217–218
Markowitz, H. 23, 28, 156
Markowitz portfolio theory 10
Martin, R. 239
Mashal, R. 198
Matz, L. 406n3, 416, 450
Mausser, S. 152
maximum return portfolio 442n11
McConnell, J. 473, 474
McMillan, D.G. 98
McNeil, A. 76, 104, 115, 118, 134, 135, 148
measures
of liquidity risk 407–414
of profitability 482–485
measures of risk, coherent 79–80
Melenberg, B. 126–127
Memmel, C. 86
memory capacity, as computer resource constraint 16–17
Menkens, O. 135
Merton, R.C. 23, 54n9, 180n8, 184, 231
Merton’s Structural Model for Corporate Bond Pricing 6, 172, 176, 178–179, 182, 327
Mesler, M. 473–474
Miller, M. 1, 23
Mina, J. 53
minimum capital ratios under stress 517
mitigating regulatory costs 399
mixed copula aggregation 498–501
model analysis, integrating with stress 154–155
model assumption 18
model estimation error, incorporating in simulation scheme 65–66
model estimation risk 39
model risk
management role in 523
managing 17–20
portfolio optimization and 160–161
model validation 19, 122–127
modeling
default times 225–229
recovery process for banking book portfolios 310–311
stylized facts of financial time series 97–134
models
calibration of 261–266
data for 18
development of 18
documentation for 19
execution of 19
general market illiquidity 140–142
governance of 20
using to transfer stress 144–145
Modigliani, F. 1
Molenberghs, G. 116, 118
monotonous property, of risk measures 79
Monte Carlo evaluation 106, 346
Moody’s hybrid model 298
Morgan, D. 429–430
Morokoff, W.J. 195
mortgage portfolio risk analysis 258–285
mortgages, example FTP for 466, 469–470
INDEX

Mulholland, M. 70
Multifactor model
application of 199–208
for asset returns 196–199
default correlation in 213
default times and 229
expanding 218–221
stress testing with 301–302
Multiple Horizons Risk Analysis
194–196, 309
multivariate GARCH, dynamic codependency
and 133–134
Multivariate Merton Model 185–187
multivariate model, of risk factor returns
127–134
Multivariate Normal Distribution
56–60
Multivariate Time Series 110–122

N
naive cash flow replication 164
Nakabayashi, M. 349
Neal, R. 176
Nelson, D.B. 101–102, 103–104
nested simulation valuation 16, 72
nested stochastic valuation 72–73
net credit portfolio losses, taking
into account credit margins 270–271
net interest income, application of 483–485
net interest margin (NIM) profitability
analysis 484–485
Net Stable Funding Ratio (NSFR) 405, 455, 458–459
netting 384–386, 396
network bandwidth, as computer resource
constraint 16–17
Neu, P. 464
Nickell, P. 249
Nikolau, K. 407
NIM (net interest margin) profitability
analysis 484–485
non-modellable risk factors 167n36
nonparametric probabilistic VaR
bounds 77–78
normal distribution, market risk
with 23–28
normal mixture copulas 121–122
NSFR (Net Stable Funding Ratio)
405, 455, 458–459
Nyström, K. 38, 41, 44, 104–105,
106, 109, 240n26, 248, 250,
283, 324

O
OAS (option adjusted spread) 472–473
O’Brien, J. 132–133
observed factor models 60–61
off-balance sheet derivative flows 427–428
OIS (Overnight Index Swap) 392–393, 404–405,
404n2
O’Kane, D. 317n61, 320, 344
One-Factor Copula Model, for correlated default
times 321–323
optimal contractual cash flow matching 443–445
optimal liquidity hedging strategy 433–441,
445–449
option adjusted spread (OAS) 472–473
option sensitivity 27–28
OTC (Over the Counter) derivatives 5, 333
out-of-the-money (OTM) payer swap exposure
profile 353
Over the Counter (OTC) derivatives 5, 333
Overnight Index Swap (OIS) 392–393, 404–405,
404n2
Owen, A.B. 149

P
Pan, J. 44, 44n8, 52
Panjer recursion 293
parallel programming 16
parameter risk 39
partial portfolio closeout over time 138–139
Past Transition Behavior, general scoring models
that depend on 251–254
Patie, P. 135
peak exposure (PE) profile 376, 379, 390–392
Pelletier, P. 125
Pengelley, M. 398
Petrov, A. 278
Peura, S. 310
Physical Position view, of quadratic portfolios
45–46
Pichler, S. 44
Pirotte, H. 185
Piterbarg, V. 394
Point in Time (PIT) 194, 248–251, 277–278
Poisson process 44, 184, 286, 289–296
pools 255–258
portfolio credit risk
about 171–174
credit models for banking book 235–296
credit risk stress testing 299–309
hedging credit risk 315–324
issuer credit risk in wholesale exposures and
trading book 174–235
Multi-Horizon models for banking book 309
regulatory capital for credit risk 324–328
portfolio indices, credit default swaps on 320–321
portfolio optimization 155–165
portfolio sensitivity analysis 143, 147
portfolios
 of derivatives 384–392
 replicating 73
positive exposure 353n9
pre-provision net revenue (PPNR) stress testing 488, 512
pricing
 counterparty credit risk 335–382
 reducing time 69–73
 using Default Time model 229
pricing contingency liquidity risk 479–481
pricing mismatch liquidity risk 478–479
“Principles for Sound Liquidity Risk Management and Supervision” 405
Pritsker, M. 71, 93, 132–133
probabilistic stress testing 41–43
probability, of joint defaults 213
probability bounds, using Central Limit Theorem 78–79
probability density function 29n5
probability of default, as a regulatory risk component 326–327
Probit model 215, 217, 249
processor capacity, as computer resource constraint 16–17
profitability
 about 403
 of cash flows 463–489
 measures and decompositions of 482–485
profitability analysis
 of cash flows xv
 regulation and 487–489
proxy pricing 72–73
Prudential Regulation Authority 460n16
Purchasing Power Parity 352
Pykthin, M. 222, 240, 346, 367, 368, 369, 392, 398

Q
Qi, Z. 246
quadratic expansion 167n35
quadratic portfolios
 about 43
 calculation of risk measures for 51–53
computation of second-order sensitivities 44–45
diagonalization procedure 47–49
distribution of 50–51
portfolio sensitivity analysis and 143
representation of 44
sample quadratic VaR for equity options 49–50
variance reduction using variance reduction approximation 68–69
views of 45–47
quadratic pricing 71–72
qualitative measurement of risk 2–3
quantitative measurement of risk 2–3
quasi-maximum likelihood estimator 103
quasi-random number generators 57

R
Rajan, R. 442
random generator 57
ranking-based liquidity hedging strategy 432–433
Rao, V. 424, 475
RAROC (risk adjusted return on capital) 481–482
rating grade 259n40
Rebonato, R. 57, 123, 154n26
recovery 208–209
recovery process, for banking book portfolios 310–311
reduced form pricing approach, deriving structural equivalent of 182–183
regression, interpretation of 36–37
regulation
 about 4–9
 counterparty credit risk 395–399
 for liquidity risk 455–461
 profitability analysis and 487–489
 risk aggregation and 503–505
regulatory benchmark firmwide risk models 511–512
regulatory capital
 for credit risk 324–328
 risk mitigation and 327–328
regulatory liquidity adjustment equation 166n34
regulatory liquidity monitoring tools 459–461
regulatory provided scenarios 145–147
regulatory risk, components of 326–327
regulatory stress scenario approach 516–524
Regulatory Stress Testing
 applications to 277–278
 with Point in Time probability of default 278–285
Reiner, E. 54n9
Reiss, O. 291, 293
replicating portfolios 73
replication of cash flows 161–165
repo agreements 431
required capital, projecting 519–520
Reserve Bank of India guidelines 507
reverse repo agreements 431
reverse stress testing 8, 147–154
Rice, S. 52
Richardson, M. 396
Righi, M.B. 126–127
right censoring 244
risk adjusted return on capital (RAROC) 481–482
risk adjusted returns 481–482
risk aggregation
about 107–110, xv
capital allocation in 501–503
with linear model 496–497
regulation and 503–505
risk analytics 11–13
risk appetite 3–4
risk assessment 2–3
risk attribution 32
risk contributions
about 75–76
computation of risk 34
decomposing risk factor contributions into
systematic and idiosyncratic risk 37
economic interpretation of Euler Decomposition 37–39
Euler Decomposition 32–33, 32n7, 35–36
hedging 35–36
implied normal 87–88
interpretation of regression 36–37
simulation-based 80–88
volatility contributions to VaR and CVaR contributions 34
risk distortion measures 93–96
risk factor model parameter uncertainty 65
risk factor returns
multivariate model of 127–134
risk measures and 30–31
risk factors
dimension reduction 60–65
estimating covariance matrix of 39–40
non-modellable 167n36
risk information
about 75–76
for discrete distributions 90–93
in Linear Portfolio model 89–90
measures of 88–93
risk infrastructure 13–15
risk management
about 15
banks and 1–4
creating value from 9–10
risk measures
about 28–29, 75–76
for bond portfolios 187–196
calculation of for quadratic portfolio 51–53
distribution of 40–41
distribution for 40–41
examples of 29–30
interval estimation for general 79
risk factor returns and 30–31
risk mitigation 3, 327–328
Risk Position view, of quadratic portfolios 46–47
risk reserve approach 514–516, 517
risk reserve process
example of 409
limits and 409–410
risk technology 15–17
risk view 428
Risk Weighted Assets (RWA) 325
risk-based funds transfer pricing 468–481
risk-free condition property, of risk measures 79
risk-free interbank funding 469
RiskMetrics 73, 102–103, 130n19, 131–132, 134, 167
risks
“black swan” 2
coherent measures of 79–80
CVA (Credit Valuation Adjustment) 382–384
stress scenarios and measuring 512–514
transfer pricing of xv
wrong-way 361–364, 390–392, 396
risky equity funding 469
Robinson, G. 137
Rockafellar, R.T. 157, 158
Rogge, E. 225
Ron, U. 175n5
Ronn, E. 182
Rösch, D. 209
Rosen, D. 392
Rosenberg, J. 494
Ross, M. 54n9, 351–352
Ross arbitrage pricing theory 10
Rousseeuw, P.J. 116, 118
Rouvinez, C. 44
Rowe, D. 70
Rubinstein, M. 54n9
RWA (Risk Weighted Assets) 325
Index

S
Saa’-Requejo, J. 185, 298
Sadefo-Kamdem, J. 31, 76
Saidenber, M. 429–430
Santa Clara, P. 185, 298
Sarig, O. 182, 231
SCAP (Supervisory Capital Assessment Program) 8, 507
scenario analysis 142–155
Scenario-Based Portfolio Optimization 156–160
Schaefer, S.M. 50
Scharfstein, D. 430
Scheicher, M. 198
Scheinkman, J. 64
Scherer, B. 160
Scheule, H. 209
Schied, A. 80
Schmieder, C. 198
Schoenmaker, J. 291, 293
Scholes, Myron 10, 38–39
Schönbucher, P.J. 175n4, 197, 213, 214, 225
Schuermann, T. 194, 494, 524
Schwartz, E. 72, 184–185, 231, 418
Scopelliti, A.D. 323
SCSA (Standard Credit Support Annex) 427
Seclari, M.J. 53
second-order sensitivities, computation of 44–45
securitization, Basket Credit Default Swaps and 323–324
Selitsch, K. 44
Selvaggio, R. 475–476
sensitivities
bond 26–27
computing 26–28
equity portfolio 26
second-order 44–45
Serfling, R.J. 78–79
Sharpe, W. 23, 36–37
Sharpe’s capital asset pricing theory 10, 38–39
Shimko, D. 180n8
short-term collateralized loans 430
Short-term Transition Matrices, Generator Matrix and 232–233
Shumway, T. 244
Sidenius, J. 321
silo approach 509–512
simulation-based risk contributions 80–88
simulation-based valuation about 53–54
Binary Barrier option 55–56
incorporating model estimation error in 65–66
from Multivariate Normal Distribution 56–60
reducing pricing time 69–73
risk factor dimension reduction 60–65
Single-Barrier option 54–55
Soft Barrier option 56
variance reduction by importance sampling 66–69
Singh, M. 473, 474
Single-Barrier option 54–55
Single-Name Credit Default Swaps 315–320
Singleton, K. 175
small and medium-sized enterprise (SME) segment 499
Smillie, A. 86
Smith, D.J. 148, 393
Smith, R. 106
Smith, T. 396
smoothing VaR contributions 84–86
Sobol sequence 57
Soft Barrier option 56
Soininen, J. 310
Sorensen, E. 346, 347, 348
“Sound Practices for Managing Liquidity in Banking Organizations” 405
SPAN (Standardized Portfolio Analysis of Risk) exchange 142
Spearman’s rho 113, 114–115
Special Purpose Entity (SPE) 323
spectral risk measures (SRM) 96
Stability of Risk Contributions 224
Standard Credit Support Annex (SCSA) 427
standardized CVA charge 398
Standardized Portfolio Analysis of Risk (SPAN) exchange 142
Stanton, R. 473, 474
State Transitions, simulation of 254–255
Stein, R.M. 244–245, 442
storage capacity, as computer resource constraint 16–17
straddle position 159, 159n28
Strahan, P. 429–430
strap option position 159, 159n28
Straumann, D. 76
“Strengthening Liquidity Standards” 460
“Strengthening the Resilience of the Banking Sector” 405
stress
 example scenarios 302–303, 305–309
 integrating with model analysis 154–155
 using models to transfer 144–145
stress testing
 about 8, 255–258, xiv
 of credit migration and Markov view 217–218
 credit risk 299–309
 firmwide scenario analysis and 507–526
 with Macroeconomic Credit Score model 303–305
 with Multifactor model 301–302
 probabilistic 41–43
 regulations for 305n54
 scenario analysis and 142–155
 systematic portfolio 143–144
structural liquidity planning 441–449
Structural Model for Corporate Bond Pricing (Merton) 178–179
subadditive property, of risk measures 79
Sufi, A. 430
Supervisory Capital Assessment Program (SCAP) 8, 507
swap exposure profiles, CVA and 351–360
Sweeney, R.J. 99, 352
systematic portfolio stress tests 143–144
systematic risk 37
systematic stress test programs, versus portfolio sensitivity analysis 147
systemic view 523–524

T
tail approximation 52–53, 67, 104–110
taleb, N.N. 2, 23n1
tarullo, D.K. 524
tasche, D. 39, 81, 86, 294
task force on Interest Rate Risk (TFIR) 488
tavakoli, J. 323
tay, A. 125–126
taylor, A.M. 99
taylor, M.P. 99
taylor approximation 24–25, 44
t-Copula 193–194, 207–208, 361
terasvirta, T. 103–104
TFIR (Task Force on Interest Rate Risk) 488
thakor, A. 442
theil, M. 250
thomas, L.C. 243n29
through the Cycle (TTC) 194, 277–278
tibshirani, R. 79
tiered execution costs, liquidity hedging with 435–441
tiered portfolio closeout over time 139–140
time horizons 415
time scaling 134–136
Time Series Forecasting models, use of for line items 522–523
timeliness, as core principle of risk infrastructure 13–15
tirole, J. 430
torous, W.N. 418
traded bonds, economic capital for portfolio of 230–231
trading, VaR with 134–136
Traditional Markowitz Efficient Portfolio 156
tranche 323–324
transaction costs 474n10
transparency, as core principle of risk infrastructure 13–15
trapezoidal rule 44
treasury-issued credit default swaps 468
truncated distribution test 126–127
tse, Y.K. 133
tsui, A. 133
TTC (Through the Cycle) 194, 277–278
turnbull, S. 175n4, 317n61

U
UK FSA 460, 460n16
ulmer, A. 53
unconditional coverage 123–124
unilateral agreement 368–373
univariate Time Series 97–110
unobserved factor models 61–65
uryasev, S. 157, 158

V
valuation, of embedded options 471–473, 475–477
value, creating from risk management 9–10
Value at Risk (VaR) 4, 6n2, 7–8, 8n6, 28, 126–127, 134–136
van deventer, D. 473–474, 475–476
VAR Interval estimation 76–79
VAR risk contributions calculation of 82–84
smoothing 84–86
variance reduction 66–69
vasicek, O, 222, 239
verma, A. 182
views, of quadratic portfolios 45–47
Index

volatility clustering, capturing 100–104
volatility contributions, to VaR and CVaR contributions 34

W
Wang, S.S. 94
Warga, A. 182, 231
Wehn, C. 86
Wei, J.Z. 249
Weibull distribution 125, 132
Weiner, S. 494
White, A. 320, 321, 322, 362, 393, 394, 471
Wiener process 98–99, 182, 186, 263, 347, 351, 367n10
Wilde, T. 239
Wilson, A. 249, 251
Wishart distribution 39–40

Wolf, M. 40
Wong, W.K. 51, 53, 126–127, 349
Woolridge, J.M. 133
wrong-way risk 361–364, 390–392, 396

Y
Yu, F. 299

Z
Zellner, A. 250
zero curve 349
Zhou, C. 184
Zhu, S. 71, 346, 367
Ziegler, A. 432
Zigrand, J.P. 135
Z-score 249