CONTENTS

PREFACE xxiii
LIST OF CONTRIBUTORS xxvii

1 Downstream Processing of Monoclonal Antibodies: Current Practices and Future Opportunities 1
Brian Kelley

1.1 Introduction 1
1.2 A Brief History of Current Good Manufacturing Process mAb and Intravenous Immunoglobulin Purification 2
1.3 Current Approaches in Purification Process Development: Impact of Platform Processes 4
1.4 Typical Unit Operations and Processing Alternatives 7
1.5 VLS Processes: Ton-Scale Production and Beyond 10
1.6 Process Validation 12
1.7 Product Life Cycle Management 13
1.8 Future Opportunities 16
1.9 Conclusions 18
Acknowledgments 19
References 19

2 The Development of Antibody Purification Technologies 23
John Curling

2.1 Introduction 23
2.2 Purification of Antibodies by Chromatography Before Protein A 25
CONTENTS

2.3 Antibody Purification After 1975 \hfill 28
2.4 Additional Technologies for Antibody Purification \hfill 31
2.5 Purification of mAbs Approved in North America and Europe \hfill 34
2.6 Current Antibody Process Technology Developments \hfill 40
 Acknowledgments \hfill 45
 References \hfill 46

3 Harvest and Recovery of Monoclonal Antibodies:
Cell Removal and Clarification \hfill 55

Abhinav A. Shukla and Eric Suda

3.1 Introduction \hfill 55
3.2 Centrifugation \hfill 59
3.3 Microfiltration \hfill 62
3.4 Depth Filtration \hfill 67
3.5 Flocculation \hfill 70
3.6 Absolute Filtration \hfill 71
3.7 Expanded Bed Adsorption Chromatography \hfill 73
3.8 Harvesting in Single-Use Manufacturing \hfill 74
3.9 Comparison of Harvest and Clarification Unit Operations \hfill 74
 References \hfill 76

4 Next-Generation Clarification Technologies for the Downstream
Processing of Antibodies \hfill 81

Nripen Singh and Srinivas Chollangi

4.1 Introduction \hfill 81
4.2 Impurity Profiles in Cell Cultures \hfill 83
4.3 Precipitation \hfill 84
 4.3.1 Acid Precipitation \hfill 84
 4.3.2 Caprylic Acid Precipitation \hfill 87
 4.3.3 PEG Precipitation \hfill 88
 4.3.4 Cold Ethanol Precipitation \hfill 89
4.4 Affinity Precipitation \hfill 89
4.5 Flocculation \hfill 90
 4.5.1 Anionic Flocculation \hfill 91
 4.5.2 Cationic Flocculation \hfill 92
 4.5.3 Multimodal Flocculation \hfill 95
4.6 Toxicity of Flocculants and Precipitants and Their Residual Clearance \hfill 96
4.7 Depth Filtration \hfill 97
 4.7.1 Improvements in Depth Filtration Technology \hfill 97
 4.7.2 Impurity Removal by Depth Filtration \hfill 98
 4.7.3 Virus Clearance by Depth Filtration \hfill 99
4.8 Considerations for the Implementation of New
Clarification Technologies \hfill 102
4.9 Conclusions and Future Perspectives \hfill 103
 Acknowledgments \hfill 104
 References \hfill 104
5 Protein A-Based Affinity Chromatography

Suresh Vunnum, Ganesh Vedantham and Brian Hubbard

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>5.2 Properties of Protein A and Commercially Available Protein A Resins</td>
<td>114</td>
</tr>
<tr>
<td>5.2.1 Protein A Structure</td>
<td>114</td>
</tr>
<tr>
<td>5.2.2 Protein A–Immunoglobulin G Interaction</td>
<td>114</td>
</tr>
<tr>
<td>5.2.3 Stoichiometry of Protein A–IgG Binding</td>
<td>115</td>
</tr>
<tr>
<td>5.2.4 Protein A Stability</td>
<td>115</td>
</tr>
<tr>
<td>5.2.5 Commercial Protein A Resins</td>
<td>115</td>
</tr>
<tr>
<td>5.2.6 Static Capacity</td>
<td>116</td>
</tr>
<tr>
<td>5.2.7 Dynamic Binding Capacity</td>
<td>116</td>
</tr>
<tr>
<td>5.2.8 Leaching</td>
<td>117</td>
</tr>
<tr>
<td>5.2.9 Production Rates</td>
<td>118</td>
</tr>
<tr>
<td>5.3 Protein A Chromatography Step Development</td>
<td>118</td>
</tr>
<tr>
<td>5.3.1 Loading/Binding</td>
<td>119</td>
</tr>
<tr>
<td>5.3.2 Wash Development</td>
<td>120</td>
</tr>
<tr>
<td>5.3.3 Elution</td>
<td>121</td>
</tr>
<tr>
<td>5.3.4 Stripping</td>
<td>122</td>
</tr>
<tr>
<td>5.3.5 Regeneration and CIP</td>
<td>122</td>
</tr>
<tr>
<td>5.4 Additional Considerations During Development and Scale-Up</td>
<td>123</td>
</tr>
<tr>
<td>5.4.1 Controlling HMW Aggregate Formation</td>
<td>123</td>
</tr>
<tr>
<td>5.4.2 Removal of Soluble HMW Contaminants</td>
<td>124</td>
</tr>
<tr>
<td>5.4.3 Turbidity</td>
<td>124</td>
</tr>
<tr>
<td>5.5 Virus Removal/Inactivation</td>
<td>127</td>
</tr>
<tr>
<td>5.5.1 Virus Removal</td>
<td>127</td>
</tr>
<tr>
<td>5.5.2 Low-pH Inactivation</td>
<td>127</td>
</tr>
<tr>
<td>5.5.3 Prion Clearance</td>
<td>128</td>
</tr>
<tr>
<td>5.6 Validation and Robustness</td>
<td>128</td>
</tr>
<tr>
<td>5.6.1 Validation</td>
<td>128</td>
</tr>
<tr>
<td>5.6.2 Robustness</td>
<td>129</td>
</tr>
<tr>
<td>5.7 Conclusions</td>
<td>129</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>130</td>
</tr>
<tr>
<td>References</td>
<td>130</td>
</tr>
</tbody>
</table>

6 Purification of Human Monoclonal Antibodies: Non-Protein A Strategies

Alahari Arunakumari and Jue Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>135</td>
</tr>
<tr>
<td>6.2 Integrated Process Design for Human Monoclonal Antibody Production</td>
<td>136</td>
</tr>
<tr>
<td>6.3 Purification Process Designs for HuMabs</td>
<td>136</td>
</tr>
<tr>
<td>6.3.1 Protein A Purification Schemes</td>
<td>136</td>
</tr>
<tr>
<td>6.3.2 Non-Protein A Purification Schemes</td>
<td>139</td>
</tr>
<tr>
<td>6.3.3 Host Cell Protein Exclusion Approach for IEX Purification Schemes</td>
<td>139</td>
</tr>
<tr>
<td>6.3.3.1 Primary Recovery</td>
<td>141</td>
</tr>
<tr>
<td>6.3.3.2 Optimization of CEX Capture Chromatography</td>
<td>143</td>
</tr>
<tr>
<td>6.3.3.3 Two-Column Nonaffinity Purification Processes</td>
<td>148</td>
</tr>
</tbody>
</table>
9.3 Advances in the Purification of mAbs by CEX Chromatography 201
 9.3.1 Overview 201
 9.3.2 High-Capacity CEX 202
 9.3.3 An Exclusion Mechanism in IEX Chromatography 203
 9.3.4 Factors Affecting the Critical Conductivity 205
 9.3.5 Advances in mAb CEX Process Development 206
9.4 High-Performance Tangential Flow Filtration 209
 9.4.1 Overview 209
 9.4.2 Advances in HPTFF 210
9.5 A New Nonaffinity Platform 211
References 213

10 Alternatives to Packed-Bed Chromatography for Antibody Extraction and Purification 215
 Jörg Thömmes, Richard M. Twyman and Uwe Gottschalk

 10.1 Introduction 215
 10.2 Increasing the Selectivity of Harvest Procedures: Flocculation and Filter Aids 216
 10.2.1 Flocculation 216
 10.2.2 Filter Aids 217
 10.3 Solutions for Antibody Extraction, Concentration, and Purification 218
 10.3.1 Extraction and Concentration by Precipitation 218
 10.3.2 Extraction and Concentration by Liquid-Phase Partitioning 219
 10.3.3 Concentration by Evaporation 220
 10.4 Antibody Purification and Formulation Without Chromatography 220
 10.4.1 Crystallization 220
 10.4.2 Controlled Freeze–Thaw 222
 10.4.3 Lyophilization 222
 10.5 Membrane Adsorbers 223
 10.6 Conclusions 225
References 226

11 Process-Scale Precipitation of Impurities in Mammalian Cell Culture Broth 233
 Judy Glynn

 11.1 Introduction 233
 11.2 Precipitation of DNA and Protein—Other Applications 235
 11.3 A Comprehensive Evaluation of Precipitants for the Removal of Impurities 236
 11.3.1 Protocol 236
 11.3.2 Ammonium Sulfate Precipitation 237
 11.3.3 Polymer Precipitation 237
 11.3.4 Precipitation with Ionic Liquids 238
 11.3.5 Precipitation with Cationic Detergents 239
 11.3.6 Ethacridine Precipitation 239
 11.3.7 Caprylic Acid Precipitation 240
11.4 Industrial-Scale Precipitation 241
11.5 Cost of Goods Comparison 243
11.6 Summary 244
 Acknowledgments 244
 References 244

12 Charged Ultrafiltration and Microfiltration Membranes
 for Antibody Purification 247
 Mark R. Etzel and Abhiram Arunkumar

 12.1 Introduction 247
 12.2 Charged UF Membranes 248
 12.3 Concentration Polarization and Permeate Flux 248
 12.4 Stagnant Film Model 249
 12.5 Sieving Coefficient 250
 12.6 Mass Transfer Coefficient 251
 12.7 Mass Balance Models 251
 12.8 Scale-Up Strategies and the Constant Wall
 Concentration (C_w) Approach 253
 12.9 Membrane Cascades 255
 12.10 Protein Fractionation Using Charged UF Membranes 256
 12.11 Case Study 257
 12.11.1 Methods 257
 12.11.2 Results 257
 12.11.3 Discussion 259
 12.12 Charged MF Membranes 259
 12.13 Virus Clearance 260
 12.14 Salt Tolerance 261
 12.15 Conclusions 264
 Acknowledgments 264
 References 264

13 Disposable Prepacked-Bed Chromatography for Downstream
 Purification: Form, Fit, Function, and Industry Adoption 269
 Stephen K. Tingley

 13.1 Introduction 269
 13.2 Development-Scale Prepacked Column Applications 271
 13.2.1 Resin and Condition Scouting 271
 13.2.2 Process Development 271
 13.2.3 Process Optimization and Troubleshooting 273
 13.2.4 Virus Titer Reduction Validation 273
 13.3 Process-Scale Prepacked Column Applications 275
 13.3.1 Overview 275
 13.3.2 Prepacked Columns—Form 275
 13.3.3 Prepacked Columns—Design Considerations 277
 13.3.4 Prepacked Columns—Function 277
CONTENTS

13.4 Basic Technical Datasets 278
13.4.1 Scale-Up and Basic Chromatography 278
13.4.2 Column Cycling 278
13.4.3 Column Cleanability 280
13.4.4 Shelf Life 281
13.4.5 Extractables and Leachables 282
13.4.6 Shipping and Handling 283
13.5 Independent Industry Assessments of “Fit for Purpose” 285
13.6 Case Study 1: Cation-Exchange Polishing Chromatography 285
13.7 Case Study 2: Prepacked Columns for Pilot-/Large-Scale Bioprocessing 287
13.8 Prepacked Columns—Fit 292
13.8.1 Manufacturing Operations for Toxic Products 292
13.8.2 Single-Use/Disposable Facilities 292
13.8.3 Clinical Manufacturing Operations 293
13.8.4 Contract Manufacturing 293
13.8.5 Distributed Commercial Manufacturing 294
13.9 The Economics of Prepacked Column Technologies 295
13.10 The Implementation of Disposable Prepacked Columns 297
13.10.1 Cross-Functional Alignment 297
13.10.2 Project and Process Fit 297
13.10.3 Risk Analysis and Risk Mitigation 297
13.10.4 Enabling Future Processes 298
13.10.5 Technological Pros and Cons 299
13.11 Conclusions 300
References 301

14 Integrated Polishing Steps for Monoclonal Antibody Purification 303
Sanchayita Ghose, Mi Jin, Jia Liu, John Hickey and Steven Lee

14.1 Introduction 303
14.2 Polishing Steps for Antibody Purification 304
14.2.1 Ion-Exchange Chromatography 304
14.2.1.1 AEX Chromatography 304
14.2.1.2 CEX Chromatography 305
14.2.2 Hydrophobic Interaction Chromatography 308
14.2.3 HA Chromatography 312
14.2.4 Mixed-Mode and Other Modes of Chromatography 313
14.2.5 Dedicated Virus Removal Steps 316
14.3 Integration of Polishing Steps 316
14.3.1 Case Study I: Selection and Placement of Polishing Steps 316
14.3.2 Case Study II: Selecting an Operational Mode and the Influence of the Upstream Polishing Step 318
14.4 Conclusions 320
Acknowledgment 320
References 320
15 Orthogonal Virus Clearance Applications in Monoclonal Antibody Production 325

Joe X. Zhou

15.1 Introduction 325
15.2 Model Viruses and Virus Assays 326
15.3 Virus Clearance Strategies at Different Development Stages 328
15.4 Orthogonal Virus Clearance During mAb Production 328
 15.4.1 Capture, Low-pH Virus Inactivation, and Polishing 328
 15.4.2 Disposable Systems 329
 15.4.2.1 Depth Filtration 329
 15.4.2.2 Q Membrane Chromatography 330
 15.4.2.3 Virus Clearance Using 20-nm Filters 333
15.5 Conclusions and Future Perspectives 338
Acknowledgments 339
References 339

16 Development of a Platform Process for the Purification of Therapeutic Monoclonal Antibodies 343

Yuling Li, Min Zhu, Haibin Luo and Justin R. Weaver

16.1 Introduction 343
16.2 Chromatography Steps in the Platform Process 345
 16.2.1 Capture Step: General Considerations 345
 16.2.1.1 Protein A Affinity Chromatography 346
 16.2.1.2 CEX Chromatography 347
 16.2.1.3 Mixed-Mode Chromatography 347
 16.2.1.4 Overview of Capture Resin Platforms 348
 16.2.2 Intermediate/Polishing Steps 348
 16.2.2.1 CEX Chromatography 348
 16.2.2.2 AEX Chromatography 349
 16.2.2.3 Mixed-Mode and HIC 349
 16.2.2.4 Selection of Polishing Resins 351
16.3 Virus Inactivation 352
16.4 UF/DF Platform Considerations 352
 16.4.1 Optimization 353
 16.4.2 Challenges and Facility Fit 354
 16.4.3 Application Examples 354
16.5 Platform Development: Virus Filtration and Bulk Fill 354
 16.5.1 Virus Filtration in Platform Processes 355
 16.5.2 Filtration in Platform Processes 355
16.6 Addressing Future Challenges in Downstream Processing 356
16.7 Representative Platform Processes 356
 16.7.1 Example 1: Three-Column Process Including Protein A 356
 16.7.2 Example 2: Three-Column Process Without Protein A 358
 16.7.3 Example 3: Streamlined Processes with One or Two Columns 359
16.8 Developing a Virus Clearance Database Using a Platform Process 359
16.9 Summary 361
References 361
17 The Evolution of Platform Technologies for the Downstream Processing of Antibodies 365

Lee Allen

17.1 Introduction 365
17.2 The Definition of a Platform Purification Process 366
17.3 The Dominant Process Design 367
 17.3.1 Convergence on a Dominant Design 367
 17.3.2 Evolutionary Pressure on Purification Platforms 368
17.4 The Evolution of Unit Operations 372
 17.4.1 Incremental Improvements in Capture Technology 372
 17.4.1.1 The Development of Protein A Affinity Chromatography 374
 17.4.1.2 Incremental Improvements in Protein A Affinity Chromatography 375
 17.4.2 Incremental Improvements in Polishing Technology 377
 17.4.2.1 AEX Chromatography 377
 17.4.2.2 Aggregate Reduction Steps 378
 17.4.3 Incremental Improvements in Virus Clearance 381
 17.4.3.1 Virus Inactivation 381
 17.4.3.2 Virus Removal by Filtration 381
17.5 Adapting the Platform Process for Product-Specific Issues 382
17.6 Future Perspectives—Future Evolutionary Pathways 382
17.7 Concluding Remarks 383

Acknowledgments 384

References 384

18 Countercurrent Chromatography for the Purification of Monoclonal Antibodies, Bispecific Antibodies, and Antibody–Drug Conjugates 391

Thomas Müller-Späth and Massimo Morbidelli

18.1 Introduction 391
18.2 Chromatography to Reduce Product Heterogeneity 392
18.3 Definition of Performance Parameters 394
18.4 Gradient Chromatography for Biomolecules 394
18.5 Continuous and Countercurrent Chromatography 395
 18.5.1 Overview 395
 18.5.2 The Simulated Moving Bed Process 396
 18.5.3 Advantages and Disadvantages of Batch and SMB Chromatography 396
18.6 Multicolumn Countercurrent Solvent Gradient Purification 397
 18.6.1 MCSGP Process Principle and Design 398
 18.6.2 MCSGP for the Capture of Antibodies from Clarified Cell Culture Supernatants 399
 18.6.3 MCSGP for the Separation of mAb Variants 400
 18.6.4 MCSGP for the Purification of bsAbs 402
 18.6.5 MCSGP for the Purification of ADCs 403
18.7 Scalability of Multicolumn Countercurrent Chromatography 403
18.8 Online Process Monitoring for Multicolumn Countercurrent Chromatography 404
18.9 Outlook 405
References 405

19 The Evolution of Continuous Chromatography: From Bulk Chemicals to Biopharma 409
Marc Bisschops

19.1 Introduction 409
19.2 Continuous Chromatography in Traditional Process Industries 410
19.2.1 Continuous IEX 410
19.2.2 SMB Technology 411
19.3 Continuous Chromatography in the Biopharmaceutical Industry 413
19.3.1 Continuous Multicolumn Chromatography Systems 414
19.3.2 Continuous Multicolumn Capture Chromatography 417
19.3.3 Number of Columns 418
19.3.4 Beyond Affinity Capture Chromatography 420
19.4 Advantages of Continuous Chromatography 420
19.5 Implementation Aspects of Continuous Chromatography 422
19.5.1 Single-Use Bioprocessing 422
19.5.2 Integrated Continuous Bioprocessing 422
19.6 Regulatory Aspects 424
19.7 Conclusions 426
References 427

20 Accelerated Seamless Antibody Purification: Simplicity is Key 431
Benoit Mothes

20.1 Introduction 431
20.2 Accelerated Seamless Antibody Purification 432
20.2.1 Concept of the ASAP Process 432
20.2.2 ASAP Process Development 433
20.2.2.1 Buffer Solutions 433
20.2.2.2 The Protein A Step 434
20.2.2.3 The Mixed-Mode Step 434
20.2.2.4 The AEX Step 436
20.2.2.5 Summary of ASAP Process Performance 436
20.2.2.6 ASAP Process Robustness 436
20.3 Advantages of the ASAP Process 437
20.4 Scaling Up the ASAP Process 438
20.4.1 Laboratory Scale-Up 438
20.4.2 Pilot-Scale ASAP in a cGMP Environment 440
20.5 New Perspectives 440
20.5.1 Purification Skid 440
20.5.2 Process Analytical Technology 441
20.5.3 Membrane Adsorbers 441
21 Process Economic Drivers in Industrial Monoclonal Antibody Manufacture 445

Suzanne S. Farid

21.1 Introduction 445
21.2 Challenges When Striving for the Cost-Effective Manufacture of mAbs
 21.2.1 Constraints 446
 21.2.2 Uncertainties 447
21.3 Cost Definitions and Benchmark Values
 21.3.1 Capital Investment 448
 21.3.2 Cost of Goods per Gram 449
21.4 Economies of Scale 450
21.5 Overall Process Economic Drivers
 21.5.1 Titer 453
 21.5.2 Overall DSP Yield 454
 21.5.3 Batch Duration 455
 21.5.4 Batch Success Rate 455
 21.5.5 Logistics 456
21.6 DSP Drivers At High Titers
 21.6.1 Material Reuse and Lifetime 457
 21.6.2 Buffer/WFI Demands 458
 21.6.3 Chromatography Capacity 459
21.7 Process Economic Trade-Offs for Downstream Process Bottlenecks
 21.7.1 Chromatography Resin Dynamic Binding Capacity 460
 21.7.2 Chromatography Flow Rates 460
 21.7.3 Chromatography Resin Cycle Limits 460
 21.7.4 Platform Processes 460
 21.7.5 Alternatives to Chromatography 461
21.8 Summary and Outlook 461
 References 462

22 Design and Optimization of Manufacturing 467

Andrew Sinclair

22.1 Introduction 467
22.2 Process Design and Optimization 468
22.3 Modeling Approaches
 22.3.1 Process Models for mAb Manufacturing:
 Understanding Economics 470
 22.3.1.1 Basic Accounting Principles 471
 22.3.1.2 Project Appraisal 472
 22.3.1.3 Cost of Goods Modeling 473
22.3.2 Process Schedule Visualization for mAb Manufacturing 476
22.3.2.1 Process/Facility Schedule 478
22.3.2.2 Data Requirements 479
22.3.2.3 Bioprocess Models in Relation to ANSI/ISA-88 480

22.4 Process Modeling in Practice 481
22.4.1 Manufacturing Strategies 481
22.4.1.1 Pooling Strategies for Multiple Single-Use Bioreactors 482
22.4.1.2 Measuring the Overall Impact of Novel Single-Use Platforms 482
22.4.2 The Potential of Continuous Downstream Processing Operations 485
22.4.3 Manufacturing Technologies—Single-Use Systems 485
22.4.3.1 Impact on Product and Solution Handling 487
22.4.3.2 Membrane Adsorbers 490

22.5 Impact of the Process on the Facility 491
22.5.1 The Management of Multiproduct Manufacturing 491

Acknowledgments 492
References 492

23 Smart Design for an Efficient Facility With a Validated Disposable System 495
Joe X. Zhou, Jason Li, Michael Cui and Haojun Chen

23.1 Design and Optimization of a Manufacturing Facility 495
23.1.1 Introduction 495
23.1.2 Considerations for the Design and Construction of a New Facility 496
23.1.3 Adapting to a New mAb Production Platform 496
23.1.4 Process Modeling 500
23.1.5 New Facility Project Management 501
23.1.6 Site Selection and Master Planning 504

23.2 Validation of a Disposable System 507
23.2.1 Introduction 507
23.2.2 Regulatory Requirements for Process Validation 508
23.2.3 General Considerations for the Validation of Disposable Systems 509
23.2.4 Implementation of Disposable Systems Validation 510

23.3 Conclusion 512
Acknowledgments 512
References 512

24 High-Throughput Screening and Modeling Technologies for Process Development in Antibody Purification 515
Tobias Hahn, Thiemo Huuk and Jürgen Hubbuch

24.1 Introduction 515
24.2 Adsorption Isotherms 516
24.2.1 Example 1: Langmuir Isotherm 516
24.2.2 Example 2: Steric Mass Action Isotherm 517
24.2.3 Adsorption Kinetics 518
24.3 Batch Chromatography 519
 24.3.1 Design Space Exploration 521
 24.3.2 Mechanistic Data Analysis 524
24.4 Column Chromatography 524
 24.4.1 Comparability of HTCC and Benchtop Systems 525
 24.4.2 Mechanistic Modeling 526
 24.4.2.1 Solution of the Model Equation 527
 24.4.2.2 Model Calibration 527
 24.4.2.3 Example: Modeling a mAb Polishing Step 529
References 532

25 Downstream Processing of Monoclonal Antibody Fragments 537
Mariangela Spitali

25.1 Introduction 537
25.2 Production of Antibody Fragments for Therapeutic Use 538
25.3 Downstream Processing 539
 25.3.1 Primary Recovery 539
 25.3.2 Capture 542
 25.3.3 Expanded Bed Adsorption Chromatography 548
 25.3.4 Further Purification and Polishing 550
 25.3.4.1 Intermediate Purification 550
 25.3.4.2 Polishing 551
25.4 Improving the Pharmacological Characteristics of Antibody Fragments 552
25.5 Conclusions 553
Acknowledgments 555
References 555

26 Downstream Processing of Fc Fusion Proteins, Bispecific Antibodies, and Antibody–Drug Conjugates 559
Abhinav A. Shukla and Carnley L. Norman

26.1 Introduction 559
 26.1.1 Fragment Crystallizable Fusion Proteins 559
 26.1.2 Bispecific Antibodies 561
 26.1.3 Antibody–Drug Conjugates 562
26.2 Biochemical Properties 562
 26.2.1 Fc Fusion Proteins 562
 26.2.2 Bispecific Antibodies 569
 26.2.2.1 IgG-Like bsAbs 569
 26.2.2.2 bsAb Fragments 572
 26.2.3 Antibody–Drug Conjugates 572
26.3 Purification From Mammalian Expression Systems 576
 26.3.1 Platform Approaches for Downstream Purification 576
26.3.2 Fc Fusion Proteins: Capture, Virus Inactivation, and Polishing 578
26.3.3 bsAbs: Molecule Design and Purification 581
26.3.4 ADCs: Additional Steps 582
 26.3.4.1 Lysine Conjugation 584
 26.3.4.2 Cysteine Conjugation 584
 26.3.4.3 Manufacturing Challenges 585
26.4 Purification From Microbial Production Systems 585
26.5 Future Innovations 587
Acknowledgment 589
References 589

27 Manufacturing Concepts for Antibody–Drug Conjugates 595
Thomas Rohrer

27.1 Introduction 595
27.2 Targeting Components 596
 27.2.1 Targeting Components for Random Conjugation 596
 27.2.2 Targeting Components for Site-Specific Conjugation 598
27.3 Cytotoxic Drugs 600
27.4 Chemically Labile Linkers 602
27.5 General Process Overview 604
27.6 Facility Design and Supporting Technology 604
27.7 Single-Use Equipment 607
27.8 Manufacturing ADCs 608
27.9 Analytical Support for ADC Manufacturing 609
 27.9.1 Drug-to-Antibody Ratio and Distribution 609
 27.9.2 Size-Variant Analysis 610
 27.9.3 Unconjugated Drug in the Drug Substance and Product 611
27.10 Raw Materials Supply Chain 611
27.11 Conclusion 611
Acknowledgments 613
References 613

28 Purification of IgM and IgA 615
Charlotte Cabanne and Xavier Santarelli

28.1 Introduction 615
28.2 Purification of IgM 616
 28.2.1 IgM Structure and Properties 616
 28.2.2 IgM Purification Technologies 616
 28.2.3 Affinity and Pseudoaffinity Matrices 617
 28.2.3.1 Protein L 617
 28.2.3.2 Mannose-Binding Protein 617
 28.2.3.3 Thiophilic Matrices 618
 28.2.3.4 Immobilized Metal Affinity Chromatography 618
 28.2.3.5 Hydroxyapatite 619
 28.2.3.6 Protein A Mimetic TG 19318 619
28.2.3.7 VHH Camelid Ligand 619
28.2.3.8 Hexamer Peptide Ligands HWRGWV, HYFKFD, and HFRRHL 620
28.2.3.9 Capto™ Core 700 620
28.3 Purification of IgA 621
28.3.1 IgA Structure and Properties 621
28.3.2 Affinity and Pseudoaffinity Matrices 621
28.3.2.1 Protein L, Thiophilic Matrices, and IMAC 621
28.3.2.2 Hydroxyapatite 621
28.3.2.3 Jacalin Matrix 622
28.3.2.4 Protein A Mimetic TG 19318 622
28.3.2.5 Streptococcal IgA-Binding Peptide 622
28.3.2.6 ZIgA Ligand 622
28.3.2.7 Hexameric Peptide Ligand HWRGWV 622
28.3.2.8 VHH Camelid Ligand 622
28.4 Conclusion 623
Acknowledgments 623
References 623

29 Purification of Monoclonal Antibodies From Plants 631
Zivko L. Nikolov, Jeffrey T. Regan, Lynn F. Dickey and Susan L. Woodard

29.1 Introduction 631
29.2 Antibody Production in Plants 632
29.2.1 Subcellular Localization and Glycosylation 632
29.2.2 Other Factors Affecting mAb Accumulation 635
29.3 Downstream Processing of Antibodies Produced in Plants 636
29.3.1 Tissue Disintegration 638
29.3.2 Solids Separation and Clarification 639
29.3.3 Pretreatment of Clarified Extracts 640
29.4 Purification of Plant-Derived Antibodies Using Protein A Resins 641
29.5 Purification of Plant-Derived Antibodies Using Non-Protein A Media 642
29.6 Polishing Steps 643
29.7 Conclusions 645
Acknowledgment 645
References 645

30 Very-Large-Scale Production of Monoclonal Antibodies in Plants 655
Johannes F. Buyel, Richard M. Twyman and Rainer Fischer

30.1 Introduction 655
30.2 Process Schemes for mAb Production in Plants 656
30.2.1 Extraction 657
30.2.2 Clarification 658
30.2.3 Purification 659
30.3 Scalable Process Models 661
31 Trends in Formulation and Drug Delivery for Antibodies 673
 Hanns-Christian Mahler and Roman Mathäis

31.1 Introduction 673
31.2 Degradation Pathways 674
31.3 Physical Instability 674
 31.3.1 Denaturation 674
 31.3.2 Aggregation/Precipitation 675
 31.3.3 Adsorption 676
31.4 Chemical Instability 676
 31.4.1 Deamidation 677
 31.4.2 Asp Isomerization 677
 31.4.3 Oxidation 677
 31.4.4 Hydrolysis 678
 31.4.5 Glycation 678
 31.4.6 Disulfide and Nondisulfide Cross-linking 678
31.5 How to Achieve Product Stability 678
31.6 Developability: Molecule Selection and Elimination of Degradation Hotspots 679
31.7 Stabilizing an Antibody in a Liquid Formulation 679
31.8 Stabilizing an Antibody by Drying 681
31.9 Choice of Adequate Primary Packaging 682
31.10 Minimizing Stress During Drug Product Processing 683
 31.10.1 Freeze/Thaw 683
 31.10.2 Mixing 683
 31.10.3 Filling 684
 31.10.4 Filtration 684
 31.10.5 Shipping 684
 31.10.6 Environmental Impact 685
31.11 Implementation of a Formulation Strategy 685
31.12 Hot Topics 685
 31.12.1 Protein Aggregation and Protein Particles 685
 31.12.2 High-Concentration Antibody Formulations for Subcutaneous Administration 686
 31.12.3 Drug/Device Combination Products 687
 31.12.4 When Stabilizers Need a Stabilizer 688
 31.12.5 Protein Oxidation 689
 31.12.6 The Bioprocess May Affect Drug Product Stability 689
31.13 Summary 689
References 690
32 Antibody Purification: Drivers of Change

Narahari Pujar, Duncan Low and Rhona O’Leary

32.1 Introduction

32.2 The Changing Regulatory Environment—Pharmaceutical Manufacturing for the 21st Century

32.2.1 Using Design Space to Enable Change

32.2.2 High-Throughput and Microscale Approaches to Process Development and Characterization

32.3 Technology Drivers—Advances and Innovations

32.3.1 Process Analytical Technology

32.3.2 Process Control Technology

32.4 Economic Drivers

32.4.1 Cost of Goods

32.4.2 Single-Use Disposable Components

32.4.3 Globalization

32.4.4 FOBs or Biosimilars

32.5 Conclusions

Acknowledgment

References

INDEX