CONTENTS

Preface xv

1 Introduction 1
 Organization, 2
 Algebraic Equations, 3
 Process Simulation, 3
 Differential Equations, 3
 Appendices, 4

2 Equations of State 7
 Equations of State—Mathematical Formulation, 8
 Solving Equations of State Using Excel (Single Equation in One Unknown), 12
 Solution Using “Goal Seek”, 12
 Solution Using “Solver”, 13
 Example of a Chemical Engineering Problem Solved Using “Goal Seek”, 13
 Solving Equations of State Using MATLAB (Single Equation in One Unknown), 15
 Example of a Chemical Engineering Problem Solved Using MATLAB, 16
 Another Example of a Chemical Engineering Problem Solved Using MATLAB, 18
 Equations of State With Aspen Plus, 20
 Example Using Aspen Plus, 20
 Specific Volume of a Mixture, 21
 Chapter Summary, 26
 Problems, 26
 Numerical Problems, 28
CONTENTS

9 Transport Processes in One Dimension 175

Applications in Chemical Engineering—Mathematical Formulations, 176
Heat Transfer, 176
Diffusion and Reaction, 177
Fluid Flow, 178
Unsteady Heat Transfer, 180
Introduction to Comsol Multiphysics, 180
Example: Heat Transfer in a Slab, 181
Solution Using Comsol Multiphysics, 181
Solution Using MATLAB, 184
Example: Reaction and Diffusion, 185
Parametric Solution, 186
Example: Flow of a Newtonian Fluid in a Pipe, 188
Example: Flow of a Non-Newtonian Fluid in a Pipe, 190
Example: Transient Heat Transfer, 193
Solution Using Comsol Multiphysics, 193
Solution Using MATLAB, 195
Example: Linear Adsorption, 196
Example: Chromatography, 199
Pressure Swing Adsorption, 203
Chapter Summary, 204
Problems, 204
Chemical Reaction, 204
Chemical Reaction and Heat Transfer, 205
Mass Transfer, 207
Heat Transfer, 207
Electrical Fields, 207
Fluid Flow, 208
Numerical Problems (See Appendix E), 213

10 Fluid Flow in Two and Three Dimensions 215

Mathematical Foundation of Fluid Flow, 217
Navier–Stokes Equation, 217
Non-Newtonian Fluid, 218
Nondimensionalization, 219
Option One: Slow Flows, 219
Option Two: High-Speed Flows, 220
Example: Entry Flow in a Pipe, 221
Example: Entry Flow of a Non-Newtonian Fluid, 226
Example: Flow in Microfluidic Devices, 227
Example: Turbulent Flow in a Pipe, 230
Example: Start-Up Flow in a Pipe, 233
Example: Flow Through an Orifice, 235
Example: Flow in a Serpentine Mixer, 239
Microfluidics, 240
 Mechanical Energy Balance for Laminar Flow, 243
 Pressure Drop for Contractions and Expansions, 245
Generation of Two-Dimensional Inlet Velocity Profiles for
 Three-Dimensional Simulations, 246
Chapter Summary, 249
Problems, 249

11 Heat and Mass Transfer in Two and Three Dimensions 259

Convective Diffusion Equation, 260
Nondimensional Equations, 261
Example: Heat Transfer in Two Dimensions, 262
Example: Heat Conduction with a Hole, 264
Example: Convective Diffusion in Microfluidic Devices, 265
Example: Concentration-Dependent Viscosity, 268
Example: Viscous Dissipation, 269
Example: Chemical Reaction, 270
Example: Wall Reactions, 272
Example: Mixing in a Serpentine Mixer, 272
Microfluidics, 274
 Characterization of Mixing, 276
 Average Concentration along an Optical Path, 276
 Peclet Number, 276
Example: Convection and Diffusion in a Three-Dimensional T-Sensor, 278
Chapter Summary, 280
Problems, 280
 Steady, Two-Dimensional Problems, 280
 Heat Transfer with Flow, 283
 Reaction with Known Flow, 284
 Reaction with No Flow, 285
 Solve for Concentration and Flow, 286
 Numerical Problems, 289

Appendix A Hints When Using Excel® 291

 Introduction, 291
 Calculation, 292
 Plotting, 293
 Import and Export, 294
 Presentation, 294

Appendix B Hints When Using MATLAB® 297

 General Features, 298
 Screen Format, 298
 Stop/Closing the Program, 299
 m-files and Scripts, 299
Contents

Workspaces and Transfer of Information, 300
“Global” Command, 300
Display Tools, 301
Classes of Data, 301
Programming Options: Input/Output, Loops, Conditional Statements,
Timing, and Matrices, 302
Input/Output, 302
Loops, 303
Conditional Statements, 303
Timing Information, 304
Matrices, 304
Matrix Multiplication, 304
Element by Element Calculations, 305
More Information, 306
Finding and Fixing Errors, 306
Eigenvalues of a Matrix, 307
Evaluate an Integral, 307
Spline Interpolation, 307
Interpolate Data, Evaluate the Polynomial, and Plot the Result, 308
Solve Algebraic Equations, 309
Using “fsolve”, 309
Solve Algebraic Equations Using “fzero” or “fminsearch”
(Both in Standard MATLAB), 309
Integrate Ordinary Differential Equations that are Initial Value
Problems, 309
Differential-Algebraic Equations, 311
Checklist for Using “ode45” and Other Integration Packages, 311
Plotting, 312
Simple Plots, 312
Add Data to an Existing Plot, 312
Dress Up Your Plot, 312
Multiple Plots, 313
3D Plots, 313
More Complicated Plots, 314
Use Greek Letters and Symbols in the Text, 314
Bold, Italics, and Subscripts, 314
Other Applications, 315
Plotting Results from Integration of Partial Differential Equations
Using Method of Lines, 315
Import/Export Data, 315
Import/Export with Comsol Multiphysics, 318
Programming Graphical User Interfaces, 318
MATLAB Help, 318
Applications of MATLAB, 319

Appendix C Hints When Using Aspen Plus®

Introduction, 321
Flowsheet, 323
CONTENTS xiii

Model Library, 323
Place Units on Flowsheet, 324
Connect the Units with Streams, 324
Data, 324
Setup, 324
Data Entry, 325
Specify Components, 325
Specify Properties, 325
Specify Input Streams, 326
Specify Block Parameters, 326
Run the Problem, 326
Scrutinize the Stream Table, 327
Checking Your Results, 328
Change Conditions, 328
Report, 329
Transfer the Flowsheet and Mass and Energy Balance to a Word
 Processing Program, 329
Prepare Your Report, 329
Save Your Results, 330
Getting Help, 330
Advanced Features, 330
Flowsheet Sections, 330
Mass Balance Only Simulations and Inclusion of
 Solids, 331
Transfer Between Excel and Aspen, 331
Block Summary, 331
Calculator Blocks, 332
Aspen Examples, 334
Molecule Draw, 334
Applications of Aspen Plus, 334

Appendix D Hints When Using Comsol Multiphysics® 335

Basic Comsol Multiphysics Techniques, 336
 Opening Screens, 336
 Equations, 337
Specify the Problem and Parameters, 337
 Physics, 339
 Definitions, 339
 Geometry, 339
 Materials, 340
 Discretization, 341
 Boundary Conditions, 341
 Mesh, 342
Solve and Examine the Solution, 342
 Solve, 342
 Plot, 342
 Publication Quality Figures, 343
 Results, 343
CONTENTS

Probes, 344
Data Sets, 344
Advanced Features, 345
 Mesh, 345
 Transfer to Excel, 346
 LiveLink with MATLAB, 347
Variables, 348
Animation, 349
Studies, 349
 Help with Convergence, 349
 Help with Time-Dependent Problems, 350
 Jump Discontinuity, 350
 Help, 351
Applications of Comsol Multiphysics, 351

Appendix E Mathematical Methods 353

 Algebraic Equations, 354
 Successive Substitution, 354
 Newton–Raphson, 354
 Ordinary Differential Equations as Initial Value Problems, 356
 Euler’s Method, 356
 Runge–Kutta Methods, 357
 MATLAB and ode45 and ode15s, 357
 Ordinary Differential Equations as Boundary Value Problems, 358
 Finite Difference Method, 359
 Finite Difference Method in Excel, 360
 Finite Element Method in One Space Dimension, 361
 Initial Value Methods, 363
 Partial Differential Equations in time and One Space Dimension, 365
 Problems with Strong Convection, 366
 Partial Differential Equations in Two Space Dimensions, 367
 Finite-Difference Method for Elliptic Equations in Excel, 367
 Finite Element Method for Two-Dimensional Problems, 368
 Summary, 370
 Problems, 370

References 373

Index 379