INDEX

Abelson murine leukemia virus (A-MuLV), 575–576
Acetylatable lysines, mutation of, 267
Acetylated histones, 108
Acetylation, p53 function and, 649
ACF (ATP-utilizing chromatin assembly and remodeling factor) complex, 281, 282
Active transport systems, 724
Activity-driven assembly, of regulatory foci, 25–26
Acute lymphoblastic leukemias, 273. See also ALL entries
Acute myeloblastic leukemia (AML), 557, 690, 736. See also AML-ETO translocation fusion protein; Runx/Cbfa/AML transcription factor therapy for, 674
Acute myelogenous leukemia, 62
Acute myeloid leukemia, 270, 688–689
Acute promyelocytic leukemia (APL; PML), 272, 738, 747. See also PML entries
Acute transforming viruses, 572
Adducin, 682
Adenovirus vectors, 656–657
AdoMetDC, 409
Adrenal cortical tumors (ACT), 655
Adversity, adaptation to, 372
Aggressive tumors, 350
Aging
accelerated rates of, 459
cancer incidence and, 747–751
Agnogenesis, 468–469
Agnogenesis, 748
AKT8 retrovirus, 581
Akt activity, 596
Akt protein family, 508, 510, 650, 769, 770. See also Phosphatidylinositol-3 kinase/Akt pathway
ALL-1 regulatory protein, 28, 49
Allstatins, JH production and, 379
ALL foci, 20. See also Acute lymphoblastic leukemias
All-trans retinoic acid (ATRA), 676
Alsterpaullone, 683–684
ALV-induced chicken lymphomas, 579, 580–581
Alzheimer’s disease, 691
Amino acids, Ras GTPase activity and, 131–132
Amino acid starvation, 412
Amino acid transport, 728
AML-ETO translocation fusion protein, 24. See also Acute myeloblastic leukemia (AML)
Amphibian life cycles, 370–372
Amphibian metamorphosis, 376–377
Anaphase, 115, 203, 210–213
Anaphase, 203
Anaphase movements, 212
Anaphase-promoting complex (APC), 120, 121, 124, 170
Anaphase-promoting complex/cyclosome (APC/C), 50, 211
Angiogenesis
bioassays to study, 334
blood supply and, 333–367
negative regulators of, 340–341
pathologic, 343
positive regulators of, 334–335
retinoblastoma family and, 621–622
tumor, 333–353
Angiogenesis inhibitors, 334, 335–338, 336
clinical use of, 347–348, 351–353
current and future directions of, 353
direct and indirect, 345–347
Angiogenic phenotype, oncogenes and, 344–345
Angiogenic proteins, 335, 352
“Angiogenic switch” model, 339
Angiopoietin, expression of, 356–357

Angiopoietin-1, 355
Animal models, nonhomologous end-joining gene mutations in, 548–551
Ankyrin repeat, 241
Antephase, 215
MAPKs and, 217
Antephase-to-mitosis transition, control of, 216
“Anti-angiogenesis,” 333
Antiangiogenic chemotherapy, 348–349
versus antivascular therapy, 350
Antiangiogenic drugs, 351
Anti-apoptosis, NE-\(\text{k}\)B family and, 762–763. See also Apoptosis
Anticancer drugs, 345–347. See also Drugs; Therapies
mitochondria-targeted, 761
Anticancer strategies, 736
Antisense RNA, 417, 419
Antivascular therapy, versus antiangiogenic therapy, 350
APC (adenomatous polyposis coli) protein, 59
APE1 endonuclease, 539–541
apg-related genes, 385
Apical sensory ganglia (ASG), 375
Apoptosis, 9, 10, 64–65, 497–521, 592–595, 715, 751–765. See also Anti-apoptosis; Apoptotic entries; Autophagic programmed cell death; PUMA (p53 upregulated mediator of apoptosis); Death entries; xR11 anti-apoptotic protein
activation-induced, 142
cancer and, 507–513
caspases and, 761–762
DNA damage and, 769
during Drosophila metamorphosis, 383–386
E2F-1 and, 756–758
endothelial cell, 349
Fas/FasL-mediated, 140
hallmarks of, 65
in Ilyanassa obsoleta, 375
major mediators of, 498–505
mechanisms of, 498, 759–765
mitochondria and, 759–761
normal physiology and, 507
oncogenes and, 592
p27 and, 247
p53 and, 753–755
regulators of, 513
restoring to tumor cells, 758–759
retinoblastoma family and, 618–619
TRAIL-induced, 689
Apoptosis gene promoters, 384–386
Apoptosis signaling, 497–521
pathways for, 505–507
“Apoptosome,” 505
Apoptotic pathways defects in, 497
oncogene subversion of, 593–595
p53 and, 642–646
Apoptotic treatment, 754–755
APO/TRAIL interactions, 503
apterous gene, 375
archipelago (ago) mutant, 387
Architectural assembly, of regulatory foci, 25–26
Architectural control, of DNA synthesis, 36–39
Architectural modifications, through apoptosis, 65
Arf expression, p53 and, 649
ARF promoter, 757
ARF proteins, nucleolar, 31. See also p14\(^{ARF}\) protein; p19\(^{ARF}\) protein
Arg to His substitution, 654, 655
ARG (Abl-related gene), 686
ARS elements, 161, 163
Artemia salina, 372
Artemis factor, 546
Asparaginase, 671
Asters, 202, 206
separation of, 204
Astral microtubule density, 218
Astral microtubules, 204, 206, 208
Asymmetric cell division, 61
Ataxia telangiectasia protein (ATM), 9, 122–123, 478, 765. See also ATM entries
DSB detection by, 52
AT-like disorder (AT-LD), 548
ATM/ATR serine/threonine kinases, 216
ATM/ATR signal transduction, 38
ATM (ataxia-telangiectasia mutated) mutations, 101
ATPases, 47
SNF2 family, 277
ATPase subunits, 276
ATP (adenosine triphosphate) binding site for, 242
ATP-dependent chromatin remodeling, 276
ATP-dependent regulators, of chromatin structure, 47–48
ATP depletion, 751
ATP production, 761
ATR/ATRIP signaling, 52
ATR protein, 122–123, 478, 765
A-type HATs, 267–268
AUG codons, 419
Aurora kinase family, 275
Aurora kinase family, 275
Autonomously replicating sequence (ARS) elements, 158
Autophagic programmed cell death, 383–384. See also Apoptosis
genes induced prior to, 385–386
Avascular tumors, 340
Avascular tumors, 340
Avastin, 352–353
Avian myeloblastosis virus (AMV), 577, 579
Avian sarcoma virus 16 (ASV16), 591
Away-from-the pole (AP) motion, 208
Bachrecke, Eric H., 369
Bai, Uma, 149
Baker, Stacey J., 571
Barrack, Evelyn R., 149
BASC complex, 58
Base excision repair, 538–543
Basement membrane (BM), 297
Basement membrane collagens, 300
diseases of, 301
Bax/Bak oligomerization, 501
Bax death family, 500
Bax gene, 643–644
Bax proteins, 10
B-cell chronic lymphocytic leukemia, 681
B-cell lymphoma 2 (Bcl-2) family, 499–502. See also Bcl-2 protein family
B-cell lymphomas, 273, 274, 576
B-cell proliferation, 140–143
bcl-2 (B-cell leukemia/lymphoma-2) gene, 592
Bcl-2 protein family, 10, 345, 507, 510, 512, 759. See also B-cell lymphoma 2 (Bcl-2) family
Bcl-XL proteins, 512, 592
bcr-abl gene, 585, 675, 676, 686
BCR-ABL protein, 585
BCR-ABL translocation
morphological diagnosis and, 685–686
B cyclins, synthesis of, 424. See also Cyclin B
Bd-2 family, 754
Beckwith-Wiedemann syndrome, 248
Benvenuti, Silvia, 467
bFTZ-F1 gene, 383
β-globin gene, 160–161
timing of replication in locus of, 161–162
bFGF expression, 352
bFGF-producing tumors, 347
BH3-only proteins, 500, 501, 512
BH domains, 592
Bioassays, for angiogenesis study, 334
Biochemical endpoint, 687
Biochemistry, of cycle phases, 6–8
Biological control, nuclear organization and, 16–19
Biological regulation, challenges and opportunities related to, 65–66
“Bioriented” chromosome, 209
Biotinylated-dUMP, 176, 177
Bissell, Mina J., 297
Bisulphite, 35
Bladder cancer, 427–428
BLOOM helicase, 558
Blood supply, angiogenesis and, 333–367
Blood vessels, normal, 353–357
Bloom’s syndrome, 558, 747
BM28 protein, 167
Bortezomib, 688
Braastad, Corey D., 15
BRCA1 gene, mutations in, 555–556
BRCA1 tumor-suppressor, 59, 60, 279, 712
cancer and, 554
BRCA2 function, 712
cancer and, 556
BRCA2 gene, 551
BRCA2 protein, 553
BRCA complex, 58
BRCA foci, 21
BR-C gene, 382
Breast cancer, 60, 275, 427, 459–460, 691. See also BRCA entries; Breast tumors
BRCA2 and, 556
cIF4E elevation and, 429
FGF-2 isoforms and, 419
metastasis of, 739
p27 and, 251
replication complexes associated with, 174
VEGF and, 334
Breast Cancer Information Core, 555
Breast cancer susceptibility genes, 57
product of, 279
Breast tumors, 709
BRG1 subunit, 47–48, 278–280
BRM protein, 278–280
B-type HATs, 267
B-type laminas, 177
Bub (budding uninhibited in benzimidazole) proteins, 50, 124
Budding yeast. See also Saccharomyces cerevisiae

cell cycle of, 98
G1ÆS progression in, 413–416
Burkitt’s lymphoma, 408, 580–581, 585
Butyrolactone, 684
Ca” (calcium ion), mitochondrial storage of, 760
c-abl oncogene, 575–576, 585
Ca”/CaM, role in DNA synthesis, 175
Cadherin-catenin complexes, 726
Cadherin levels, 729
C-akt gene, 581
Calcyculin, 405
Calmodulin (CaM), 151. See also CaM-BP68 protein
Calpain, 314
CaM-BP68 protein, 175, 177
cAMP (cyclic AMP), 141
Cancer, 707–771. See also Breast cancer; Cancer cells; Cancer susceptibility; Carcinogenesis; Cervical cancer; Colon cancer; Leukemias; Malignancies; Melanomas; Metastasis; Oncogenes; Ovarian cancers; Pancreatic cancers; Tumor entries
aging and, 747–751
apoptosis and, 64, 507–510
BRCA1/2 function and, 554–556
cell cycle and, 741–745
cell cycle inhibitors and, 250–252
centrosome amplification and, 222
cell cycle checkpoint allele loss and, 49
cell cycle checkpoint control and, 101–103
chroatin remodeling and, 265–295
compartmentalization in, 720–721
death receptor-induced apoptosis defects and, 510
DNA methylation and histone acetylation in, 717–719
dysregulation and, 714–716
extracellular regulation of, 723–724
extracellular structures and, 725–727
familial syndromes of, 101
future developments related to, 769–771
gene expression in, 713–714
growth factors and, 727–730
growth termination in, 745–751
HAT activity misregulation and, 269–270
hereditary, 711–712
histone acetyltransferase overexpression and, 270–271
hMLH1/2 genes and, 533
homologous recombination genes and, 556–558
initiation factors for, 428
intracellular signaling in, 730–741
intrinsich pathway dysregulation and, 509–510
kinase cascades in, 734–736
levels of regulation in, 716–721
mutation and, 114, 709–714
MYST family and, 268–269
naturally occurring, 427–428
postmitochondrial death process inhibition and, 510
post-transcriptional regulations in, 719–720
pro-survival signaling and, 508–509
proteasomes in, 720
protein synthesis deregulation and, 425–430
Ras and, 731–734
retinoblastoma family deregulation in, 622–625
ribosomal biogenesis levels of, 31
stressed cells and, 765–769
Cancer cells
controls in, 716–717
defenses against apoptosis, 754
differentiation and arrest of proliferation in, 745–747
proliferation of, 716–717, 741–742
quiescence versus proliferation in, 721–730
versus normal cells, 707–709
Cancer genetics, advances in, 497–498
Cancer prognosis, telomere length and, 455–456
Cancer research, 708
Cancer screening, 429
Cancer susceptibility
base excision repair and, 542–543
homologous recombination and, 554
mismatch repair and, 532
nonhomologous end-joining and, 548
nucleotide excision repair and, 537–538
Cancer therapy, 708. See also Chemotherapy
apoptosis and, 510–513
cell cycle and, 670–690
protein synthesis factors and, 429–430
Cancer viruses, 712–713
Canine thyroid tumors, 333
Cap-dependent translation, 411–412, 422
Capillary blood vessels, 353–354
Carbohydrates, cell-surface soybean agglutinin (SBA) binding, 726
Carboxy-terminus (C-terminus) region, 609
Carcinogenesis, 711. See also Cancer entries
Myc and, 737–738
telomere loss and, 459
telomere malfunction and, 454–455
Carcinogens. See Chemical carcinogens
Carneiro, Carmen, 237
Caspases, 10, 506
apoptosis and, 498–499, 761–762
regulation of, 499
CBP gene, 270
CBP protein family, 269, 270, 482–483
CD28, 140, 141
role of, 142
CD44 adhesion molecule, 426
CD95-L, 510
CD437, 768
Cdc2/cdc28 kinase, 152
cdc2 gene, 98, 116
Cde6
MCM protein loading and, 167
in Xenopus laevis, 166
Cdc6/Cdc18, 164–165
binding of, 169, 171
origin loading factors of, 164
Cdc7 kinase activity, 171
Cdl8, overexpression of, 172
Cdc20 protein, 50, 120, 124
inactivation of, 221
Cdc25A phosphatase, 53
Cdc25B phosphatase, 206
Cdc25C phosphatase, 205
Cdk1 activity, inhibition of, 123
Cdc25 family, 117, 205, 766
CDC33 gene, 414
cdc33-1 mutant, 414, 415
Cdc45 protein, 171
homologues of, 168
pre-RC activation and, 169
Cdc (cell division cycle) mutants, 97
Cdk1 (cyclin-dependent kinase 1), 8, 116, 681
phosphorylation of, 116–117
Cdk1 activity, inhibition of, 123
Cdk1/cyclin B1, 206
Cdk1/cyclin B2 complex, 205
Cdk1-cyclin B activation, 217
Cdk2, 677, 736
CDK2 activity, inhibition of, 53
CDK2 complex, 241–242
CDK4 protein, 238–239, 241
CDK6 protein, 238–239, 241
Cdk-activating kinase (CAK), 7, 117
CDK activities, 111
during the cell cycle, 111
level of, 99
CDK enzymes, 98–99
as cell cycle regulators, 99–100
Cdk inhibition, restoration of, 685
Cdk inhibitory proteins (CKIs), 44, 154–155, 677–684, 691, 742. See also Cell cycle inhibitors; Cyclin-dependent kinase inhibitors (CKIs)
clinical development of, 684–688
E2F regulated, 114
redundancy or compensatory roles of, 249–250
CKIs. See Cdk inhibitory proteins (CKIs)
CDK-Rb-E2F activation, prevention of, 114
CDK-Rb-E2F pathway, 107, 113, 114
CDKN2A tumor-suppressor locus, 748
Cdt1 origin loading factor, 164–165
Cell adhesion-mediated signals, 315
Cell cycle, 129, 715. See also Mitosis
“architecturally linked” crosstalk in, 64
biochemical parameters of, 15–16
biology of, 4–6
cancer and, 741–745
cancer therapy and, 670–690
CDKs as regulators of, 99–100, 111
cell withdrawal from, 237
decisions concerning, 252–253
“division of labor” in, 37
drug resistance and, 688–690
dynamic redistribution during, 44–45
entrance into, 137–143
genes related to, 690–691
growth control and, 669–703
mRNA-specific translational control and, 407–413
nuclear envelope changes during, 62–64
proliferative regulation of, 9
purpose of, 201
regulatory mechanisms of, 10–12
role of nuclear membrane in, 179
signal transduction and, 130
studying, 97–99
translational control and, 397–448
Cell cycle arrest, 54, 271, 639–640
transient, 100
Cell cycle checkpoint controls, differences in, 757–758
Cell cycle checkpoints, 49–50
oncogene subversion of, 595–598
Cell cycle components, targeting in nonmalignant disorders, 691
Cell cycle control, 150. See also Cell cycle regulation
biochemical changes in, 16
p53 and, 639–640
proliferation/differentiation, 60–62
regulatory mechanisms of, 11–12
temporal-spatial parameters of, 30–65
Cell cycle deregulation, cancer and, 425–430
Cell cycle inhibitors, 237–264. See also Cdk inhibitory proteins (CKIs); Cyclin-dependent kinase inhibitors (CKIs)
cancer and, 250–252
families of, 241–242
Cell cycle parameters, diagnostic and prognostic use of, 690–691
Cell cycle phases, 95–96
Cell cycle progression, 238–255
E2F transcriptional target role in, 109–114
effects of cell-ECM interactions on, 310–319
integrin signaling and, 319
limiting, 113
multilayered regulation of, 110
proteolysis in, 155–156
regulators affecting, 152–156
signaling pathways in, 150–152
Cell cycle regulation, 96. See also Cell cycle control
compounds that target, 670–671
by cyclins and cyclin-dependent kinases, 152–154
integrin-mediated signaling and, 316–319
Cell cycle regulatory cascades, 95–128
Cell cycle regulatory proteins, 48–49, 242
Cell cycle target-specific therapies, 675–684
Cell cycle transition, retinoblastoma family, 610–612
Cell cycle traverse
direct inhibitors of, 677–684
indirect inhibitors of, 687–688
Cell death. See Apoptosis; Autophagic programmed cell death; PUMA (p53 upregulated mediator of apoptosis)
Cell Death and Differentiation, 636
Cell division (cytokinesis), 6. See also Mitosis;
Mitoic entries asymmetric, 61
proteasomes and, 45
Cell-ECM interactions, effects on cell cycle progression, 310–319
Cell extrinsic pathway triggers, 506
Cell fusion experiments, 161, 149
Cell growth/division. See also Cell proliferation arrest of, 271
coordinated of, 95–96
large T antigen and, 482
mammalian, 417
mTOR pathway blocking and, 420–421
Cell intrinsic pathway, 505–506
Cell machinery, external conditions affecting, 723

Cell proliferation, 397, 715. See also Cell growth; Proliferation
differentiation and arrest of, 745–747
effects of extracellular matrix on, 306–310
genetic regulation of, 386–387
insulin-stimulated, 412
integrins and, 136, 311–319
regulation of, 297–332

Cell remodeling, development growth regulation during, 386

Cell replication, 114

Cells. See also Cell cycle; Cell growth; Cell proliferation; Cellular entries; Cultured cells; Nuclear entries
alternative pathways of, 3
exit from mitosis, 119–121
fates of, 3–13
immortalization of, 750
malignant transformation of, 425
molecular and information transfer in, 4

Cell senescence, cancer and, 747–751

Cell separation (cytokinesis), 8

Cell-specific changes, ecdysone and, 381

Cell structure, at the G1 → S phase transition, 31–35

Cell surface adhesion molecules (CAMs), 725

Cellular age, intrinsic mechanism for recording, 452–453

Cellular compartments, 720–721

Cellular events, 715–716

Cellular-IRE-containing mRNAs, 411

Cellular IREs, 410, 411

Cellular morphology, modifications in, 16

Cellular oncogenes, 571–573

Cellular regulatory machinery, dynamic assembly and activities of, 23–26

Cellular senescence, p53 and, 640–642

Centrioles, 214

Centrosomal microtubules, 206

Centrosome amplification, 221–223

Centrosome cycle, 50

Centrosomes, extra, 221–222

C/EBPs family, 620

Cervical cancer, 712

CG8304 gene, 385

cGMP (cyclic guanosine monophosphate), 729

CGP74514A, 683

Chaperone proteins, 481

CHD (chromo-helicase-DNA-binding) proteins, 282–283

Checkpoint activation, S progression arrest and, 53

Checkpoint control cancer and, 101–103
in the metaphase-anaphase transition, 218

Checkpoint cycles, 49–54

Checkpoint genes, apoptosis and, 10

Checkpoint mechanism, 100–101

Checkpoint pathways, 215

“Checkpoint rads,” 51

Checkpoints, 214–215, 743

depressed, 675
as a surveillance mechanism, 100–101

Chemical carcinogens, oncogenes and, 585–587

Chemokines, 730

Chemotherapeutic agents, 335–336, 342, 708

Chemotherapy, 347, 429–430

antiangiogenic, 348–349
cytotoxic, 349
low-dose, 349

Chfr (checkpoint with FHA and ring finger) gene, 216–217

Chironomus tentans, ecdysone in, 377–378

Chk1/Chk2 kinase, 216

chk2 mutants, 101

CHOC 400 cell line, 159

CHO cells, protein synthesis in, 422

Chorian gene, 160

CHRAC (chromatin accessibility complex), 281

Chromatid disjunction, 211

Chromatin. See also Chromatin remodeling
cell cycle-dependent remodeling of, 31
licensing factor binding to, 179
MCM10 and, 167
retinoblastoma family interaction with, 614–616

Chromatin arrays, 41

Chromatin condensation, 65

Chromatin fibers, 266

Chromatin-modifying complexes, 615–616

Chromatin organization, 40–41

Chromatin remodeling, 28, 278

ATP-dependent, 276
cancer and, 265–295
complexes in, 47–48
enzymes in, 265, 554
histones and, 45

Chromatin states, open or closed, 108

Chromatin structure, 11, 18–19, 265–267

ATP-dependent regulators of, 47–48
chemical modification of, 267
influences on, 108
levels of, 40–43

Chromodomains, 268

Chromokinesins, 207

Chromonema, 41–42

Chromosomal abnormalities, oncogenes and, 584–585

Chromosomal changes, 711

Chromosomal condensation, 275

Chromosomal DNA, replication of, 176
INDEX

Chromosomal instability, 768–769
Chromosomal neighborhoods, 42–43
Chromosomal territories, 42–43
Chromosomal translocation, 270, 272, 527–528, 586
Chromosome attachment, duration of mitosis and, 218–219
Chromosome-based spindle assembly, 207
Chromosome condensation, 202, 266
Chromosome cycle, 39–43. See also Cell cycle
Chromosome disjunction, synchronous, 220
Chromosome number, alterations in, 527
Chromosome puffing, 382
Chromosomes
breakage of, 549–551
compartmentalization of, 21–22
positioning of, 22
recombinogenic, 453
Chromosome segregation, 10, 218
genome packaging to accommodate, 39–43
Chromosome territories, 21–22
Chronic myelogenous leukemia (CML), 584, 676, 684, 711
leukemic cell persistence in, 689–690
Cifuentes, Eugenia, 149
CINK4, 682–683
Cip1 mutation, 154
Cip/Kip cell cycle inhibitor family, 44, 105, 241–242
members of, 245–249
cis-acting factors, 408
cis-acting signals, 155
Clash hypothesis, 715
Cleavage apparatus, 213
Cleavage failure, 223
Clinical trials, design of, 674–675
Cln1 cyclin, 414
Cln2 cyclin, 413, 414
Cln3 cyclin, 414
Cln3 gene, eIF4E defect and, 415
CLN3 mRNA translation, 415
Closed chromatin state, 108
cMet receptor, 139
CMGC group, 677
c-src oncogene, 574–575, 590. See also src oncogene
growth factors and activation of, 590–591
CUG codons, 419
Cultured cells, cell cycle progression in, 310–319
Cycle-dependent kinases, 7
Cycle phases, biochemistry and molecular biology of, 6–8. See also Cell cycle entries
Cyclin A, 111, 115, 152–153
Cyclin A/Cdk2, 153–154, 156
Cyclin A expression, E2F-dependent upregulation of, 114
Cyclin A-kinase complex, 10
Cyclin B, 8, 111, 115. See also B cyclins
synthesis and destruction of, 423
Cyclin B1, subcellular localization of, 117
Cyclin B/Cdk1, regulation of, 116–118
Cyclin B/Cdk1 activity
subcellular localization and, 117
targets of, 118–119
Cyclin B/Cdk1 complex, 115
Cyclin B degradation, 219, 220
Cyclin B levels, 115–116
throughout the cell cycle, 115–116
DNA damage and, 122
Cyclin B proteins, 205
Colon cancer, 428, 455, 683, 686, 713. See also Colorectal cancers; Hereditary nonpolyposis colon cancer (HNPPC)
cell lines from, 430, 648
Colorectal cancers, 246, 275, 352
Combinatorial control, 29
COMPARE algorithm, 683
Compartmentalization, in cancer, 720–721
c-(cell) oncogenes, 574
Condensin, 266
complexes, 41
Contact inhibition, 137, 355
"Continuum model," 138
Convergence pathway, 512–513
COOH-terminal serum-sensitive sites, 406
Coregulatory factors, 26–27
Co-repressor complex, 271
Corpus allatum (CA), 378, 379
Corticotrophin releasing hormone (CRH), 376
Covalent modifications, 11
CP-257042, 513
CP-31398, 513
Cpd 5 drugs, 745
CPEB protein, 424
CpG hypermethylation, 718
c-ras genes, 577
CREFT24/AS cells, 426
Crisis, 470, 641
Crustacea
life cycles of, 370
metamorphosis in, 377–378
c-src oncogene, 574–575, 590. See also src oncogene
growth factors and activation of, 590–591
CUG codons, 419
Cultured cells, cell cycle progression in, 310–319
Cycle-dependent kinases, 7
Cycle phases, biochemistry and molecular biology of, 6–8. See also Cell cycle entries
Cyclin A, 111, 115, 152–153
Cyclin A/Cdk2, 153–154, 156
Cyclin A expression, E2F-dependent upregulation of, 114
Cyclin A-kinase complex, 10
Cyclin B, 8, 111, 115. See also B cyclins
synthesis and destruction of, 423
Cyclin B1, subcellular localization of, 117
Cyclin B/Cdk1, regulation of, 116–118
Cyclin B/Cdk1 activity
subcellular localization and, 117
targets of, 118–119
Cyclin B/Cdk1 complex, 115
Cyclin B degradation, 219, 220
Cyclin B levels, 115–116
throughout the cell cycle, 115–116
DNA damage and, 122
Cyclin B proteins, 205
Cyclin B synthesis, 116
Cyclin/CDK complexes. See also Cyclin-dependent kinases (CDKs)
G1ÆS transition and, 238–240
retinoblastoma family interaction with, 612–613
Cyclin/CDK inhibitors, 154–155, 742. See also Cyclin-dependent kinases (CDKs)
association with DNA-replication enzymes, 157
Rb regulation by, 105–106
Cyclin D, complexes with, 239–240. See also D-type cyclins
Cyclin D1, 417–418
colon cancer and, 428–427
overexpression of, 136
regulation of, 319
Cyclin D1/cdk4, 622
Cyclin D2, 691
Cyclin D binding, 318
Cyclin D/Cdks, 7
Cyclin D-CDK4/6 complexes, 252
Cyclin degradation, 120
Cyclin-dependent kinase inhibitors (CKIs), 117–118, 154, 169, 242–249, 596. See also Cdk inhibitory proteins (CKIs); Cell cycle inhibitors
degradation of, 155
expression and sequential activation of, 153
Ink4 family versus, 105
negative regulatory function and, 155
new roles for, 253–255
phosphorylation of, 155–156
Cyclin-dependent kinases (CDKs), 7, 97, 103, 106, 115–116, 205, 742. See also CDK entries;
Cyclin-CDK complexes; Cyclin/Cdk inhibitors
activation of, 238
ATP-competitive inhibitors of, 673
as cell cycle regulators, 152–154
control of, 240
cyclin D and cyclin E dependent, 106–105
in DNA synthesis regulation, 156–157
expression and sequential activation of, 153
Rb proteins and, 105–106, 595
role of, 169–172
Cyclin E, 152–153, 240, 613, 690
complexes with, 239
Cyclin E binding, 318
Cyclin E/Cdk2, 169
Cyclin E/CDK2 signaling, 35
Cyclin E transcription, Rb and, 615
Cyclin-Rbs-E2F pathways, 625
Cyclins. 7. See also Mitotic cyclins
as cell cycle regulators, 152–154
regulation of, 130
Cyclosome activity, 43–44
Cysteine-rich domain (CRD), 132
Cystic fibrosis (CF) gene, 161
Cytarabine, 674, 688, 690
Cytoarchitecture, 16
Cytochrome p450 proteins, 586
Cytokinesis, 6, 8, 210
Cytoplasmic components, biochemical modification of, 206
Cytoplasmic licensing factor, 179
Cytoplasmic microtubule complex, 216
Cytoplasmic poly(A), addition of, 412
Cytoplasmic polyadenylation, 423–424
Cytoplasmic retention signal (CRS), 117, 205
Cytotoxic agents, 671–675
cell cycle specific activity of, 672
D1 mRNA, 417, 418
D2-CDK4 complexes, 596
Damage checkpoints, 767
Daughter cells, separation of, 213–214
Daunorubicin, 674, 690
Dbf4-dependent Cdc7 kinase (DDK), 169, 171
Dbf4 protein, 171
D-CDK4 complex, 242
dE2F genes, 112–113
Death-associated protein kinase (DAPk), 385. See also Apoptosis
Death effectors, p53 and, 504
Death-inducing signaling complex (DISC), 503, 506, 507
Death receptor (DR), 502–503
Death receptor pathways, 506
Death receptor-induced apoptosis defects, cancer and, 510
DeGregori, James, 95
Deininger, Michael, 669
Denhardt, David T., 129
Dense fibrillar component (DFC), 30
Deoxynucleoside triphosphate (dNTP), 173
compartmentation of, 175
Deoxynucleotide metabolism, enzymes of, 173
Deoxyribonucleic acid (DNA). See also DNA entries; Double-strand breaks (DSBs);
Heritable DNA; Linker DNA; mtDNA (mitochondrial DNA); rDNA genes
drugs that target, 671
duplication of, 4
mitotic condensation of, 31
nucleosomal, 32
re-replication of, 172
telomeric, 452
Dermatomyositis, 282
Destruction boxes, 120
Development, retinoblastoma family and, 617–618. See also “Direct development”
Developmental arrest, linkage to intranuclear trafficking, 25
Developmental events, ECM receptors and, 298
Development mechanisms, study system for, 380–382
DHFR promoter, deletion in, 161
Diacylglycerol (DAG), 141
Diagnosis, cell cycle parameters and, 690–691
Differentiation
nuclear architecture and, 61–62
p27 and, 254
retinoblastoma family and, 619–621
Differentiation-inducing agents, 687
Dihydrofolate reductase (DHFR) locus, 158, 159
Dimerization, 6
Diploid cells, nonhomologous end joining in, 55
Direct-acting carcinogens, 586
Direct angiogenesis inhibitors, 345–347
“Direct development,” 370
Disease. See also Cancer; Skin disease
ECM component mutations in, 298–299
extracellular matrix component mutations in, 299
fibrillar collagen, 300–301
growth control loss during, 669
transcription factor organization and, 62
distal-less gene, 375
DNA checkpoint control, 101–103. See also Deoxyribonucleic acid (DNA)
DNA damage, 765–766
cell death and, 769
cyclin B levels and, 122
sensing and signaling, 52–53
DNA damage checkpoints, 9–10, 50, 766–769
architectural features of, 51
nuclear architecture fidelity at, 52
DNA damage-induced G2 checkpoint, 121–124
DNA degradation, Ku binding and, 56
DNA-dependent protein kinase (DNA-PK), 546, 766. See also DNA-PK entries
DNA double-strand breaks, 546, 548
nonhomologous end-joining of, 543–551
RAG1/RAG2-induced, 549
DNA fibers, long, 157
DnaK proteins, 481
DNA ligase IV, 547, 548
DNA methylation, in cancers, 717–719
DNA methyltransferases (DnMT1), 38, 177, 717
DNA mismatch, repair mechanism of, 530–532
DNA-PK activity, 56
DNA-PK complex, 55
DNA polymerase-α, 7, 177
DNA polymerases, 173, 175
DNA precursor (dNTP) synthesis, 180
DNA repair, 21, 526–528
architectural organization of, 58
defects in, 747
via homologous recombination in tetraploid cells, 56–57
via nonhomologous end joining in diploid cells, 55–56
via single-strand annealing, 57–58
steps in, 765
DNA repair cycle, 54–58
DNA repair pathways, 528, 765
DNA replication, 8, 115
coupling with histone gene expression, 32
DNA movement during, 37
histone biosynthesis and, 33
initiation sites for, 158–159
onset of, 155
origins of, 157–162
protein support for, 36–37
rapidity of, 173
structural model for, 36
DNA replication control, nuclear context in, 176–179
DNA replication enzymes, recruitment of, 171
DNA replication sites, enzyme and protein localization at, 177
DNA synthesis, 8, 21
architectural control of, 36–39
Cdks in regulation of, 156–157
drugs that interfere with, 671
factors that mediate, 17
DNA-synthesis-associated enzymes/proteins, cyclin/Cdk-mediated expression of, 156–157
DNA synthesis enzymes
functional interaction between, 175
physical interaction between, 173–175
in replication complexes, 172–175
DNA synthesis initiators, at replication origin, 162–172. See also trans-acting proteins
DNA viruses, 39
dNTP synthesis, 173–174
Docking domains, 135
Dominant transforming genes, isolation from human tumors, 582–584
Dose, defining, 686–687
Double knockout mice, 249–250, 273
Double-strand breaks (DSBs), 54
sensing of, 52
Downstream events, 7–8
Down syndrome, solid tumors and, 342
Dpp (decapentaplegic) protein, 374–375
DP proteins, 168
DRG-1 (tumor suppressor gene 1), 718
Drosophila chorian gene, 160
Drosophila melanogaster
degradation of cyclin B in, 220
developmental stages of, 370
edeysone in, 376–377
 genetic studies of, 112
ISWI-containing complexes in, 281
metamorphosis in, 380–387
mutations in, 168
programmed cell death during metamorphosis
in, 383–386
salivary gland cell death in, 384
wing formation in, 374–375
Drosophila polo, 121
Drug administration, 671–674
Drug combinations, 770
Drug resistance, cell cycle and, 688–690
Drugs. See also Chemotherapeutic agents
differentiation-reactivating, 746
S-phase specific, 688–689
Drug therapy, for malignant disease, 670. See also Chemotherapy
DSB repair complexes, 58
DSB repair pathways, 54–55
D-type cyclins, 105, 152, 238. See also Cyclin D;
Cyclin D1
Ductal carcinomas, avascular and invasive, 427
Dynamic redistribution, of nuclear proteins,
48–49
Dyskeratosis congenita, 459
Dysregulation, 714–716
Dystroglycan, 306, 309
E1. See Ubiquitin-activating enzyme (E1)
E1A oncoprotein, 104, 269–270
E2. See Ubiquitin-conjugating enzyme (E2)
E2F-1/p73 pathway, 756
E2F-1 protein, 7, 168, 743, 744
activity of, 614
apoptosis and, 756–758
inactivation of, 617
mutations of, 757
E2F activity, 241, 609, 741
Rb control of, 107–109
E2F-dependent transcription, 107, 113, 114
E2F-DP-1 complex, 753
E2F/DP heterodimers, 111
E2F family, 318. See also E2F transcription factors
roles of, 112
specific functions for, 111–113
E2F inhibition, 105
E2F-mediated feedback loops, 113–114
E2F-mediated gene repression, 109
E2F-mediated transactivation, 271
E2F-regulated genes, 108, 110
E2F regulation, 59–60
E2F transcriptional targets, 110
role in cell cycle progression, 109–114
E2F transcription factors, 33, 35, 103, 104, 156,
239–240, 474–475, 476, 611–612, 616
E3. See Ubiquitin ligase enzyme (E3)
E7 oncoproteins, 608, 609
E93 gene, 384
Eap1 protein, 416
E/Cdk2 activity, 111, 154
E-CDK2 complexes, 44, 239, 252
E/Cdk2 protein, 169
activation of, 107
Ecdysone-regulated genes, 382, 384
Ecdysone-regulated responses, 381–382
Ecdysones, 377–378, 380, 381
ECM adhesion, effect of, 315
ECM components. See also Extracellular matrix (ECM)
hozygous knockouts of, 307
as thin monolayer coats, 310–311
ECM-initiated signals, 310
ECM-mediated cell cycle control, 318
ECM-mediated signals, 311
ECM mutations, 308–309
ECM proteins, 725–726
ECM receptor mutations, 308–309
ECM receptors, 298
ECM remodeling, 740
ECM signaling, 316–318
ECM-to-nucleus signaling, 311–314
EcR mutants, 382
eEF1 elongation factor, 400–401
eEF2 enzyme, 401
phosphorylation of, 422
Effector caspases, 498–499
“Effector” proteins, 101
Eg5 protein, phosphorylation of, 118–119
EGFP-LRB protein, 63. See also Epidermal growth factor (EGF)
Egrl gene, 735
eIF2B initiation factor, 401–403
eIF4E defect, *CLN3* gene and, 415
eIF4E gene, 414. See also eIF4E initiation factor
ectopic overexpression of, 418
effect on mammalian cell growth and division rates, 417
manipulation of the expression of, 425–426
overexpression of, 419, 420
transcription of, 405
eIF4E initiation factor, 403–405, 417–418
overexpression of, 425–426
protein synthesis and, 404
eIF4E levels, 428, 429
eIF4F initiation factor, 422
eIF4G gene, manipulation of the expression of, 426
eIF4 initiation factors, 399, 408
El-Deiry, Wafik S., 497
Elongation factors, 400, 401
Embryo development, transcriptional activation of genes during, 161
Embryonic lethality, 307
End-joining, nonhomologous, 543–551
Endocrine control, of metamorphosis, 379–380
Endogenous angiogenesis inhibitors, 341
Endogenous nitric oxide synthetase (NOS), 375
Endostatin, 336–338, 347
 anti-angiogenic activity of, 342–343
 tumors inhibited by, 338
Endostatin administration, continuous, 339
Endothelial cells
 cloning of, 334
 proliferation of, 355
 vascular, 347–348
Enhanced green fluorescent protein (EGFP)
 fused replication proteins, 38
 “Enphores,” 11
Entactins, 302–303
Enzyme interactions, allosteric nature of, 175
Enzymes, 6. See also DNA synthesis enzymes
 of deoxynucleotide metabolism, 173
 localization at DNA replication sites, 177
Epidermal growth factor (EGF), 5, 107, 136
 proliferation activation by, 6
Epidermal growth factor receptor (EGFR), 315, 316, 587, 590, 727
Epigenetic changes, 718
Epigenetics, 717
Equatorial cell cortex, 213
ERK1/2, 403
 activation of, 135
 phosphorylation of, 142s
 regulation of, 135
ERK activity, 130, 318
 sustained, 136–137
ERK-MAPK pathway, 590
ERK pathways, 735
Errors, of mitosis, 214–223
Erythroleukemia, 342
Estrogen, 6
Eukaryotic nucleus, 62–63
Eukaryotic protein synthesis, mechanism of, 398–400
Eukaryotic replication process, 36
EV1 protein, 274–275
Euxisulind, 733–734
Exportins, 721
Expression profiling, 691
Extracellular matrix (ECM), 297–332, 725. See also Cell-ECM interactions; ECM entries
 component mutations, 299
 growth regulation by, 311
 tissue specificity of, 298–306, 306–310
Extracellular matrix receptors, non-integrin, 304–306
Extracellular regulation of cancer, 723–724
Extracellular structures, cancer and, 725–727
Extrinsic pathway activation, 511–512
EZH2 gene, 274
FADD (Fas-associated death domain) protein, 140, 143, 503
Familial adenomatous polyposis coli (FAP) gene, 712
Fanconi anemia, 557
Farnesyl transferase inhibitors, 733
Fas-Fas ligand mechanism, 752
Feedback loops, E2F-mediated, 113–114
FGF-2 mRNA, 419
Fibbril-forming collagens, 300
Fibritlar center (FC), 30
Fibroblast cultures, proliferative capacity of, 641
Fibroblast growth factor 2 (FGF-2), 419
Fibroblast growth factor (FGF) family, 582
Fibroblast growth factor receptor (FGFR), 315
Fibroblasts, senescent, 748
Fission yeast. See Schizosaccharomyces pombe
 Fission yeast cell cycle, 98
5’-TOP sequences, 409–410
5’-untranslated region (5’-UTR), 407, 408, 418, 419
FKBP12 protein, 406
Flavopiridol, 678–680, 686
FLIP (FLICE-inhibitory protein), 140, 143
Flow-FISH, 457–458
FLT3 receptors, 736
Fluorescent in situ hybridization (FISH), 457–458
Fluorescence recovery after photo-bleaching (FRAP), 63
Focal adhesion kinase (FAK), 136–137, 313. See also Integrin-FAK/Src pathway
 activation of, 314
Focal adhesion-mediated signaling, 313–314
Folkman, Judah, 333
Follicular lymphomas, 592
Ford, Heide L., 95
Fordyce, Colleen, 451
48S complex, 399
4E-BP1 protein, 404
Frameshift mutations, 533, 534
Frogs, metamorphosis in, 376–377. See also Xenopus entries
 Functional cell cycle parameters, 690
 Fused replication proteins, 38
G, cells, 138, 741
G, phase, 414
G, arrest, p53-dependent, 246
G, CDK-Rb-E2F pathway, proliferation control and, 107
G, cyclins, 44, 413–414
G, (gap 1) phase, 4, 95, 96–97, 316–318
 signal transduction pathways in, 130–137
G, phase cells, 5
G1 regulation, 137–143
G1→S phase cell cycle progression. See also
G1ÆS phase transition
• blocking of, 420
• proteolysis in, 155–156
• regulators affecting, 152–156
• signaling pathways in, 150–152
• translationally controlled proteins and, 417–420
• translational signals affecting, 413–421
G1ÆS phase transition, 103–114
• cell structure and gene expression at, 31–35
• cyclin-CDK complexes that govern, 238–240
• E2F transcriptional target control of, 109–111
• programmed gene expression at the R point versus, 32–33
• retinoblastoma family, 610–612
G2 (gap 2) phase, 4, 95
• recruitment of mRNAs to polysomes in, 423–424
G2 checkpoint, 122
• DNA damage-induced, 121–124
• sensors and proximal signal transducers of, 122
• summary of, 123
G1ÆM damage checkpoint, 768
G1ÆM phase checkpoint, 9
G1ÆM progression, translational signals affecting, 421–424
G1ÆM transition, 114–124
• control of, 215–217
• nuclei, 179
• phase cells, 6
GADD45 protein, 122, 640, 769
GADD genes, 733
Gain of function
• via mutations, 104
• targeting, 686
Gastric cancer, 679, 691
Gastrointestinal stromal tumors (GISTs), 684, 685
GC-1, 376
GCN5/PCAF prototype, 268
Geminin, 169, 170, 171
Gene amplifications, 528
Gene conversion, 56
Gene duplication, 5
Gene expression
• architectural compartmentalization of, 22–23
• in cancer, 713–714
• genome packaging to accommodate, 39–43
• at the G1ÆS phase transition, 31–35
• patterns of, 297–298
• redistribution of nuclear proteins supporting, 48–49
• regulatory components of, 26
• S-phase related, 34
• serum factors and, 137
Gene expression/replication, regulatory
• components for combinatorial control of, 28–30
Gene products, roles in senescence, 748
Gene promoters, 17
Gene repression, 271
E2F-mediated, 109
Genes
• cell cycle-related, 690–691
• E2F regulated, 110
• inactivation of, 718
• mutated, 710
• R-point activation of, 33
Gene therapy
cancer, 430
• strategies for, 656–657
Genetic alterations
• in repeated sequences, 533–534
• sources of, 527
• spontaneously arising, 709
Genetic disease, ECM and, 298–299
Genetic regulation
• of cell proliferation and growth, 386–387
• of programmed cell death, 383–386
• T3-mediated, 376–377
Genetic regulatory hierarchy, steroid triggering of, 382–383
Genistein, 678
Genome organization, 39–43
• nucleosome and, 40
Genomic instability
• cancer and, 454
• telomere malfunction and, 453–454, 459
Genomic integrity, p53 and, 753
Genomic niches, 42–43
Germ cell tumors, 671
Giordano, Antonio, 607
Gleevec®/STI571/imatinib mesylate, 598, 736
Global genomic repair (GGR), 535
Global protein synthesis regulation, 412–413
Glucocorticoid receptors, 20
Glucose transporters (GLUT), 724
Glycogen phosphorylase, 679
Glycogen synthase kinase 3 (GSK-3), 401, 402, 677, 683
Glycosaminoglycan (GAG) chains, 303
Glypicans, 304, 306, 309
GNAT superfamily, 268
Go6976, 764, 768
G protein coupled receptor (GPCR), 733
G protein-coupled receptor kinases, 732
Granular component (GC), 30
Growth arrest, 753
Growth control
cell cycle and, 669–703
• loss of, 669
• Growth deregulation, 9–10

Growth factor beta (TGFβ), 729–730, 737. See also TGFβ-RII gene
Growth factor binding, 150
Growth factor receptors, cooperation with integrins, 315–316
Growth factor/receptor tyrosine kinase (RTK) signaling, 315
Growth factors, 5, 103, 397–398
cancer and, 727–730
CKI expression and, 105–106
c-Src activation and, 590–591
phosphatidylinositol-3 kinase/Akt pathway and, 591
platelet-derived, 730
role of, 150–151
Growth factor signaling, 39
“Growth-regulated” mRNAs, 407
Growth regulation, by ECM, 311
Growth-related protein synthesis, 402
Growth stimulation, 6
Growth suppressive properties, retinoblastoma family, 616–617
Growth termination, in cancer, 745–751
GTP (guanosine triphosphate), 731
binding of, 12
GTPase-activating proteins (GAPs), 130
Guanine nucleotide exchange factors (GEFs), 130, 588, 731
“Guardian of the genome,” 9
Guidi, Cynthia J., 265
H1 histone, 266
phosphorylation of, 275
H2A histone, 276
H2AX histone variant, 58
H2B histone, 276
H3 histone, 46–47
phosphorylation of, 275
H4 genes
HiNF-P-dependent activation of, 35
transcription of, 33
H4 histone, 33, 46–47
H4/n locus, 47
H23 lung tumor cell line, 623
Hamartomatous tumorous growths, 387
Hamster cells, Orc1 in, 163
Hamster DHRF domain, ori regions of, 160
Haploinsufficiency hypothesis, 712
Harvey sarcoma virus, 583
HAT activity misregulation, cancer and, 269–270
Hayflick limit, 470, 641
HBO1 histone acetyltransferase, 167
hBRM subunit, 47
HCT116 colon cancer cells, 648
HDAC1, 614
Head-and-neck cancer, 428
Heat shock proteins (Hsp), 134, 720, 758–759
hedgehog gene product, 374
HeLa cells, 417, 422, 426
Helicase activity, 166
Hemangioendotheliomas, 352
Hemangiomas, 352
Hematological malignancies, 270
Hematopoiesis, 61–62
RUNX1 protein and, 62
Hematopoietic cells
apoptotic pathway subversion in, 593–595
S6 phosphorylation in, 410
Hematopoietic stem cells, 61–62
Hemidesmosome-mediated signaling, 313
Hepatocellular carcinomas (HCC), 712
Hepatocyte growth factor (HGF), 139
Hepatocyte growth factor/scatter factor (HGF/SF), 138, 727
Hepatocytes, 139
HER2 gene, overexpression of, 727
Hereditary cancer, 711–712
Hereditary nonpolyposis colon cancer (HNPC), 530, 532, 533. See also Colon cancer; HNPCC tumor spectrum
Heritable DNA, structure of, 40
Herpes simplex virus-1, 174
Herpes thymidine kinase (HTK), 430
Heterodimeric protein kinases, 115
Heterodimerization, 475
Heterogeneous malignant cells, response to therapy, 771
Heterotrimeric molecules, 300
HIF-1 (hypoxia-inducible factor-1) alpha, 350
Hinchcliffe, Edward H., 201
HiNF-D complex, 35
HiNF-M/IRF-2 complex, 35
Histologically normal cells, telomere malfunction in, 458–460
Histone acetylation, 45–46, 267–271, 614
in cancers, 719
Histone acetyltransferase HBO1, 167
Histone acetyltransferases (HATs), 46, 108, 267, 719
overexpression of, 270–271
Histone core particle, 40
Histone cores, modification of, 41
Histone deacetylation, 271–272
Histone deacetyl transferases (HDACs), 46, 108, 608–609, 756. See also HDAC1; SIN3-HDAC complex
categorization of, 271
“Histone fold,” 266
Histone gene expression coupling with DNA replication, 32
S-phase initiation transcriptional control and, 33–35
Histone gene transcription factors, 33
Histone H4, 744
Histone methylases (HMTases), 46
Histone methylation, 46, 272–275
Histone modifying factors, 28–29
Histone mRNAs, de novo synthesis of, 32, 33
Histone Nuclear Factor P (HiNF-P), 35
Histone octamer, 265–266
Histone phosphorylation, 275
Histone proteins, 40. See also H1–4 histone entries
chromatin remodeling and, 45
post-translational modifications of, 45–47
Histone synthesis, 767–768
Histone tails, 266
hyperacetylation of, 267
Histone ubiquitination, 276
hMLH1 gene, 532, 533
hMSH2 gene, 533
HNPC tumor spectrum, 532. See also Hereditary nonpolyposis colon cancer (HNPPC)
Holometabolous insects, metamorphosis in, 369
“Mytho-obox;” 374
Homeodomain-interacting protein kinase-2 (HIPK2), 648
Homeostatic cell death, 64
Homogeneously staining regions (HSR), 585
Homologous recombination (HR), 54, 551–556
cancer and, 556–558
Homologues pairing, 22
Hormones
control of metamorphosis by, 376–387
metamorphosis-controlling, 373
Host cellular proteins, T antigen and, 472
“Hot spot” mutations, 651, 652–653
“Hox” genes, 374
HPD tripeptide loop, 481
Hsc70 chaperone, 477, 481–482
HSIX gene, 746
hSnT2H protein, 282
hSWI/SNF complexes, 47–48
hTERT subunit, 470, 471, 750
Human β-globin gene, initiation of replication in, 160–161
Human fibroblast proliferation, 641–642
Human papilloma viruses (HPV), 712
Human tumors, 337
isolation of dominant transforming genes from, 582–584
p27 in, 251
Hupki mice, 648–649
Hyaluronic acid/hyaluronan (HA), 303
Hydrogen bond bridges, 266
Hydrophilic biomolecules, 721–722, 724
Hydroxyurea (HU), 51, 175
Hymenialdisine, 683
Hyperphosphorylated pRb, 105
Hypophosphorylated pRb, 105, 156
Id1 transcription factor, 340
Id proteins, 746
IGF binding proteins, 728
IGF signaling pathway, 26
IgH region, 549
IxB kinase (IKK), 762, 763
IxB protein, 688
IL-2 expression, 142
IL-2 transcription, 140
IL-6 production, 139
Hypanassa obsoleta, programmed cell death and, 375
Imaginal discs, 386–387
Imatinib, 676, 680, 684–685, 686
Imbalzano, Anthony N., 265
“Immature” spindles, 220
Immunotherapy, sensitizing leukemia cells to, 689
Importins/exportins, 721
Imprinting, 42
Indirect-acting carcinogens, 586
Indirect angiogenesis inhibitors, 345–347
Indirubin, 682
Indolindole derivatives, 684
Infection, SV40-associated, 467
InG1 tumor-suppressor, 59
Inhibitor of apoptosis protein (IAP) family, 139, 499, 509, 512, 761, 762. See also X-linked IAP (XIAP)
Inhibitor production, 219
Inhibitors of kinases (INK), 7, 742. See also Ink cell cycle inhibitor family
INI1 gene, 279
Initiation factors, 400
Initiator caspases, 498
Ink4a locus, 649
Ink4 cell cycle inhibitor family, 105, 241, 318, 742
Ink4 regulation, 154
Ink cell cycle inhibitor family, 44. See also Inhibitors of kinases (INK) members of, 242–245
Ink proteins, 252
Insects, metamorphosis in, 369, 377–378
Insulin
eEF2 and, 401
elongation and, 401
Insulin-like binding protein-3 (IGFBP-3), 723
Insulin-like growth factor 1 (IGF-I), 5, 418, 728
Insulin-like growth factor 2 (IGF-II), 728
Insulin-like growth factors, 727–728. See also IGF entries
Insulin-stimulated protein synthesis, 412–413
Integrin clustering, 312, 313
Integrin-FAK/Src pathway, 130. See also Focal adhesion kinase (FAK)
Integrin family, 298
Integrin-linked kinase (ILK), 313
Integrin-mediated adhesion, 316, 318
Integrin-mediated signaling, 315
cell cycle regulatory targets of, 316–319
Integrins, 303–304, 308–309
cooperation with growth factor receptors, 315–319
Integrin signaling, 136–137, 304–305
cell proliferation control by, 311–319
cyclin D1 regulation by, 319
Integrin subunit mutations, 304
Interferon alpha, 352, 689
Interstitial/stromal matrix, 297
int genes, 582
Intracellular localization, 12
Intracellular signaling, in cancer, 730–741
Intranuclear targeting mechanism, 24, 25
Intranuclear trafficking, linkage to developmental arrest and leukemia, 25
Intrinsic pathway, 512
Intrinsic pathway dysregulation, cancer and, 509–510
Invertebrate life cycles, 369–370
IRES-driven translation, increase during M phase, 422–423
IRESes, 410–412
Irradiation, DNA damage caused by, 154–155
Isw1p protein, 281
Isw2p protein, 281
ISWI (imitation switch) subfamily, 281–282
Janus kinases (JAKs), 593, 595
Jat, Parmjit S., 467
J domain, 481–482
Johnson, Roger D., 525
JUN N-terminal kinase (JNK) cascade, 504
Juvenile hormone (JH), 378–379
Juvenile hormone active compounds, in larval development, 378–379
K9-H3 methylation, 47
Karyomeres, 213
Keratinocytes, CKIs and, 253
KI-67 protein, 5
Kidney disease, 301
Kinase cascades, 730–731
in cancers, 734–736
Kinase domain, 575
Kinas, 6
polo-like, 121
therapies directed against, 736–737
Kinase suppressor of Ras (KSR), 134
Kinetochores, 120, 207–208
attachment to spindle, 218–221
inhibitory activity produced by, 219
saturation with attached microtubules, 220–221
in the spindle checkpoint, 124
Kirsten sarcoma virus, 583
KIT mutant mice, 686
Knobloch syndrome, 343
Knockout mice, 113, 243–245. See also Double knockout mouse embryonic fibroblasts (TKO MEFs)
Bax/Bak, 644
Brm, 279–280
cellular systems derived from, 254
Mdm2, 647
p27, 247–248
p53, 654
p57Kip2, 248–249
p63 and p73, 638–639
Puma, 644
Rb, 617–618
studies using, 242
telomerase, 454
Koff, Andrew, 237
K-ras genes, 752
Ku binding, 55–56, 545–546
Ku proteins, 766
Lamin B receptor (LRB), 63
Laminin 5, 302
Laminin alpha 2, 302
Laminin beta 1, 302
Laminin components, 302
Laminin-rich basement membrane (lrBM), 302
Laminin-rich reconstituted basement membrane (lrBM), 316
Laminins, 8, 301–302, 308
Lamins, B-type, 177
Lamin subunits, phosphorylation of, 118
Large molecules, noncovalent regulation by, 12
Large T antigen, 476. See also Small t antigen
larval cellular pathways affected by, 485
mutational analyses of, 472
N-terminal region of, 481
p53 and, 479–480
p63α proteins and, 484
SV40 and, 471–472
Larval development, juvenile hormone active compounds in, 378–379
LAT (linker for activation of T cells), 141
LATS mutations, 387
Laufer, Hans, 369
Lethal (2) giant (l(2)gl) larvae, 386
Leukemia cells
HL-60 promyelocytic, 46–47
persistence in CML, 689–690
sensitizing to immunotherapy, 689
sensitizing to S-phase specific drugs, 688–689
Leukemia-related chromosomal translocations, 28
Leukemias. See also Acute lymphoblastic leukemias; Acute myeloblastic leukemia (AML); Acute promyelocytic leukemia (APL, PML); Erythroleukemia; Lymphomas
bcr-abl gene and, 585, 685
chromosomal translocations in, 270
linkage to intranuclear trafficking, 25
monocytic, 268
myeloid, 275
reduced telomeric DNA and, 456
SIN3-HDAC misregulation and, 271–272
Leukemia virus, activation of oncogenes by, 578–581
Leukemiogenesis, 62, 272
Li-Fraumeni syndrome (LFS), 101, 651, 655
Lian, Jane B., 15
"Licensing factor," 179
Life cycles, varieties in, 369–373. See also Cell cycle
Linker DNA, 266
Linker histone, 276
Lipophilic molecules, 730
Liver homeostasis, 138–140
Liver regeneration, termination of, 139–140
Liver stem cells, 139
LMP2 proteasome, 45
Lock, Rowena L., 467
Locus control region (LCR), 160
Loss-of-function mutations, 104, 307
Loss of heterozygosity (LOH), 243, 459, 651, 709, 712–713
LTR integration, 579, 582
Lung cancer, 319, 428, 456
LxCxE motif, 475, 476
LxCxE viral oncoproteins, 608
LY294002, 420
Lymphomas, Mo-MuLV-induced, 579
Lysine 9 of histone H3 (K9-H3), 46
Lysine histone methyltransferases, 272–273
Macromolecules, nucleocytoplasmic transport of, 63
Mad2 protein, 50, 124
Mad genes, 221
Mad (mitotic arrest defective) protein family, 50, 124
transcriptional repression and, 271
Malignancies. See also Cancer
genetic makeup of, 676–677
human, 670
Mammalian CDKIs, 44
Mammalian cell cycle, 318
Mammalian cell fusion experiments, 149
Mammalian cells
chromosome-based spindle assembly in, 207
initiation of DNA replication in, 158–159
viral genome replication in, 39
Mammalian SWI/SNF complexes, 278–280
Mammals
cell growth and division rates in, 417
G1→S progression in, 416–421
Mammary epithelial cells, 312, 454–455
tumorigenic, 316, 317
Mandibular organs (MOs), 379
Manduca sexta
ecdysone in, 380
JH isoforms and, 379
nitric oxide in, 375–376
Mantle cell lymphoma, 679
MAP4 promoter, 640
MAPK activation, 315. See also Mitogen-activated protein kinases (MAPKs)
MAP-kinase-kinase (MAPKK), 588
MAPK-initiated differentiation, 314
MAPK-interacting Ser/Thr kinases, 403–404
MAPK isoforms, 588
MAPK pathway, 275
MAPK signaling, 313
MAPK signaling pathways, 735, 751, 752
Masciullo, Valeria, 607
Maskin, 424
Maspin, 740–741
"Master regulator" transcription factors, 62
Matrix-attached regions (MARs), 176–177
Matrix metalloproteases (MMP), 740
Maturation-promoting factor (MPF), 8, 115
“Mature” spindle, 219
MBD2 protein, 282–283
MBD3 (methyl-CpG binding domain) protein, 282
Mcm2 protein, 167
MCM5 acetylating protein (MCM3AP), 167
Mcm7 protein, 167–168
Mcm10 protein, 167–168
MCM complex, recruitment of, 169, 171
MCM gene products, 165
MCM proteins, 165–167
phosphorylation of, 171
Mdm2 (murine double minute-2) gene, 751, 770
inactivation of, 649
p53 regulation by, 646–647
oncogenic potential of, 755
MDM2 protein, 475, 477, 479
phosphorylation of, 650
MDS1-EVI1 gene, 274–275
MEF2 target site, 46
Mega-complexes, 173
MEK inhibitors, 752
MEK/MAP kinase cascade, 749
MEK regulation, 135
MEL I gene, 275
Melanomas, 251, 680
familial cutaneous, 685
Menon, Mani, 149
Merosins, 302
Messenger ribonucleic acids (mRNAs). See mRNA entries
Metalloproteinase 9, 343–344
Metamorphosing systems, genetic and molecular control of, 374–375
Metamorphosis
Drosophila, 380–387
frog, 376–377
hormonal control of, 376–387
insect and crustacean, 377–378
regulation by nitric oxide, 375–376
regulation of cell growth, differentiation, and death during, 369–395
signals that control, 373
studies of, 374–375
tissue initiation of, 381
Metaphase, 115, 203, 210. See also M-phase entries
Metaphase-anaphase transition, 211, 218
blocking of, 221
molecular changes of, 220
Metastasis, 10, 739–741. See also Cancer
Metastasis activators/suppressors, 739
Metastasis-associated protein (MTA1), 739
Metastatic tumors, 337
Metazoans, replication origin models for, 162
“Metronomic chemotherapy;” 349
Mice. See also Knockout mice; Mouse entries;
Transgenic mice
ECM and ECM receptor mutations in, 308–309
mutation engineering in, 113
Microsatellite instability (MSI), 530
Microtubule nucleating complexes, 206
Microtubules, 207
Midbody, 213–214
Mini-chromosome maintenance (MCM) proteins, 164, 165–167
Mismatch repair (MMR) system, 528–534
Mitochondria, apoptosis and, 759–761
Mitochondrial mutations, 760–761
Mitogen-activated protein kinases (MAPKs), 217, 731, 734. See also ERK-MAPK pathway; MAPK entries; Ras-Raf-MAPK pathway
Mitogenesis, 397–398
Mitosis, 4, 6, 8, 201. See also Anaphase entries;
Antephase entries; Cell cycle entries; Cell division; Cycle phases; G1 entries; G1 entries;
G2 entries; Metaphase entries; M-phase entries; Prometaphase; Prophase; S-phase entries; Telophase
cell architecture during, 118
cell exit from, 119–121
chromosome segregation during, 10
delayed, 215, 216
duration of, 218–219
entry into, 205
errors and quality control mechanisms of, 214–223
events important in, 115
multi-protein, nuclear-matrix-associated complexes during, 49
NPC proteins and, 64
nuclear lamins and, 63
phases of, 201–214
phosphorylation events and, 117
protein synthesis during, 422
purpose of, 214
stages of, 115
Mitotic arrest, 217
Mitotic CDKs
inactivation of, 172
in mammalian cells, 169–172
Mitotic checkpoint complex (MCC), 50
Mitotic chromosomal, 21–22
Mitotic cyclins, 43–44, 115–116
Mitotic events, 201–255
Mitotic progression, MCC and, 50
Mitotic signals, FAK and, 313
Mitotic spindle, drugs that interfere with, 671
Mitotic spindle checkpoint, 49
MKP-3 binding, 135
MLL gene, 273
MLL2 protein, 273
MLL3 gene, 273–274
MLL/ALL-1 gene, 270
MMTV promoter, 275
Mnk1/2 (MAPK-interacting Ser/Thr kinases), 403–404
mob-5 expression, 733
Model organisms, for cell cycle study, 97–99
MOIH (mandibular organ inhibiting hormone), 380
Molecular biology, of cycle phases, 6–8
Molting hormones, 377–378
Molt-inhibiting hormone (MIH), 378
Mo-MuLV leukemia virus, 578, 579
Monocytic leukemia, 268
Mono-oriented chromosomes, 208
bipolar attachment of, 209
Montecino, Martin, 15
Mouse embryonic fibroblasts (MEFs), 454, 640, 641
Mouse erythroleukemia (MEL) cells, 161
Mouse mammary tumor virus (MMTV), activation of oncogenes by, 581–582
Mouse models, cell proliferation in, 306–310
Mouse tumors, 337
MOZ (monocytic leukemia zinc finger protein), 268–269. See also Zinc finger motifs
MOZ oncogene, 270
MPF (maturation promoting factor), 99
M phase, 4, 8, 95. See also Metaphase
IRES-driven translation increase during, 422–423
protein synthesis during, 421–422
M-phase cells, 6
M-phase promoting factor (MPF), 43–44
Mre11/Rad50/Nbs (MRN) proteins, 55
MRE11 complex, 546–547, 548, 551–553
MRE11 protein, 57
MRN complex, 55, 57, 58
mRNA (messenger RNA), 5, 415. See also Histone mRNAs
AdoMetDC, 409
cellular-IRES-containing, 411
c-myc, 408
cytoplasmic polyadenylation and, 423–424
D1, 417, 418
FGF-2, 419
5'-TOP, 409–410, 417
“growth-regulated,” 407
ODCase, 422–423
oncogenes and, 713
stability of, 116
VEGF, 420, 427
mRNA-specific protein synthesis regulation, 412–413
mRNA-specific translational control, 398
cell cycle and, 407–413
MTA (metastasis-associated) protein, 282
mtDNA (mitochondrial DNA), 760
mTOR immunoprecipitates, 405
mTOR inhibitors, 420
mTOR kinase, 415
mTOR pathway, blocking, 420–421
mTOR protein, 406–407, 719
S6K1 activation by, 421
Multienzyme complexes, 174
Multiple endocrine neoplasia (MEN), 583
Multiprotein complexes, 717
mut genes, 530–531
Mutations, 10
in cancer, 709–714
checkpoint pathway, 215
defective control of, 710–711
gene, 713
MCM10, 167
in nonhomologous end-joining genes, 548–551
proto-oncogene, 525–526
START, 414
of tumor-suppressor genes, 58
Mutator phenotype, 711
MutH protein, 530
MutL homologues, 531
mutS gene, 532
homologues of, 531
Myc oncogene, 737–738. See also c-myc entries
Myc transcription factor, 112
Myeloid leukemia, 275
MyoD muscle-promoting factor, 619–620
Myogenesis, 62
MYST family, 268–269
Myt1 kinase, 205
N-acetyltransferases, 268
NAD+-dependent deactylase, 750
Nascent DNA, 176
NBS1 protein, inactivation of, 553
NBS/Xrs1 protein, 57
N-CoR (nuclear receptor corepressor), 272
ND10 mechanism, 39
Negative feedback loops, E2F-mediated, 113–114
NE-xB family, anti-apoptosis and, 762–763
Neoplastic growth, 386
Neuroblastomas, 654
NFAT activation, 142
NF-xB protein, 10, 508–509, 513, 759
activation of, 754
overexpression of, 763
Nidogens, 302–303, 307, 308
NIH 3T3 cells, 408, 417, 418, 425, 582–583
ODCase in, 419
Nitric oxide, regulation of metamorphosis by, 375–376
Noncovalent binding, 6, 12
Nonhomologous end-joining (NHEJ), 54
defects in, 548
of DNA double-strand breaks, 543–551
Nonhomologous end-joining genes, animal models with mutations in, 548–551
Non-integrin extracellular matrix receptors, 304–306
Nonmalignant disorders, targeting cell cycle components in, 691
Normal cells, telomere malfunction in, 458–460. See also Cell entries
Noxa gene, 644
NPAT (nuclear protein mapped to the AT locus), 35
NPC proteins, 64
NRD (nucleosome remodeling and deactylating) complex, 282
NSD1 gene, 274
NSD3 gene, 274
NSD proteins, 274
N-terminus, 609–610
Nuclear architecture, 16
components of, 19
differentiation and, 61–62
DNA replication and, 176–179
gene expression and, 25
Nuclear envelope breakdown (NEB), 202, 203
control of, 205–206
Nuclear envelope, cell cycle changes in, 62–64
Nuclear lamins, 63, 64
Nuclear localization signal (NLS), 609
Nuclear matrix, gene localization and, 23
Nuclear matrix targeting signal, 24
Nuclear membrane
breakdown of, 179
role in limiting replication, 179
Nuclear microenvironments, 19–20, 22–23
Nuclear organization, 17
biological control and, 16–19
Nuclear pores, 19, 65
Nuclear proteins, dynamic redistribution of, 48–49
Nuclear receptor-binding SET-domain containing
(NSD) family, 274
Nuclear shrinkage, 65
Nuclear structure
interrelationship with gene expression, 28
replication foci attached to, 176–177
Nuclear substructure functions, 37
Nuclear transcription, 63
Nuclear transport/export signals, 58–59
Nucleases, 10
degradation by, 11
Nuclei, replication at fixed sites within, 178–179
Nucleic acid-protein interactions, 21
Nucleic acids, organization of, 16–30. See also
Deoxyribonucleic acid (DNA); DNA entries;
Histone mRNAs; mRNA (messenger RNA)
entries
Nucleolar cycle, 30–31
Nucleolar localization signal (NoLS), 31
Nucleolar organizer regions (NORs), 30–31
Nucleolus, 20–21
Nucleoplasmic transcriptional factors, 31
Nucleosomal histone amino-termini, acetylation of, 45–46
Nucleosome, 40, 266
Nucleosome organization, 18–19
water molecule and ion role in, 266
Nucleotide excision repair, 534–538
Nucleotide metabolism, regulation of genes involved in, 35
Nucleotide sequence changes, 527
Nucleus regulatory machinery, compartmentalization in, 19–23
Nucleus-to-ECM signaling, 311, 314–315
NuMA protein, 207
NURD (nucleosome remodeling and histone deacetylation) complex, 282–283
NURF (nucleosome remodeling factor), 281
Nutrition-sensitive “gatekeeper,” 407
ODCase gene, 418
ODCase mRNA, 422–423
OGG1 glycosylase, 539, 542
Oligodendrocytes, 254
Olomoucine, 682
Oncogenes, 268, 571–606, 710
apoptosis and, 592, 593–595
cell cycle checkpoint subversion by, 595–598
chemical carcinogens and, 585–587
chromosomal abnormalities and, 584–585
leukemia virus activation of, 578–581
mouse-mammary-tumor-virus–induced activation of, 581–582
pro-angiogenic, 345
cellular oncogene (vir use of, 344–345
as targets for anticancer drugs, 345–347, 676
viral and cellular, 571–573
Onecenic stress, 244
Oncogenic translocation, 550
Oncoproteins, function of, 587–598
Onyx-015 adenovirus, 657
Oogenesis, vertebrate, 423
Open chromatin state, 108
Open-reading frames (uORFs), 408–409, 415
OPG receptor, 503
Orc1 homology regions, 164
ORC binding, 164
ORC proteins, 163
Ori-β region, 161
“Origin loading factors,” 164
Origin recognition complex (ORC), 163–164, 744
Origins of replication, 157–158. See also Ori
regions
Ori regions, 157
in hamster DHFR domain, 160
transcription/replication relationship in, 161–162
Ornithine decarboxylase (ODCase), 419. See also
ODCase entries
Osteoclastogenesis, 62
Osteopontin, 141
Ovarian cancers, 60, 712
p14ARF protein, 59, 243, 244, 757. See also ARF
proteins
p15Ink4b protein, 241, 244–245
p16Ink4a knockout mice, “pure,” 244, 251
p16Ink4a protein, 241, 242–244
p16 protein, 622
p18Ink4c protein, 241, 245
INDEX

p19Arf protein, 251, 252. See also Arf entries
p19Ink4d protein, 241
p21 gene, 101–102
"assembly factor" role of, 246
p21Cip inhibitor, 245–246
sequestering of, 252
p21WAF1/CIP1 inhibitor, 53
p27Kip1 inhibitor, 154, 246–248
sequestering of, 252
as a tumor suppressor, 250
p27 protein, 44, 105, 106, 319, 596, 613, 687–688
role in differentiation, 254
p27Xic expression, 254
p38 MAPK, 733
p38 pathway, 217
p53AIP1 (p53-regulated apoptosis-inducing factor) protein, 644–645
p53 “hot spot” mutations, 652–653
p53-negative cells, 751, 768, 769
p53 pathway, 650
therapeutic targets in, 656–659
p53 phosphorylation, E2F-1 and, 757
p53 protein, 9, 11, 59, 101, 122, 279, 477–480. See also Wild-type p53 protein
aging and, 747–748
alternative splicing of, 637
apoptosis and, 753–755
inactivation of, 651–654
mutation of, 651, 654
post-translational modifications of, 647–648
reactivation of, 657
replacement of, 513
retinoblastoma family interaction with, 613–614
stabilization of, 123
telomere malfunction and, 453–454
as tumor suppressor, 31, 642–646
upstream regulators of, 649
p53 target genes, 639
p53 transactivation response, 645
p53 tumor-suppressor genes, 635–666
apoptotic pathway initiation and, 642–646
cell cycle control and, 639–640
cellular senescence and, 640–642
functioning of, 639–646
regulation of, 646–651
tumorigenesis and, 651–656
p53 tumor-suppressor protein family, 504–505
p57Kip2 inhibitor, 248–249
loss of, 254
p63α proteins, 484
p63 protein, 483–484, 636, 638
p73 protein, 483–484, 636, 638, 755–756
p107 gene, 114
role in apoptosis, 619
p130 protein, 104, 475–476
p300/CBP, 270
p300 histone acetyltransferase, 269, 270, 482–483
Paclitaxel, 674
Pancreatic cancers, 251, 338
Papilloma virus, 471, 476
Parasitic organisms, life cycles of, 372
Pare (p53-associated parkin-like cytoplasmic protein), 654
Pardoe, Arthur B., 3, 707
PARP (poly(ADP-ribose) polymerase), 539, 541, 766, 769, 770
PARP1, 542–543
Patient population, defining, 685–686
Paulolones, 683–684
PC12 cells, 314
P chromosome movement, 212
PD-ECGF (platelet derived endothelial growth factor), 346
PDGF-β receptor, 714
PEA3 (polyome enhancer activator 3), 315
Perichromosomal space, 41
Periodic protein turnover, 43–45
Perlecan, 303
PERP protein, 642–643
“PEST” sequences, 155
Phase-specific arrest, 53–54
PHAS-I (phosphorylated heat- and acid-stable substrate regulated by insulin) protein, 403, 404–405, 425, 426
manipulation of the expression of, 426–427
mTOR and, 406, 407
Philadelphia chromosome, 584, 585
Phorbol, 687
Phosphatidylinositol 3-kinase/Akt pathway, growth factors and, 591. See also Akt protein family
Phosphatidylinositol 3-kinase (PI3-kinase) family, 51–52, 55
Phosphatidylinositol-dependent kinase-1 (PDK1), 403, 591
Phospho-inositide kinases, 122
Phosphoinositol 3-kinase (PI3K), 413, 420, 508, 735
Phosphorylation, 7, 110
ATM-dependent, 52
Cdk1, 116–117
of D1 and E cyclins, 44
eIF4E, 403–404
MPF-mediated, 43–45
of retinoblastoma family members, 610
Physiological regulatory signals, nuclear architecture and temporal-spatial integration of, 26–27
INDEX

3-(phosphatidylinositol 3-kinase) entries; Phosphoinositol 3-kinase (PI3K)
P1cl mutation, 154
Picornaviral IRES, 410
PIDD expression, 643
PlCG genes, 645
PKKKs (phosphatidylinositotal kinase-related kinases), 406
PIN lesions, 760
Pituitary intermediate lobe hyperplasia, 248
Pituitary tumors, 249, 250
PKA kinase, 141
PKB, 426
PKB-mediated phosphorylation, 406
PKC (protein kinase C), 150, 152
PKC isoforms, 402–403
PKC signaling, 141
PKR, 425
Platelet-derived growth factor receptor (PDGFR), 315, 587, 590, 590
PLC (phospholipase C), 150, 152
activation of, 150, 151
PLGF (placenta like growth factor), 346
PLK1 protein, 121
Ploidy-specific DNA repair, 54–55
PLZF (promyelocytic leukemia zinc finger), 272.
PLZF-RAR fusion protein, 272
PML bodies, 20
PML (promyelocytic leukemia gene) protein, 59, 417–418
PML-RARA fusion protein, 675–676
PML-RAR translocations, 272
Pocket protein transcriptional repression, 615
Pocket region, Rb family, 608–609
Point mutations, 711
Polar ejection force, 208
Poleward (P) forces, 208, 210
Poliovirus RNA translation, cap-independent, 422
Polo-like kinase (PLK), 121, 211
Poly(A) tracts, 423–424
Polycomb (PcG) proteins, 273
Polypeptide elongation, 401
Polysome loading, 422
Porter, Joseph F., 129
Positive feedback loops, 240
E2F-mediated, 113–114
Postmitochondrial death process inhibition, 510
Postmitotic neurons, 249
Post-transcriptional regulation, 109
in cancer, 719–720
Post-translational mechanisms, 43
PP2A phosphatase catalytic subunit, 416, 480
pRb/p130 protein, 607–608, 610, 611, 612, 613, 616, 617, 623
role in apoptosis, 619
pRB-complexes, 482
pRB-E2F complex, 477
pRb/p105 protein, 616, 617, 622–623
embryos deficient in, 617
PRDX3 gene, 761
Pre-replication complex (pre-RC), 99, 162
assembly and activation of, 169–172
cell cycle regulatory events controlling, 170
formation of, 180
proteins associated with, 168–169
Pre-RNA processing, 11
Prima-1, 657–659
Pro-angiogenic oncogenes, 345
Pro-angiogenic proteins, 346
Pro-apoptotic therapy, 763–765
Prognois, cell cycle parameters and, 690–691
Programmed cell death (PCD). See Apoptosis;
Autophagic programmed cell death;
PUMA (p53 upregulated mediator of apoptosis)
Programmed gene expression, temporal-spatial identity of, 32–33
“Proinflammatory syndrome,” 679
Proliferating-cell nuclear antigen (PCNA), 37, 38,
157, 167, 177, 478)
p21 and, 246
Proliferation. See also Cell proliferation
of cancer cells, 722–723
coordination of, 714
Proliferation/differentiation cell cycle control,
60–62, 716
G1, CDK-Rb-E2F pathway and, 107
Proliferative fate, 237
Proliferative regulation, 9, 103
Prometaphase, 203, 206–210
Promyelocytic leukemia, 20
Prophase, 115, 202–206
Prostate cancer, 733
Prostate hyperplasia, 250
Prostate tumorigenesis, 455
Pro-survival signaling, cancer and, 508–509
Proteasome inhibitors, 351, 688
Proteasomes, 687
in cancers, 720
regulation of, 44–45
Protein-DNA, scaffold-associated, 29
Protein-DNA interactions, 17–18
Protein kinase C. See PKC entries
Protein metabolism and distribution cycle,
43–48
Protein phosphatases, 142
Protein phosphorylation, 7
Protein-protein interactions, 18
RUNX proteins and, 28
Proteins. See also Enzymes; Histone entries; Oncoproteins
angiogenic, 335
in asymmetric cell kinetics, 61
bi-functional, 37–38
cell cycle inhibitory, 237–264
coregulatory, 26, 27
degradation of, 11
DNA-synthesis-associated, 156–157
functional diversity and selectivity of, 755
localization at DNA replication sites, 177
mitochondrial, 761
nucleolar-associated, 21
peaks of incorporation into, 422
pro-angiogenic, 334–335
redundancy between, 249
replication checkpoint and, 51
retinoblastoma family of, 473–477
selective trafficking of, 24
translationally controlled, 417–420
Protein scaffolds, 142
Protein stability, 116
Protein synthesis
cancer and deregulation of, 425–430
cell division and, 397–398
growth-related, 402
mechanism of, 398–400
in M phase, 421–422
regulation of, 412–413
stages of, 398–400
Protein synthesis factors
cancer therapy and, 429–430
manipulation of the expression of, 425–427
regulation of, 400–407
Protein turnover, selective and periodic, 43–45
Protein tyrosine kinases, 734
Proteoglycans, 303, 308
Proteolysis
in cell cycle progression, 155–156
initiation of, 720
ubiquitin-dependent, 155
Proteosome, 7
Prothoracotropic hormone (PTTH), 378
Proximal signal transducers, G1 checkpoint, 122–123
PS-341, 688
PTEN tumor suppressor, 314, 510, 513, 650, 735–736
PTP-1B phosphatase, 314
PTP-PEST phosphatase, 314
PubMed, 708
PUMA (p53 upregulated mediator of apoptosis), 644, 753–754
Puma gene, 644, 645–646
Punctate sites
nuclear, 36
protein complex organization at, 36–37
Purvanalol, 684
Quality control mechanisms, of mitosis,
214–223
Quercetin, 678
Quiescence
in cancer cells, 722
Rb/E2F complexes and, 108
Quiescent (G0-phase) cells, 5, 104
p27 in, 247
R337H mutation, 655–656
Rac1, 764
Rac pathway, 316
rad9 mutants, 101
RAD50 protein, 57, 547
RAD51B gene, 557
RAD51 mutation, breast cancer and,
556–557
RAD51 nucleoprotein, 56–57, 553–554
BRCA2 and, 556
RAD52 nucleoprotein, 56–57, 553, 554
RAD54 protein, 56
Radiolabeled nascent DNA analysis method,
159–160
Raf-1 cycle, 133
Raf-1 kinase activity, 132–133
Raf-1 phosphorylation sites, 134
Raf-1 protein, regulation of, 134
Raf kinase inhibitor protein (RKIP), 134–135
Raf kinases, 132–133
RAG1/RAG2-induced DNA double-strand break, 549
Rapamycin, 405, 406, 410, 412–413, 419
5’-TOP mRNAs and, 409
inhibitory effects of, 420–421
low-dose, 429–430
TOR genes and, 415
Raptor protein, 406–407
RARE (retinoic acid response element) sequences, 272
RAR locus, 20
RAR regulators, 271–272
Ras, cancer and, 731–734
Ras activation, 150
Ras binding domain (RBD), 132
Ras cycling, 130
Ras domains, 132
Ras expression, oncogenic, 597–598
Ras-GDP complex, 131
Ras GEFs, 588
Ras gene mutations, 732
RasGRP (guanine nucleotide releasing protein),
141
Ras GTPase activity, 131–132
Ras-induced arrest, 749
ras mutant, 710
ras oncogene, 345
ras protooncogenes, 584
Ras-Raf-MAPK pathway, 150, 152. See also Mitogen-activated protein kinases (MAPKs)
Ras-Raf-MEK-ERK pathway, 130–136, 318
Rat PHAS-I, 404
Rb1 gene, 473
Rb2 gene, genomic mutations of, 623
RB2/p130 down-regulated genes, classification of, 624
Rb/E2F, transcriptional target repression by, 107–109
Rb family members, 104–105
Rb gene, 103–104, 741, 743
control of E2F transcriptional activity and, 107–109
regulation by cyclin/Cdkks, 105–106
restriction point and, 106–107
Rb mutant genes, 105
rDNA genes, 161
in nucleolar structure, 30
Reactive oxygen species (ROS), 759, 760
Receptor tyrosine kinases (RTKs), 130–131, 315, 316, 588, 589
RECK transcription, 740
Recombinant human ORC subunit studies, 163–164
Recombination, homologous, 551–556
Recombinational repair substrates, 544–545
RecQ helicases, 571
Reddy, E. Premkumar, 571
Reddy, G. Prem-Veer, 149
Redundant angiogenic promoters, 350
Regulation. See also Protein synthesis; Regulatory proteins
p53, 646–651
of protein synthesis factor activity, 400–407
of ribosomal biogenesis, 30–31
yin-yang principle of, 12
Regulators
of angiogenesis, 334–335
of apoptosis, 513
Regulatory cascades, 65
Regulatory complexes, 16
assembly of, 66
compartmentalization of, 19
formation of, 19–23
Regulatory foci, architectural versus activity-driven assembly of, 25–26
Regulatory hierarchy, genetic, 382–383
Regulatory proteins, 7
intracellular organization of, 16–30
Regulatory signals
hormone-responsive integration of, 20
physiological, 26–27
Relief of dependence, 215, 217
Rel proteins, 509
Renal carcinoma, 679
Repair checkpoints, DNA damage and, 766–769
Replication, 129
controlled, 709
at fixed sites within nuclei, 178–179
genetically determined origins of, 160
relationship with transcription in an ori region, 161–162
role of nuclear membrane in limiting, 179
Replication checkpoints
architectural features of, 51
structural cycles of, 51–52
Replication complexes, DNA synthesis enzymes in, 172–175
Replication domains, in situ assessment of, 36
Replication errors, 533
Replication factor C (RF-C), 167
“Replication factories” model, 37, 172, 177
Replication foci
assembly and reassembly of, 38–39
in S-phase cells, 176–177
Replication fork complex (RFC), 64, 176
Replication intermediates, structural preservation of, 51
Replication origin function, chromosomal context of, 160–161
Replication origin models, for metazoans, 162
Replication origins
DNA synthesis initiators at, 162–172
“firing” of, 36
Replication protein A (RPA), 37
Replication/repair domains, 21
Replication sites, 36–37
cyclical parameters of, 37–39
Replication zones, differential timing of, 42
Replicative cellular senescence, 244, 641
Replicon clusters
nuclear organization of, 178–179
replication in, 176
Replicon model, 157
Replication, 36, 173
Replication complexes, 21, 175, 744
enzyme activities associated with, 174
“Reserve cells,” 619
Restriction fragment analysis, 159
Restriction point (R), 5, 9, 32, 33, 96–97, 130, 137, 416, 473, 596, 742–743
Rb and, 106–107
Ret gene, 583
RET protein tyrosine kinase, 734
Retinoblastoma (pRb) family of proteins, 607, 743, 753
angiogenesis and, 621–622
apoptosis and, 618–619
deregulation of, 622–625
development and, 617–618
differentiation and, 619–621
functional characteristics of, 610–616
growth suppressive properties of, 616–617
phosphorylation in, 610
structural characteristics of, 608–610
transcription factors associated with, 620
Retinoblastoma susceptibility gene product (pRb), 670. See also Retinoblastoma tumor-suppressor protein (pRb)
Retinoblastoma susceptibility protein, isolation of, 104
Retinoblastoma tumor-suppressor protein (pRb), 7, 59–60, 103, 278, 473. See also Rb entries; Retinoblastoma susceptibility gene product (pRb)
cellular proliferation and, 271
interaction with p53, 613–614
phosphorylation of, 105, 156
as tumor suppressor and proliferation regulator, 103, 104
Retinoblastoma tumor-suppressor protein (pRb) family, 168, 473–477
inactivation of members of, 107
phosphorylation/inactivation of members of, 595–596, 612
Retinoic acid receptors (RAR), 746. See also RAR entries
Retinoic acids, 746–747
Retroviral-mediated activation, of oncogenes, 573–578
Retroviral transforming genes, 574
Retroviruses, multiple transforming, 598
Rh30 cells, 430
Rhoads, Robert E., 397
Rho GTPase, 732–733
Ribonucleotide reductase, 420
Ribosomal biogenesis, 30
remodeling of regulatory machinery of, 30–31
Ribosomal gene expression, 20–21
Ribosomal protein S6, 405–406
Ribosomal RNA gene (rDNA), 161
Rieder, Conly L., 201
RING domain, 60
Rizki, Aylin, 297
RIZ proteins, 274–275
RNA (ribonucleic acid). See also mRNA entries; rRNA genes antisense, 417, 419
secondary structure of, 408
RNA polymerases, 30
RNA tumor viruses, 571, 572
Roscovitine, 682
Rothmund-Thompson syndrome, 558
Rous sarcoma virus (RSV), 571, 572
RPA protein, 39
RPA protein complex, 553–554
R point, 171
temporal-spatial identity of programmed gene expression at, 32–33
rRNA genes, transcription of, 30
RSC complex, 280–281
RSF (remodeling and spacing factor), 282
Rubenstein-Taybi Syndrome (RTS), 270
Runx/Cbfα/AML transcription factor, 29
RUNX-containing regulatory complexes, 20
RUNX intranuclear targeting signal, 24
RUNX proteins, 19–20, 24, 49
RUNX transcription factors, 23, 24, 28
RUNX1 protein, hematopoeisis and, 62
RUNX2 protein, 25
Ruv complex, 554
S6 ribosomal protein, 405–406
S6K1 (S6 kinase 1), 405, 407
mTOR activation of, 421
S6K1 activation, 5′-TOP mRNAs and, 409–410
S6K2 (S6 kinase 2), 406
Saccharomyces cerevisiae, 97. See also Yeast entries
Cdc6 in, 164
CDC45 gene mutation in, 168
origins of replication in, 158
replication in, 163
translation in G1 – S progression in, 413
S-adenosylmethionine decarboxylase (AdoMetDC) mRNA, 409
Salivary gland autophagic cell death, 384–385
transcription increases and, 386
salvador (sav) gene, mutations in, 387
SaOs2 osteosarcoma cell line, 616, 619, 624
Scaffolding nuclear proteins, 29, 48–49
Scheduled nucleocytoplasmic shuttling, tumor-suppressor proteins and, 58–59
Schizosaccharomyces pombe, 95, 97–98. See also Yeast entries
Cdc18 in, 164
replication origins in, 158
scid cells, 56
Sclafani, Robert A., 95
Securin (Pds1), 50, 120, 121, 211
Selective protein turnover, 43–45
Senescence, 470
endothelial cell, 348
p21Cip and, 246
Sensors, G, checkpoint, 122–123
Sepharase (Esp1), 50, 211
Serine-15 (S15), phosphorylation of, 647
Serine proteases, 740
Serine/threonine kinases, 132, 135, 734
Serum-stimulation, 137
SET-domain-containing proteins, 275
SET domains, 272–273, 274
SET subfamilies, 272–274
INDEX

7-Hydroxystaurosporine, 680–682
Severe combined immunodeficiency (SCID), 546, 548
SH-2 (Src homology 2)-containing adapter proteins, 130
SH2 domain, 575
Shc protein, 313, 314
Shrimp, developmental stages of, 371
Signaling, centriole-based, 214
Signaling mechanisms, architectural compartmentalization of, 26
Signaling molecules, upstream of translation, 427
Signaling pathways, 151, 402
in cell cycle progression, 150–152
Signal transduction, 6, 7
G2 checkpoint in, 122–123
Signal transduction pathways, 130–137
Silver-stained NORs (AgNORs), 31
Simian virus 40 (SV40), 467–485. See also SV40 entries
Simian virus 40 (SV40) large T antigen, 750
immortalization by, 467–495
Sm3a corepressor, 478
SIN3-HDAC complex, 271–272. See also Histone deacetyl transferases (HDACs)
SIN3 protein, 272
Single-strand annealing (SSA), 56, 57–58
Sister chromatids, 115
separation of, 119–121
"Sister" kinetochores, 208, 210
Skeletal development, perturbations in, 20
Skin disease, 304, 307
Slot blotting, 457
Sluder, Greenfield, 201
SMAC apoptogenic factor, 513
SMAC/DIABLO apoptogenic factor, 505, 759, 761
SMAD coregulatory factor, 26–27
Smad transcription factors, 244
Small-molecule transcription activation, 738–739
Small t antigen, 480. See also Large T antigen "Smart virus," 657
SMRT (silencing mediator for retinoid and thyroid receptors), 272
SNF5/INI1 subunit, 279
SNF (sucrose fermentation) protein, 277–278
Solid tumors, 671, 721
growth of, 723
telomere length and, 456
Sotos syndrome, 274
Species, commonalities among, 421
S phase, 4, 95, 96
cellular preparation for, 179–180
CKI involvement in, 154
duration of, 42
gene expression at the end of, 156
independent cycle integration in, 38
protein complexes and, 36–37
S-phase cells, 5
replication foci in, 176–177
S-phase checkpoint, 9
S-phase cyclin/Cdns, 157
S-phase initiation, transcriptional control at, 33–35
S-phase replication checkpoint, 49–50
S-phase replication origin, “firing” in, 36
S-phase specific drugs, sensitizing leukemia cells to, 688–689
S-phase specific nuclear microenvironment, 37–39
Spindle chromosome attachment to, 208
kinetochore attachment to, 218–221
Spindle assembly, 207
Spindle bipolarity, 206–207
Spindle checkpoint, 50, 101, 123–124, 125, 218
Spindle multipolarity, 221, 222
Spindle poles, motive force for separating, 212–213
Spindle pole separation, force-producing mechanism for, 203–205
Spontaneous immortalization, 470
Src family kinases, 313
activation of, 141
src oncogene, 345, 572, 590, 734
Sre oncprotein, 575
START mutants, 414
START point, 9, 97, 171, 413, 414
STAT proteins, 593–595
“Status quo” hormone, 378
Staurosporine, 8, 680–682
Stein, Gary S., 15
Stein, Janet L., 15
Stem cells, 61
maintenance of, 61
Sterile alpha motif (SAM) domain, 484
Steroid hormones, 6, 377
Steroid regulatory hierarchy, 382–383
Strand invasion, 57
Stress, p53 and, 646–651
Stressed cells, cancer and, 765–769
Structural maintenance of chromosome (SMC) proteins, 41, 547
SU9516, 684
Subcellular localization, CyclinB/Cdk1 activity and, 117
Subnuclear domains, 19
Subnuclear localization, of RUNX transcription factors, 25
Subnuclear targeting, 59
Sulindac, 733–734
Suppressed chromatin template, 40–41
Suppressor of Ras-8 (SUR-8), 134
Survivin, 139, 509, 512

index.qxd 3/24/04 2:57 PM Page 797
SUV39H1/2 methyltransferase, 273
SUV39 subfamily, 273
SV40 genome, gene products associated with, 468. See also Simian virus 40 (SV40) entries
SV40-immortalized cells, 480
SV40 oncoprotein, 338, 339–340
SWI2/SNF2 subfamily, 276–281
SWI (switching) protein, 277–278
SWI/SNF complexes, 555
mammalian, 278–280
Swiss 3T3 cells, 416
Switches, physiologically responsive, 45–47
Syndecans, 303, 304–306, 309
T24 bladder carcinoma cell line, 583
T antigens, 468, 469, 471
Tap42 protein, 415–416
tap42-11 mutant, 416
Target genes, transrepression of, 640
Targets. See also Therapeutic targets
defining, 685
physiological function of, 686
Target-specific therapies, cell cycle, 675–684
Tau proteins, 683
Taxol, 216
T-cell proliferation, 140–143
T-cell response, 689
TCR/CD3 complex, 141, 142
TCR receptor, 143
Telomerase activity, 749–750
Telomere-associated sequences (TAS), 451–452
Telomere content, measuring, 457
Telomere length, cancer prognosis and, 455–456
Telomere malfunction
carcinogenesis and, 454–455
genomic instability and, 453–454
in histologically normal cells, 458–460
Telomere repeat factor 1 (TRF1), 452
Telomere repeat factor 2 (TRF2), 747
Telomere restriction fragment length, 457
Telomeres
composition and structure of, 451–453
quantification of, 456–458
senescence and, 749
shortening of, 470
Telophase, 115, 203, 213–214
Testicular cancer, 342
Tetraploid cells, homologous recombination in, 56–57
TFIIH protein, 538
TGFβ-RII gene, 534. See also Growth factor beta (TGFβ)
Therapeutic targets, in the p53 pathway, 656–659. See also Targets
Therapies
kinase-directed, 736–737
pro-apoptotic, 763–765
target-specific, 675–684
30-nm chromatin fiber, 40
TH receptors (TRs), 376
3T3 cells, 710
Threonine 14 (Thr14), 116, 117
Threonine 161 (Thr161), 116, 117
Thrombospondin, as an angiogenesis inhibitor, 341–342
Thrombospondin-1, 341–342, 621, 726
Thymidylate synthase (TS), 175, 420
Thyroid hormone (TH), 376–377
Thyroid-stimulating hormone (TSH), 376
Thyroid tumors, canine, 333
Thyroxine, in frog metamorphosis, 376–377
Tie-2 receptor, 355
Tip41 protein, 416
Tissue-specific gene expression patterns, 297–298
TLE/Groucho coregulatory proteins, 27
T-loop, 116, 452
Tist, Thea D., 451
TNFα protein, 139, 764
TNP-470 chemotherapeutic agent, 335–336, 347
tumor types inhibited by, 337
TOR genes, 414–415
TOR pathway, 414–415
effect on translation initiation, 415–416
“Traction mediated cytofission,” 214
TRADD (TNFR-associated death domain), 503
 Trafficking signals, 24
trans-acting factors, 398–399, 408, 410
trans-acting proteins, 157. See also DNA synthesis initiators
Transactivation (TA) domain, 636
Transcription, 11
eIF4E gene, 405
relationship with replication in an ori region, 161–162
Transcription activating factors (TAFs), 646
Transcription activation, by small molecules, 738–739
Transcriptional control
biochemical components of, 16–17
at S-phase initiation, 33–35
Transcriptional intermediary factor 2 (TIF2), 270
Transcriptionally active chromatin template, 40–41
Transcriptional machinery, chromatin structure
and, 267
Transcriptional regulation, 43
CBP proteins and, 483
Transcriptional targets, 23–25
Rb/E2F repression of, 107–109
Transcription coupled repair (TCR), 535
Transcription factor organization, disease and, 62
Transcription factors, 6, 716
associated with retinoblastoma family, 620
coregulatory proteins and, 29
at gene regulatory foci, 32
interaction with ORC, 168
as “scaffolding proteins,” 48
Transferin, 5
Transgenic mice
cyclin D1, 152
tumor cell implantation into, 341
Translation
IRE6-dependent, 410
signaling molecules upstream of, 427
Translational control, 11, 398
cell cycle and, 397–448
mRNA-specific, 407–413
Translational control, 11, 398
G1 → S progression and, 417–420
Translational signals
G1 → S progression and, 413–421
G2 → M progression and, 421–424
Translation initiation, TOR effect on, 415–416
Translocations, analysis of, 549
Trichostatin A (TSA), 615
Trichothiodystrophy (TTD), 538
Triple knockout mouse embryonic fibroblasts
(TKO MEFs), 612
TSC1/2 mutations, 387
“T/t common region,” 468
Tuberous sclerosis, 537
Tumor aggressiveness, 250–251
Tumor angiogenesis, 333–353
Tumor cell proliferation, 341
Tumor cells
genomic alterations in, 347–348
resistant, 347
restoring apoptosis to, 758–759
Tumor growth, angiogenesis dependence of, 335–344
Tumorigenesis, 525–526, 710
nucleolar structure and, 31
p53 and, 651–656
safeguards against, 49–54
Tumor necrosis, 350
Tumor necrosis factor receptor (TNFR)
superfamily, 142–143, 498, 502–504, 506, 511, 642. See also TNFα production; TRADD (TNFR-associated death domain)
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), 503, 511–512
Tumor-producing acute transforming viruses, 572
Tumor progression, 10
role of angiogenesis in, 350
Tumor regression, 350
Tumors. See also Human tumors
avascular, 340
centrosome amplification and, 222
drug-resistant, 348–349
growth of, 715
inhibited by endostatin, 338
inhibited by TNP-470, 337
treating, 656–659
uncontrolled cell division in, 58
VEGF expression by, 334
Tumor-suppressor functions, restoration of, 657
Tumor-suppressor gene cycle, 58–60
Tumor-suppressor proteins, 59–60
regulation of, 59
scheduled nucleocytoplasmic shuttling and, 58–59
subnuclear targeting and, 59
Tumor-suppressor regulation, nucleolus and, 31
Tumor suppressors, 9, 104, 250, 251, 270, 278–279, 280, 477, 504. See also p53 protein
classification of, 636–639
intranuclear compartmentalization of, 60
nucleolar sequestration of, 59–60
retinoblastoma protein as, 103
Tumor syndromes, familial, 656
Tumor vessels, 333
Tumstatin, 343–344
26S proteasome, 44, 45, 687
Two-dimensional gel analysis method, 159–160
Tyrosine 15 (Tyr-15), 116, 117, 122
Tyrosine kinase inhibitor, 346
“Tyrosine kinome,” 686
Ubiquitin-activating enzyme (E1), 119, 155
Ubiquitin-conjugating enzyme (E2), 119, 155
Ubiquitin-dependent protein degradation complex, 172
Ubiquitin-dependent proteolysis, 171–172
Ubiquitin ligase enzyme (E3), 119, 155
Ubiquitin ligases, 43
Ubiquitin protein, 7
Ubiquitin proteolysis pathway, 119
UCN-01, 680–682, 687
ultra bithorax (UBX) mutation, 374
Ultraspiracle (USP) receptors, 379
uORFs, 408–409, 415
“usp” mutants, 382
UV-DDB protein, 535
v-abl gene product, 576
van Wijnen, André J., 15
Vascular endothelial cells, genetic stability of, 347–348
Vascular endothelial growth factor (VEGF), 334–335, 339, 350, 420, 621–622, 723
V(D)J recombination, 55, 543, 546, 548, 549
VEGF mRNA, 420
VEGF protein-to-mRNA ratio, 427
VEGFR (VEGF receptor), 725
Velcade, 351
Vertebrate oogenesis, 423
vestigial gene, 375
VHL (von Hippel-Lindau gene) protein, 59
vHMEC cells, 455
Viral DNA replication, 467–468
Viral functions, J domain and, 481
Viral genome, replication in mammalian cells, 39
Viral oncogenes, 571–573
Viral oncogenic proteins, 104, 476
Viruses, cancer, 712–713
v-myb oncogene, 579
v-Myb protein, 577
v-(virus) oncogenes, 574
VP gene products, 468
v-raf oncogene, 588
v-ras oncogene, 583
V-Ras proteins, 577
v-src oncogene, 596
Waf1 mutation, 154
“Wait anaphase” signal, 124
Wang, Shulin, 497
WARTS mutations, 387
Water molecules, in nucleosome structure, 266
WCRF complex, 282
Wee1 gene, 98
Wee kinases, 117, 205
Werner’s syndrome, 558, 747
White blood cells, telomere loss in, 458–459
Wild-type mice, tumors in, 343, 344
Wild-type p53 protein, 154–155, 651
structure of, 653
Wilm’s tumors, 248, 274
wingless gene, 375
Wnt pathway, 728–729
Wolf-Hirschhorn syndrome (WHS), 274
Wortmannin, 405
Wound healing, 61
WRN helicase, 558
WSTF (Williams syndrome transcription factor) protein, 282
X-chromosome inactivation, 42
Xenopus laevis
B/Cdk1 activity in, 115
Cdc45 homologues in, 168
Cdc6 binding in, 164
CDK inhibitors in, 254
CKI destruction in, 169
embryo development in, 161
maturation promoting factor in, 99
TR-B in, 376
Xenopus oocytes, studies in, 423
Xeroderma pigmentosum (XP), 535, 537–538
X-linked IAP (XIAP), 512–513, 762. See also Inhibitor of apoptosis protein (IAP) family
XPA helicase, 535
XPC-HHRAD23B protein, 535
xR11 anti-apoptotic protein, 377
XRCC1 protein, 539–541, 542
XRCC4 protein, 547
YAP coregulatory factor, 26–27
Yeast autophagy genes, 385. See also Saccharomyces cerevisiae; Schizosaccharomyces pombe
Yeast cell cycle, 98
Yeast mutants, 100, 101, 221
Yeast RSC complex, 280–281
Yeast SWI/SNF complex, 277–278
Yin-yang principle, 715
ySWI/SNF complex, 47
Zaidi, S. Kaleem, 15
Zamamiri-Davis, Faith A., 635
Zambetti, Gerard P., 635
ZAP-70/Syk, 141
Zinc finger motifs, 166. See also MOZ (monocytic leukemia zinc finger protein); PLZF (promyelocytic leukemia zinc finger)