INDEX

A
additions and deletions, high performance renovation, 205–7
air conditioning. See also electric power; energy consumption;
energy generation systems; HVAC systems
culture, 22
whole building design strategies, 39–40
air infiltration losses, building envelope design, 78
air leaks, facility management upgrades, 50–51
American Clean Energy and Security Act of 2009, 23
American National Standards Institute (ANSI), 142
American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), 70–72, 110
apartment building (Linz, Austria), 105–7
appliance lifecycle, future prospects, 242
Architecture 2030 Challenge, 7, 23, 24–25
asbestos, hazardous materials abatement, construction operations, 179
ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers), 110
ASHRAE Headquarters (Atlanta, Georgia), 70–72
Athena Sustainable Materials Institute, 144, 145–46
atria, daylighting, modern buildings (late), building envelope design, 97–98
automated systems, building envelope, 11–12

B
BedZed project (London, England), 227
behavior change, facility management upgrades, 51–52
benchmarking. See also software; specific software names
facility management upgrades, 52–55
testing and, whole building design, 22–28
BESTEST software, building energy models, 23
Best Management Program (BMP), 119
biomass liquefaction, pyrolysis via, 211
Brundtland commission, 2
building codes
ventilation, 36
whole building design, 40–41
Building Design Advisor software, building energy models, 23
building energy models, whole building design, 22
Building Energy Simulation Test (BESTEST) software, 23
building envelope design, 77–108
air infiltration losses, 78
automated systems, 11–12
case studies, 103–7
daylighting, high performance renovation, case histories, 230
functions of, 77
insulation strategies, 78–84
cold climate, 79–80
continental climate, 83–84
generally, 78–79
hot dry climate, 83
hot humid climate, 82
humid middle latitude climate, 81–82
modern buildings (late), 96–102
daylighting, 96–98
insulation, 99
roofing, 101–2
roof structure, 98–99
window replacement, 100–101
modern buildings (mid-century), 92–96
curtain walls, 92–93
insulation, 93–95
roofing, 95–96
window replacement, 95
passive house design, 226–27
pre-war buildings, 84–91
masonry wall design, 85–86
roofing, 89–91
roof structure, 88–89
thermal mass, 84–85
window replacement, 86–88
whole building design strategies, 38–39
Building Information Model (BIM), 31
building materials, 141–72
building materials (cont’d)
 environmental considerations, 141–50
 Athena Sustainable Materials Institute, 145–46
generally, 141
 operational energy and waste, 150
 rating systems and lifecycle assessment, 142–44
 recycling, salvage, and reuse, 146–49
 resource efficiency, 149
 low-emitting materials, 151–57
 modern (late), 163–65
 modern (mid-century), 162–63
 pre-war buildings, 157–61
 plaster and partitions, 159–61
 roofing, building envelope design, 89–91
 salvage, 157–59
 whole building design strategies, 36–37
Building Owners and Managers Association (BOMA), 23
building sector
 building energy models, 23
 greenhouse gases, 4–5, 201
building systems, 109–40
 case studies, 134–39
 construction, commissioning, 193–95
 controls, 114
 functions of, 109–10
 light, 112–13
 modern buildings (late), 127–33
 daylighting, 130–32
 deep floor plates, 127–28
 electric power and controls, 133
 HVAC systems, 130, 131
 ventilation, 128–30
 water-saving strategies, 132–33
 modern buildings (mid-century), 120–27
 daylighting, 124
 electric power, 126–27
 HVAC systems, 122–24
 hydronic systems, 120–21
 ventilation, 122
 water-saving strategies, 124–26
 pre-war buildings, 114–20
 daylighting, 118
 electric power, 120
 steam and hydronic systems, 115–17
 ventilation and fire safety, 117
 water-saving strategies, 118–20
 service lives of, 8
 thermal comfort, 110–11
 water use, 112
 whole building design strategies, 39–40
building system water, high performance renovation, 221. See also water use
C
California Sustainable Building Task Force, 12–13
Canadian Waste Water Association (CWWA), 118
carpet, low-emitting materials, 155
Carpet and Rug Institute (CRI), 141
change of use, transformation, high performance renovation, 202–5
Chicago Center for Green Technology (Chicago, Illinois), 197–99
climate. See also specific climates
 building envelope, whole building design strategies, 38–39
 insulation strategies, building envelope design, 79–84
 materials, whole building design, 36–37
 passive house design, 223–24, 227
 thermal mass, 84–85
 whole building design, 19–22
climatic change. See global warming
codes
 ventilation, 36
 whole building design, 40–41
cold climate
 insulation strategies, building envelope design, 79–80
 pre-war buildings, 84
 Collaborative for High Performance Schools (CHPS), 26, 141, 175–76, 195
color rendering index (CRI), 113
combined heat and power (CHP) systems, energy systems retrofitting, 209–11
comfort, renovation benefits, 10–12
Commercial Buildings Energy Consumption Survey (CBECS) Database, 23
commissioning, construction operations, 191–96
cement, low-emitting materials, 152
condensation
 building envelope, whole building design strategies, 39
 curtain walls, modern buildings (mid-century), 92–93
construction. See new construction
construction operations, 173–200
 commissioning, 191–96
debris removal, 185–86
demolition and investigations, 176–77
demolition documents, site discussions versus, 177–78
hazardous materials abatement, 178–85
 abatement process, 182–85
 asbestos, 179
 lead, 179–80
 polychlorinated biphenyls (PCBs), 180–82
occupied projects, 186–91
 elevators, 189–91
 notification, 189
 phasing, 187–89
 relocation, 186–87
 separation and noise, 189
sustainability, 173–74
 team assembly, 174–76
continental climate, insulation strategies, 83–84
controls, building systems, 114
correlated color temperature (CCT), 113
costs
 facility management, 9–10
 green buildings, 12–13
Courtyard Portland City Center Marriott Hotel (Portland, Oregon), 252–54
Cox School (Oakland, California), 259–63
Cradle to Cradle (C2C) approach, 37, 142
crawlspaces, insulation, 93–95
culture
 high performance renovation, 207–8
 whole building design, 19–22
curtain walls, 92–93

D
daylighting
 advantages of, 10
 benchmarking, 27–28
 high performance renovation, case histories, 230
 modern buildings (late)
 building envelope design, 96–98
 building systems, 130–32
 modern buildings (mid-century), building systems, 124
 pre-war buildings, building systems, 118
 solar heat and power, energy systems retrofitting, 213–16
 whole building design strategies, 32–34
daylight savings time, 51
debris removal, construction operations, 185–86
deconstruction process, future prospects, 248–50
deep floor plates, modern buildings (late), building systems, 127–28
deletions, transformation, high performance renovation, 205–7
demolition, construction operations, 176–77
demolition documents, site discussions versus, construction operations, 177–78
design problem, whole-building design concept, 17–19
developing nations, global warming, 14–15
disassembly, modern buildings (mid-century), building materials, 162–63
disposal reduction, late modern buildings, 164–65
DOE-2 software, building energy models, 23
Dunham-Jones, Ellen, 202

eearthquake, materials, whole building design, 36
ecomachine waste water management, 221–22
Edith Green--Wendell Wyatt Federal Office Building (Portland, Oregon), 228–32
electric power. See also air conditioning; energy consumption;
 energy generation systems; HVAC systems; lighting systems
 modern buildings (late), building systems, 133
 modern buildings (mid-century), building systems, 126–27
 pre-war buildings, building systems, 120
elevators, occupied projects, construction operations, 189–91
Empire State Building (New York, New York), 86–87
encapsulation, hazardous abatement process, 182–85
energy consumption. See also air conditioning; energy generation systems; HVAC systems
 building envelope, whole building design strategies, 38–39
 building sector, 4–5, 201
 facility management upgrades
 behavioral change, 49–52
 benchmarking, 52–55
 future prospects, goal-setting, 239–40
 green buildings, 13
 statistics on, 250
 submetering (electricity), 51
energy generation systems, 208–19
 combined heat and power (CHP) systems, 209–11
 future prospects, 246–48
 generally, 208–9
 geothermal heat exchange, 218–19
 solar heating and power, 211–16
 wind power, 216–18
EnergyPlus software, building energy models, 22, 23
Energy-10 software, building energy models, 23
Energy Star, 23, 59–60
envelope. See building envelope design
environmental considerations (materials), 141–50
 Athena Sustainable Materials Institute, 145–46
generally, 141
 operational energy and waste, 150
 recycling, salvage, and reuse, 146–49
 resource efficiency, 149
Environmental Protection Agency (EPA), 54, 59, 64, 65, 143
 existing buildings, 6–10
 future prospects, goal-setting, 239–40
 renovation versus replacement, 8–9
 sustainability, 6–8
F
 facility management, 49–76
 behavior change, 51–52
 benchmarking, 52–55
 case studies, 70–75
 existing building renovation, 9–10
 green perspective on, 49–51
 HVAC systems, 60–61
 LEED-EBOM, 62–69
 generally, 62–63
 indoor air quality, 63–65
 integration of program, 65–69
 regional issues, 65
 lighting systems, 56–59
 plug loads, 59–60
 retrocommissioning, 55–56
 water use, 62
Federal Energy Management Program, 119
fiber-optic lighting systems, solar heat and power, 213–15
 finance
 existing building renovation, 7–8
 facility management, 9–10
 green buildings, 12–13
 fire safety, pre-war buildings, building systems, 117
 flooring, low-emitting materials, 155–56
 Forest Stewardship Council (FSC), 142
 Franklin, Benjamin, 51
 future prospects, 239–63
 case studies, 252–63
 deconstruction process, 248–50
 goal-setting, 239–40
 lifecycle strategy, 241–48
 energy generation, 246–48
 2025 improvements, 243–45
 2040 improvements, 245–46
 low and no cost, 241–43
G
 Gardsten Apartments (Sweden), 42–44
 geothermal heat exchange, energy systems retrofitting, 218–19
 glaciers, retreat of, 1–2, 14
 glazing. See also insulation
 modern buildings (late), building envelope design, 100–101
 passive house design, 223–24
 sun-shading strategies, 88
 global warming
 evidence of, 1–2
 response to, 14–15
 graywater, waste water management, 220–21. See also water use
 green buildings
 comfort, 12
 economics of, 12–13
 facility management upgrades, 49–51
 GREENGUARD Environmental Institute (GEI), 142
 greenhouse gases
 building sector, 4–5, 201
 global warming, 2–3, 14
 green roofs. See also roof structure
 future prospects, 242–43
 modern buildings (late), building envelope design, 101–2
 pre-war buildings, building envelope design, 89–91
 grout, masonry wall design, building envelope design, 85–86
 gypsum wallboard, recycling, 165
H
 hazardous materials abatement
 construction operations, 178–85
 asbestos, 179
 lead, 179–80
 polychlorinated biphenyls (PCBs), 180–82
 late modern buildings, 163–64
 process of, construction operations, 182–85
 summary chart, 181
 HCFCs, insulation strategies, building envelope design, 81
 health, renovation benefits, 10–12
 heating. See electric power; energy consumption; energy generation; HVAC systems
 heliostat daylighting, solar heat and power, energy systems retrofitting, 215
HEPA (high efficiency particulate air) filters, 155
Herman Miller, 10
Herman Miller Building (Zeeland, Michigan), 73–75
Heschong-Mahone study, 10
high efficiency particulate air (HEPA) filters, 155
high performance renovation, 201–38
 case histories, 228–36
 energy systems retrofitting, 208–19
 combined heat and power (CHP) systems, 209–11
 generally, 208–9
 geothermal heat exchange, 218–19
 solar heating and power, 211–16
 wind power, 216–18
 passive house design, 222–27
 generally, 222–23
 sealing the envelope, 226–27
 solar power, 223–24
 superinsulation, 224–26
 transformation, 201–8
 additions and deletions, 205–7
 change of use, 202–5
 historic characteristics, 207–8
 renovation compared, 201
 waste water, 219–22
Hines (real estate developer), 13
historic characteristics, transformation, 207–8
Home on the Range (Billings, Montana), 103–4
hot dry climate
 insulation strategies, building envelope design, 83
 pre-war buildings, 85
hot humid climate
 insulation strategies, building envelope design, 82
 pre-war buildings, 85
humid middle latitude climate, insulation strategies, building envelope design, 81–82
hurricanes, global warming, 14
HVAC systems. See also air conditioning; electric power; energy consumption; energy generation systems; ventilation
 construction, commissioning, 194–95
 daylighting, pre-war buildings, building systems, 118
 design problem, 17
 facility management upgrades, 50, 51, 60–61
 future prospects, 242, 243–44
 modern buildings (late), 127, 130, 131
 modern buildings (mid-century), building systems, 122–24
 pre-war buildings, building materials, 161
 retrocommissioning, facility management upgrades, 55–56
 thermal comfort, 110–11
 whole building design strategies, 35–36, 39–40
hydronic systems
 modern buildings (mid-century), building systems, 120–21
 pre-war buildings, building systems, 115–17
I
 ice caps, melting of, 1–2
indoor air quality
 health, 10
 ventilation, passive house design, 227
 volatile organic compounds (VOCs), 151–52
industrialization, global warming, 14–15
insulation. See also glazing
 building envelope design, 78–84
 cold climate, 79–80
 continental climate, 83–84
 generally, 78–79
 hot dry climate, 83
 hot humid climate, 82
 humid middle latitude climate, 81–82
 modern buildings (late), building envelope design, 99
 modern buildings (mid-century), building envelope design, 93–95
 pre-war buildings, 84–91
 superinsulation, passive house design, high performance renovation, 224–26
 types of, summary chart, 82
Intergovernmental Panel on Climate Change (IPCC), 14
international perspective, global warming, 14–15
investigations, construction operations, 176–77
irrigation
 modern buildings (mid-century), building systems, 125–26
 waste water management, high performance renovation, 220
J
 James Lick Baths (San Francisco, California), 255–58
K
 Kansas City Power & Light Headquarters (Kansas City, Missouri), 137–39
 Kats, Greg, 12–13
 Koeppen Climate Classification system, 19, 20
L
landscaping, irrigation, modern buildings (mid-century), building systems, 125–26
late modern buildings. See modern buildings (late)
Lawrence Berkeley National Laboratory, 10
lead, hazardous materials abatement, construction operations, 179–80
Leadership in Energy and Environmental Design (LEED).
See LEED (Leadership in Energy and Environmental
Design)
Le Corbusier, 92
LED systems
building systems, 112–13
facility management upgrades, 58–59
LEED (Leadership in Energy and Environmental Design). See also United States Green Building Council (USGBC)
commissioning, 195–96
construction operations, 175–76
facility management upgrades, 62–69
generally, 62–63
indoor air quality, 63–65
integration of program, 65–69
regional issues, 65
USGBC, 50–51, 54, 143
Legionnaire’s Disease, 63
lifecycle considerations
environmental assessment
Athena Sustainable Materials Institute, 145–46
building materials, 142–44
future prospects, 241–48
2025 improvements, 243–45
2040 improvements, 245–46
integrated power generation, 246–48
low and no cost, 241–43
lighting systems. See also electric power
building systems, 112–13
construction, commissioning, 194
facility management upgrades, 56–59
future prospects, 242
solar heat and power, energy systems retrofitting, 214–15
whole building design strategies, 39–40
living machine waste water management, 221–22
Los Altos School District, 26
low cost strategies, lifecycle strategy, future prospects, 241–43
low-emitting materials, building materials, 151–57
Low Impact Development (LID), 219, 220
Loyola Elementary School (Los Altos, California), 29–31
M
maintenance
operational energy, 150
replacement versus, building materials, 147
Marlton Manor (San Francisco, California), 32, 34
masonry, salvage, pre-war buildings, building materials, 157–59
masonry wall design, pre-war buildings, building envelope design, 85–86
materials. See building materials
Mazria, Edward, 23
McDonough and Braungart, 37
Mediterranean climate, pre-war buildings, 84–85
MERV (Minimum Efficiency Reporting Value), 123
metals, low-emitting materials, 152–53
mid-century buildings. See modern buildings (mid-century)
Minimum Efficiency Reporting Value (MERV), 123
modern buildings (late)
building envelope design, 96–102
daylighting, 96–98
insulation, 99
roofing, 101–2
roof structure, 98–99
window replacement, 100–101
building materials, 163–65
building systems, 127–33
daylighting, 130–32
deep floor plates, 127–28
electric power and controls, 133
HVAC systems, 130, 131
ventilation, 128–30
water-saving strategies, 132–33
modern buildings (mid-century)
building envelope design, 92–96
curtain walls, 92–93
insulation, 93–95
roofing, 95–96
window replacement, 95
building materials, 162–63
building systems, 120–27
daylighting, 124
electric power, 126–27
HVAC systems, 122–24
hydronic systems, 120–21
ventilation, 122
water-saving strategies, 124–26
moisture, building envelope, 39
mold, carpet, 155
natural materials, low-emitting materials, 152
Neimeyer, Oscar, 92
new construction, existing building renovation contrasted, 7–9
no cost strategies, lifecycle strategy, future prospects, 241–43
noise, occupied projects, construction operations, 189
Normand Maurice Building (Montreal, Canada), 134–36
notification, occupied projects, construction operations, 189

occupancy rates, green buildings, 13
occupied projects (construction operations), 186–91
elevators, 189–91
notification, 189
phasing, 187–89
relocation, 186–87
separation and noise, 189
oceans, global warming, 14
Omicron Office (Vancouver, Canada), 166–68
operational energy, environmental considerations, building materials, 150
Operations Report Card (ORC), 26–27

partition systems, pre-war buildings, 159–61
passive house design, 222–27
generally, 222–23
sealing the envelope, 226–27
solar power, 223–24
superinsulation, 224–26
perimeter slabs, insulation, mid-century modern buildings, 93–95
phasing, occupied projects, construction operations, 187–89
photovoltaic power, energy systems retrofitting, 211–16
Pilkley, Orrin, 14
plaster, pre-war buildings, 159–61
plastic sheeting, occupied projects, 189
plug loads, facility management upgrades, 59–60
plumbing fixtures
modern buildings (mid-century), 124–25
pre-war buildings, 119
pollution
control of, 4
indoor air quality, 10
polychlorinated biphenyls (PCBs), 180–82
pre-war buildings
building envelope design, 84–91
masonry wall design, 85–86
roofing, 89–91
roof structure, 88–89
thermal mass, 84–85
window replacement, 86–88
building materials, 157–61
plaster and partitions, 159–61
salvage, 157–59
building systems, 114–20
daylighting, 118
electric power, 120
steam and hydronic systems, 115–17
ventilation and fire safety, 117
water-saving strategies, 118–20
productivity. See worker productivity
pyrolysis, biomass liquefaction via, 211

rainwater. See also water use
high performance renovation, case histories, 232
waste water management, high performance renovation, 219–22
rating systems, environmental considerations, building materials, 142–44
recycling
building materials, 146–49
late modern buildings, 164–65
regional issues, LEED-EBOM, 65
relocation, occupied projects, construction operations, 186–87
renovation
benefits of, 10–15
existing buildings, 6–10
rents, green buildings, 13
replacement, maintenance versus, building materials, 147
resilient floors, low-emitting materials, 155–56
resource efficiency, environmental considerations, building materials, 149
retrocommissioning, facility management upgrades, 55–56
reuse
building materials, 146–49
late modern buildings, 164–65
roofing
modern buildings (late), building envelope design, 101–2
modern buildings (mid-century), building envelope design, 95–96
pre-war buildings, building envelope design, 89–91
roof structure. See also green roofs
 modern buildings (late), building envelope design, 98–99
 pre-war buildings, building envelope design, 88–89
Russell, Bertrand, 17

S
salvage
 building materials, 146–49
 pre-war buildings, building materials, 157–59
science, global warming, 1–3
Scientific Certification Systems (SCS), 142
sea level change, global warming, 14
separation, occupied projects, construction operations, 189
sick building syndrome, 10, 163
site discussions, demolition documents versus, construction operations, 177–78
snow melt, global warming, 14
SoFlo Office Studios (San Antonio, Texas), 169–71
software. See also benchmarking; specific software names
 benchmarking databases, 22–28
 building energy models, 22
 Building Information Model (BIM), 31
 facility management upgrade benchmarking, 52–55
solar heat and power
 energy systems retrofitting, high performance renovation, 211–16
 passive house design, 222–24
 roofing, pre-war buildings, building envelope design, 89–91
 thermal mass, 84–85
SPARK software, building energy models, 23
steam systems, pre-war buildings, building systems, 115–17
stone, low-emitting materials, 152
student performance, daylighting, 10
submetering (electricity), 51
suburban development, 29
sun-shading strategies
 daylighting, modern buildings (late), 97–98
 glazing, 88
 high performance renovation, 230
 passive house design, solar power, 223–24
superinsulation, passive house design, 224–26
sustainability
 benefits of, 10–15
 construction operations, 173–74
 defined, 1–3
 existing buildings, 6–10
 materials, 36–37
 urgency of, 4–5

T
Taut, Bruno, 77
team assembly, construction operations, 174–76
testing. See also software; specific software names
 facility management upgrades, 52–55
 whole building design, 22–28
thermal comfort, building systems, 110–11
thermal glazing, passive house design, 223–24. See also glazing
thermal mass
 climate zones, 84–85
 wall construction, 79
thermostats, mid-century modern buildings, 126–27
39 Hunter Street (Sydney, Australia), 233–36
Thurber, James, 49
Todd, John, 221
transformation (high performance renovation), 201–8
 additions and deletions, 205–7
 change of use, 202–5
 historic characteristics, 207–8
 renovation compared, 201
Trees Atlanta Kendela Center (Atlanta, Georgia), 45–47

U
United Nations, Brundtland commission, 2
United States Environmental Protection Agency (EPA), 54, 59, 64, 65, 143
United States Green Building Council (USGBC), 50–51, 142, 143

V
ventilation. See also HVAC systems
 modern buildings (late), building systems, 128–30
 modern buildings (mid-century), building systems, 122
 passive house design, 227
 pre-war buildings, building systems, 117
 whole building design strategies, 35–36, 39–40
vinyl flooring, low-emitting materials, 155–56
volatile organic compounds (VOCs), 151–52

W
wall finishes, low-emitting materials, 156–57
waste
 debris removal, construction operations, 185–86
 materials sustainability, 36–37
waste reduction, late modern buildings, 164–65
waste water, high performance renovation, 219–22. See also water use
Water Efficiency Best Management Program (BMP), 119
waterproofing, masonry wall design, 85–86. See also building envelope design
water use
 building systems, 112, 221
 conservation strategies
 modern buildings (late), building systems, 132–33
 modern buildings (mid-century), building systems, 124–26
 pre-war buildings, building systems, 118–20
 facility management upgrades, 49–50, 62
 high performance renovation, case histories, 232
 waste water, high performance renovation, 219–22
water vapor, building envelope, whole building design strategies, 39
whole building design, 17–48
 benchmarking, 22–28
 building codes, 40–41
 building energy models, 22
 case studies, 42–47
 climate and culture, 19–22
 concept of, 17–19
 strategies, 29–40
 building envelope, 38–39
 building systems, 39–40
daylighting, 32–34
 Loyola Elementary School example, 29–31
 materials, 36–37
 ventilation, 35–36
Williamson, June, 202
window replacement
 modern buildings (late), 100–101
 modern buildings (mid-century), 95
 pre-war buildings, 86–88
wind power, energy systems retrofitting, 216–18
wind scoops, ventilation, 36
wood, low-emitting materials, 153–54
worker productivity, daylighting, 10

Y
 Young, Rob, 14

Z
 ZedFactory project (London, England), 227