Contents

List of Contributors xvii
Preface xix

Part I International Regulations and Nonclinical Studies for Pharmaceuticals 1

1 Introduction 3
Kathy M. McGown and William J. Brock
1.1 The Global Pharmaceutical Market 6
1.2 Looking to the Future 9
1.3 Legal and Regulatory Considerations in Drug Development 10
1.4 The Drug Development Process – General Considerations 12
References 15

2 ICH: History and Nonclinical Guidances 17
Jan-Willem van der Laan and Kenneth L. Hastings
2.1 Introduction 17
2.2 Organization of the ICH 19
2.3 The ICH Process 20
2.4 Animal Welfare and Alternative Methods 22
2.5 ICH M3 23
2.6 New Initiatives and Topics 24
References 25

3 Food and Drug Administration: Nonclinical Program and Pharmaceutical Approval 27
William J. Brock and Kenneth L. Hastings
3.1 Legislative Authority of the FDA 27
3.2 Nonclinical Drug Development and the FDA 31
3.3 Nonclinical Testing: General Conditions and Considerations 34
3.4 Toxicity Testing: Small Molecules and Traditional Pharmaceuticals 34
3.5 Toxicity Testing of Pharmaceuticals – The General Approach 35
3.6 First-in-Human Dosing: Results from Nonclinical Studies 37
References 38
4 Nonclinical Pharmaceutical Development in MERCOSUR and Brazil
Cristiana Leslie Corrêa, Giuliana Selmi, and Flávio Ailton Duque Zambrone

4.1 Introduction 41
4.2 MERCOSUR 41
4.3 Brazil 44
4.3.1 Brazilian Regulatory Aspects 44
4.3.2 Nonclinical Studies Required for Drug Registration 48
4.3.3 Comparison with Other Agencies and Harmonization Institutes 51
4.3.4 Regional Reality of Drug Registration – Final Comments 53
References 54

5 Nonclinical Safety Assessment: Canada
Jamie L. Doran and Mark T. Goldberg

5.1 Introduction 57
5.2 Organization of Health Canada 58
5.2.1 Therapeutic Products Directorate 58
5.2.2 Biologics and Genetic Therapies Directorate 60
5.2.3 Natural Health Products Directorate 60
5.3 The Regulatory Framework for Drug Approval in Canada 60
5.3.1 The Food and Drugs Act 60
5.3.2 The Food and Drug Regulations 61
5.4 Nonclinical Assessment in Canada 64
5.4.1 Canada and the International Conference on Harmonization 64
5.4.2 Good Laboratory Practices in Canada 66
5.4.3 Case Studies and Summary Basis of Decision 67
5.5 Clinical Trial Applications 70
5.5.1 History and Regulations 70
5.5.2 Clinical Trial Application Overview 71
5.5.3 Pre-Submission Meetings and Consultations 71
5.5.4 CTA Content and Format 72
5.5.5 Nonclinical Aspects of the CTA/CTA-A Process 73
5.5.6 CTA-A Content and Format 73
5.5.7 CTA and CTA-A Review Process 73
5.6 Special Regulatory Considerations 74
5.6.1 Generic Drugs 74
5.6.2 Subsequent Entry Biologics in Canada 74
5.6.3 Orphan Drugs in Canada 77
References 78

6 European Pharmaceutical Regulation – Nonclinical Testing Requirements
Adam Woolley and Jan Willem van der Laan

6.1 Introduction 79
6.1.1 Definitions 81
6.2 Regulation of Medicinal Products in the European Union 82
6.2.1 Overview 82
6.2.2 Role of the European Medicines Agency in the Regulation of Medicines 82
6.2.3 Scientific Structure of the EMA 83
6.2.4 Regulatory Process in the EU 85
6.3 Nonclinical Testing in the Support of Clinical Trials 86
6.3.1 Role of Individual Country Regulatory Agencies/Authorities 87
6.3.2 Risk Mitigation in Nonclinical Development of Medicinal Products 89
6.4 Overview 96
References 96

7 South Africa 99
Fariza Feraoun and Malik Feraoun

7.1 Introduction 99
7.2 Country Information 100
7.2.1 Description 100
7.2.2 Economy 100
7.2.3 Country Organization 100
7.2.4 The Rainbow Nation 100
7.2.5 Health and Medicines 100
7.3 The Regulatory Aspects 101
7.3.1 The Registration of Medicines: Introduction and Scope 101
7.3.2 The Legal Framework 101
7.3.3 Role, Structure and Organization of the MCC 102
7.3.4 The Regulatory Procedures 103
7.3.5 The Registration Requirements for Preparation of the Application Package 104
7.3.6 The Registration Process: Several Steps of Review 108
7.4 The Nonclinical Safety Assessment 109
7.4.1 Introduction 109
7.4.2 Nonclinical Evaluation 109
7.4.3 Content of the Application for Safety Assessment 110
7.4.4 The Focus of the Nonclinical Evaluation 113
7.4.5 Pharmacology Testing 114
7.4.6 Toxicology Testing 114
7.5 Conclusion 114
7.5.1 Withdrawals 115
7.5.2 Consequences 115
7.5.3 New Safety Approach 115

8 Asia Pacific: China 117
Lijie Fu and Qingli Wang

8.1 Introduction 117
8.2 History of Drug Administration 118
11.3.3 Clinical Trial Process 184
11.3.4 CTN Scheme 185
11.3.5 CTX Scheme 186
11.3.6 Conducting Clinical Trials in Australia 187

11.4 Nonclinical Data to Support the Conduct of Clinical Trials in Australia and Marketing Application to the TGA 188
11.4.1 Introduction 188
11.4.2 Chemistry, Manufacturing and Controls 188
11.4.3 Nonclinical Pharmacology and Pharmacokinetics 189
11.4.4 Nonclinical Toxicology 190
11.4.5 Nonclinical Toxicology Studies 191

References 195

Part II Toxicology Studies Supporting Clinical Development 197

12 Repeated-Dose Toxicity Studies in Nonclinical Drug Development 199
Shana Azri-Meehan and Louise Latriano

12.1 Introduction 199
12.2 General Considerations 200
12.2.1 Duration and Timing of Repeated-Dose Toxicology Studies 200
12.2.2 Anticancer Therapeutics 201
12.2.3 Assessment of Systemic Exposure 202
12.2.4 Qualification of Drug Substance and Product 203
12.2.5 Other Types of Applications/Submissions 203

12.3 Study Design Considerations 205
12.3.1 Selection of Animal Model 205
12.3.2 Size of Treatment Groups 206
12.3.3 Dose and Administration 208
12.3.4 Dose Selection 209
12.3.5 Test Article (Drug Substance) and Drug Formulation 210

12.4 Study Observations and Assessments 211
12.4.1 General 211
12.4.2 Clinical Observations 211
12.4.3 Food Consumption/Body Weight 213
12.4.4 Clinical Chemistry 213
12.4.5 Haematology 213
12.4.6 Urinalysis 213
12.4.7 Ophthalmologic Examinations 214
12.4.8 Electrocardiographic Examinations 214
12.4.9 Macroscopic Examination 214
12.4.10 Organ Weights 214
12.4.11 Histopathology 215
12.4.12 Additional Parameters 215
12.4.13 Medical Devices 216

Acknowledgement 216

References 216
13 Evaluation of Potential Carcinogenicity
James A. Popp and Matthew S. Bogdanffy

13.1 Introduction
13.1.1 Short History of Carcinogenicity Testing
13.1.2 Objective of Carcinogenicity Testing
13.1.3 Overview of Regulatory Guidelines for Testing Carcinogenicity of Pharmaceuticals

13.2 Preparation for the Carcinogenicity Study
13.2.1 Timing in Relation to the Regulatory Submission
13.2.2 Evaluation of Available Toxicology Data

13.3 Elements of the Protocol/Study Plan
13.3.1 Species and Strain Selection
13.3.2 Route of Administration
13.3.3 Analysis of Drug and Dosage Formulation
13.3.4 Age of Animals
13.3.5 Group Size
13.3.6 Control Groups
13.3.7 Food Restriction
13.3.8 Routine Measurements
13.3.9 Dose Selection
13.3.10 Toxicokinetics
13.3.11 Clinical Pathology
13.3.12 Pathology
13.3.13 Satellite Groups for Mechanistic Studies
13.3.14 Review of Study Plan
13.3.15 Summary of Development of a Study Plan

13.4 Study Performance
13.4.1 Study Oversight During the In-Life Phase
13.4.2 Pathological Evaluation

13.5 Alternative Models to Evaluate Potential Carcinogenicity in Lieu of a 2-Year Mouse Study

13.6 Special Consideration for Carcinogenicity Evaluation of Biotherapeutics

13.7 Regulatory Implications of a Study Identifying an Animal Carcinogenic Response

13.8 Interpreting the Relevance of Positive Results for Human Safety

13.9 Communicating the Results in the Product Label

References

14 Genetic Toxicology
Mark W. Powley

14.1 Background

14.2 Regulations Guiding Drug Development
14.2.1 Genetic Toxicology Assays
15 Developmental and Reproductive Toxicology 265

Robert M. Parker and Raymond G. York

15.1 Introduction 266

15.2 Standard Reproduction and Developmental Toxicity Study Designs 266
  15.2.1 ICH 4.1.1 The Fertility and General Reproductive Performance Study (“Segment I”; Stages A to B) 266
  15.2.2 ICH 4.1.2. The Prenatal and Postnatal Study (“Segment III”; Stages C to F) 268
  15.2.3 ICH 4.1.3 The Developmental Toxicity or Embryotoxicity Study (“Segment II”; Stages C to D) 270

15.3 Timing of Preclinical Developmental and Reproductive Toxicity Studies 273
  15.3.1 Based on Sex and Reproductive Potential 273

15.4 Based on Disease Indication 275
  15.4.1 Anticancer Pharmaceuticals 275
  15.4.2 Topical Microbicides Intended for Prevention of Viral Sexually Transmitted Diseases Including Human Immunodeficiency Virus (HIV) 277
  15.4.3 Drugs Intended to Prevent the Transmission of Sexually Transmitted Diseases (STD) and/or for the Development of Drugs Intended to Act as Vaginal Contraceptives 277
  15.4.4 Human Insulin Analogues 278

15.5 Based on Pharmaceutical Characteristic 279
  15.5.1 Biotechnology-derived Products 279
  15.5.2 Biosimilars 282
  15.5.3 Vaccines 283
  15.5.4 Botanical Drug Products 290
  15.5.5 Contraceptive Steroids 290
  15.5.6 Synthetic Sex Steroids Used in Food-Producing Animals 291

15.6 Other Reasons to Conduct Preclinical Reproductive and Developmental Toxicity Studies 291
  15.6.1 Drug Combinations 291
  15.6.2 Drug Metabolites 293

15.7 Excipients 293

15.8 Conclusion 293

References 294
16 Juvenile Animal Toxicity Studies: Regulatory Expectations, Decision Strategies and Role in Paediatric Drug Development
Melissa S. Tassinari, Luc M. De Schaepdrijver, and Mark E. Hurtt

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>297</td>
</tr>
<tr>
<td>16.2 Regulatory Environment</td>
<td>298</td>
</tr>
<tr>
<td>16.2.1 US Paediatric Laws: PREA and BPCA</td>
<td>298</td>
</tr>
<tr>
<td>16.2.2 EU Regulation</td>
<td>300</td>
</tr>
<tr>
<td>16.2.3 Guidances for Conduct of Juvenile Animal Studies</td>
<td>301</td>
</tr>
<tr>
<td>16.3 Relevance and Place in Drug Development</td>
<td>302</td>
</tr>
<tr>
<td>16.4 Strategies for Decision Making: When are Studies Needed and Appropriate?</td>
<td>304</td>
</tr>
<tr>
<td>16.4.1 Study Approach and Design</td>
<td>305</td>
</tr>
<tr>
<td>16.5 Case Studies: Application of Data Review and Decision Making</td>
<td>307</td>
</tr>
<tr>
<td>16.5.1 Adequacy of Existing Data to Support Clinical Development in Paediatric Populations</td>
<td>307</td>
</tr>
<tr>
<td>16.5.2 Nonclinical Juvenile Safety Testing to Support Clinical Development</td>
<td>308</td>
</tr>
<tr>
<td>16.5.3 Nonclinical Juvenile Safety Testing in Two Species</td>
<td>309</td>
</tr>
<tr>
<td>16.6 Summary</td>
<td>309</td>
</tr>
<tr>
<td>References</td>
<td>310</td>
</tr>
</tbody>
</table>

17 Immunotoxicology
Leigh Ann Burns-Naas and Marc J. Pallardy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>313</td>
</tr>
<tr>
<td>17.2 Regulatory Expectations for the Immunotoxicology Evaluation of Pharmaceuticals</td>
<td>314</td>
</tr>
<tr>
<td>17.2.1 Adverse (Unintended) Immunomodulation – ICH S8, the Weight of Evidence Review, and Determination of “Cause for Concern”</td>
<td>314</td>
</tr>
<tr>
<td>17.2.2 Hypersensitivity</td>
<td>331</td>
</tr>
<tr>
<td>17.2.3 Autoimmunity</td>
<td>334</td>
</tr>
<tr>
<td>17.3 Special Considerations</td>
<td>335</td>
</tr>
<tr>
<td>17.3.1 Immunomodulatory Drugs</td>
<td>335</td>
</tr>
<tr>
<td>17.3.2 Biopharmaceuticals</td>
<td>335</td>
</tr>
<tr>
<td>17.3.3 Drugs in Pregnancy and Children – Developmental Immunotoxicology</td>
<td>338</td>
</tr>
<tr>
<td>17.4 Summary</td>
<td>342</td>
</tr>
<tr>
<td>References</td>
<td>342</td>
</tr>
</tbody>
</table>

18 Nonclinical Safety Assessment: Biotechnology-Derived Pharmaceuticals
Christopher E. Ellis, Melanie T. Hartsough, Martin D. Green, and Hanan Ghantous

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Introduction</td>
<td>347</td>
</tr>
<tr>
<td>18.2 Unique Characteristics of Biopharmaceuticals</td>
<td>348</td>
</tr>
<tr>
<td>18.3 Species Selection</td>
<td>349</td>
</tr>
<tr>
<td>18.3.1 Defining a Pharmacologically Relevant Species</td>
<td>350</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------------------------------</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Alternative Approaches</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Utilizing Non-Pharmacologically Relevant Species</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Additional Alternatives</td>
</tr>
<tr>
<td>18.4</td>
<td>Immunogenicity</td>
</tr>
<tr>
<td>18.5</td>
<td>Biological Activity/Pharmacodynamics</td>
</tr>
<tr>
<td>18.6</td>
<td>Pharmacokinetics/Toxicokinetics</td>
</tr>
<tr>
<td>18.7</td>
<td>Nonclinical Safety Assessment</td>
</tr>
<tr>
<td>18.7.1</td>
<td>General Principles</td>
</tr>
<tr>
<td>18.7.2</td>
<td>Study Design Considerations</td>
</tr>
<tr>
<td>18.7.3</td>
<td>Specialized Studies</td>
</tr>
<tr>
<td>18.8</td>
<td>Tissue Cross-Reactivity (TCR)</td>
</tr>
<tr>
<td>18.9</td>
<td>Clinical Starting Dose Selection for Biopharmaceuticals</td>
</tr>
<tr>
<td>18.10</td>
<td>Comparability</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>International Safety Regulations for Vaccine Development</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>19.2</td>
<td>What “Toxicities” have been Attributed to Vaccination?</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Immune System “Overload”</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Increase in Allergy/Atopy</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Autism</td>
</tr>
<tr>
<td>19.3</td>
<td>How Vaccines are (Slightly) Different from Other Biopharmaceuticals</td>
</tr>
<tr>
<td>19.4</td>
<td>Regulatory Framework for Assessing Safety of Vaccines</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Quality Testing</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Toxicology Testing</td>
</tr>
<tr>
<td>19.4.3</td>
<td>General Toxicology Study Design Considerations</td>
</tr>
<tr>
<td>19.5</td>
<td>Parameters Monitored</td>
</tr>
<tr>
<td>19.5.1</td>
<td>Safety Testing for Adjuvants</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Reproductive Toxicology</td>
</tr>
<tr>
<td>19.5.3</td>
<td>Immunotoxicity</td>
</tr>
<tr>
<td>19.5.4</td>
<td>Genotoxicity</td>
</tr>
<tr>
<td>19.6</td>
<td>Clinical Safety Assessment of Vaccines</td>
</tr>
<tr>
<td>19.7</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Phototoxicity and Photocarcinogenicity</td>
</tr>
<tr>
<td>20.1</td>
<td>History of Phototoxicity, Photocarcinogenicity and Photogenotoxicity</td>
</tr>
<tr>
<td>20.2</td>
<td>FDA Photosafety Testing Guidance</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Status of In Vitro and In Vivo Phototoxicity Testing</td>
</tr>
<tr>
<td>20.3</td>
<td>Status of In Vivo Testing for Photocarcinogenesis</td>
</tr>
<tr>
<td>20.4</td>
<td>Photocarcinogenesis Study Designs</td>
</tr>
</tbody>
</table>
20.5 Photo Co-Carcinogenesis 418
20.6 Future Testing Concepts, with Emphasis on Biomarkers 423
References 425

21 Degradants, Impurities, Excipients and Metabolites 431
Robert E. Osterberg and Mark W. Powley

21.1 Degradants, Impurities, and Excipients 431
21.1.1 Introduction and History 431
21.1.2 ICH Impact 434
21.1.3 Impurities/Degradants in Drug/Biological Products 434
21.1.4 Impurities in New Drug Substances 435
21.1.5 Impurities in New Drug Products 437
21.1.6 Residual Solvents 438
21.1.7 Extractables and Leachables 439

21.2 Metabolites 442
21.2.1 Metabolites and Nonclinical Evaluation 442
21.2.2 The FDA and ICH 442
21.2.3 Systemic Exposure Threshold 443
21.2.4 Safety Assessment Strategy 443
21.2.5 Timing 443
21.2.6 Exceptions 444
21.2.7 Data Collection 444
21.2.8 In Vitro Data 444
21.2.9 In Vivo Metabolite Data 444
21.2.10 Regulatory Decision Making 445

References 446

Index 449