A0155 strain, *B. anthracis*, 71T, 91T
A0174 strain, *B. anthracis*, 71T, 91T
A0193 strain, *B. anthracis*, 71T, 91T
A0248 strain, *B. anthracis*, 70T
A0389 strain, *B. anthracis*, 71T, 91T
A0442 strain, *B. anthracis*, 71T, 91T
A0465 strain, *B. anthracis*, 71T
A0488 strain, *B. anthracis*, 71T
A2012 strain, *B. anthracis*, 70T

See also

Ames Florida strain, *B. anthracis*

AAID responses, 43

Aalp1b, 229

abrasions, as infection pathway, 40, 42, 232, 237, 242

AbrB, 92, 102, 162

abrB, 102, 165

acantholysis, 259

ACE, *E. faecalis*, 235

acellular vaccines, 271–73

ACIP (U.S. Advisory Committee on Immunization Practices), 273

AcpA, 97, 162, 163, 164

acpA, 160

AcpB, 97, 162, 163, 164

acpB, 160, 163

actin function, Hsp27-mediated, inactivated by LT, 137

AdC7PA vaccine, 284

α-defensins, 192

adefovir diphosphate, 143

adenylate cyclase toxin, 143

adhesion of spores, 234–35

and changes in host cell following infection, 196 to dendritic cells, 214

and the exosporium, 26

and fibroblasts and epithelial cells, 184

See also binding

adjuvant selection, species-appropriate, 274

adrenal glands, 144, 145

AEA pathway, 43

α-enolase, 129

aerosols

creation of, during postmortem procedures, 257

particle size, 233–34

AI-2, 159

alanine, D-enantiomer of, 45

alanine racemase, 232

Alibek, Ken, 300

allelic exchange, 56, 57–61, 58

plasmids used for, in *B. anthracis*, 59–60T

ALO, 13, 79, 168, 186–87

alo, 231

alpha-defensing, 137

Alr, 22T, 27, 30

Alr2, 27

aluminum hydroxide, 272

aluminum potassium sulfate (alum), 272, 274

amebic dysentery, oropharyngeal anthrax misdiagnosable as, 256

Amerithrax investigation, 67, 69

See also anthrax letters of 2001

Ames strain, *B. anthracis*, 275

Ames strain, *B. anthracis*

and macrophage-depleting regimens, 183

Ames 0581 strain, *B. anthracis*, 70T

Ames Ancestor strain, *B. anthracis*, 68, 69T, 70T, 77, 81, 90

COG functional category breakdown, 78

genetic sequencing and plasmid status of, 91T

as reference genome, 71, 72

Ames Florida strain, *B. anthracis*, 68, 69, 70, 70T, 90

genetic sequencing and plasmid status of, 91T

Ames Porton strain, *B. anthracis*, 68, 69, 70, 70T, 72, 81, 90

Anherst, Gen. Sir Jeffrey, 295

amino acids, upregulation of biosynthetic genes for, 196

amoxicillin, as anthrax therapy, 263, 264

ampicillin, as anthrax therapy, 264

anemia, microangiopathic hemolytic, 253

animal products importation, as vector, 6

anthrabacltin, see bacillobactin

anthrachelin, see petrobactin

anthrax

nineteenth-c. discoveries, 4–5

from antiquity into the 19th century, 3–4

as biological weapon, 9, 227, 251, 269, 301, 302

chemotherapy for, 10

contemporary U.K. cases, 275–76
anthrax (cont’d)
cutaneous
(see cutaneous anthrax)
diagnostic and clinical characteristics, 252–56
differential diagnoses, 5, 253
divergent macrophage models and findings for, 192–94
in the early 20th century, 6–7
gastrointestinal
(see gastrointestinal anthrax)
geographical distribution of, 251
global incidence of, 6
historical names of, 1
immunity, therapy, and prophylaxis in the early
20th century, 7–8
industrial, public health measures for, 8–9
inhalation
(see inhalation anthrax)
isoaltion and identification of, 6–7
mammalian, 79
mouse studies, 41
Pasteur’s vaccine, 6
pathology of, in human cases, 259–63
species susceptibility to, 251
symptoms distinguishable from influenza, 254
treatment, in human patients, 263–64
World War II and postwar research on, 11
Anthraxin diagnostic skin test, 12
anthrax letters of 2001, 12, 69, 209, 227, 244, 251, 254, 255, 257, 258, 259, 260, 267, 302–5
anthrax meningitis, 256
anthrax meningoencephalitis, 254
Anthrax Order of 1910 (U. K.), 8
Anthrax Prevention Act of 1919 (U. K.), 8, 9
Anthrax Prevention Order of 1920 (U. K.), 8
Anthrax Vaccine Research Program, CDC, 277
anthrolysin O (ALO), 13, 79, 168, 186–87, 216, 231
anthrose, and BclA modification, 33
antibiotic prophylaxis, 264
antibiotic resistance cassette, 54, 57
antibiotic resistance in allelic exchange, 60T
antitoxin combination vaccines, 284
ANTRX1, 229
ANTRX2
ET, 229
ANTXR1/TEM-8 receptor, 216
ANTXR2/CMG2, 186
ANTXR2/CMG-2 receptor, 216
ANTXR2 domain, 285
APCs, see antigen-presenting cells
apo-hemoglobin, 114
apoptosis, 197, 198–99
of dendritic cells, 135
of human mononuclear cells, 133–34
apoptotic death, 128, 135, 200
of macrophages, 132–34
vs. cell cycle arrest, 134
AP response, 43
ARAPs, 126
ARF6, 126
arginase, 214, 238
arginine, 238
arginine deaminase gene cluster, B. anthracis, 80
Aristotle, anthrax mentioned by, 3
aromatic amino acid
synthesis pathways, deactivation of, 271
aromatic amino acids
as germinant, 47
arsentite resistance, 102
asb, 194
asbA, 240
asbADCDEF gene cluster, 240
asbA mutants, 111
asb operon, 111, 112, 113
ASC, 129
Ashcroft, John, 304
assembly of spore, 29–33
ATP
conversion to ADP/AMP, 130
substrate, binding of, 143
ATP5b, 197
ATPase, 116
AtxA, 82, 92, 97, 171
cell cycle, 162–64
cell cycle arrest, 162
control of capsule synthesis by, 162–64
control of toxin genes by, 162
function, 160–61
motifs, 161
as regulator, 159–60, 160
regulon, 167
Aum Shinrikyo sarin attack (Tokyo, 1995), 68, 301
Australia 94 strain, B. anthracis, 71T, 91T
autoinducers, 159
autoinhibition, 27–28
autophagy and iron release, in \textit{Neisseria meningitidis}, 110

autopsies, specimens from, 257

AVA vaccine, 200, 272, 273, 276, 285

side effects, 278

AVP vaccine, 272

side effects, 278

AW06, \textit{B. thuringiensis}, 97

\textit{bac}, 194

\textit{bacACEBF} operon, 169

bacillibactin, 79, 111, 113, 169, 194

\textit{Bacillus} spp., 39

\textit{Bacillus anthracis}

\textit{Ames Ancestor} strain

\textit{Ames Florida} strain

\textit{Ames Porton} strain

\textit{B. cereus} plasmids similar to, 99–103

cell densities, 116

cell development, 164–65

in chicken-blood cultures, 2

dissemination, 238–44, 244

early survival, 238–39

entry, 231–35

Eurasian A3 lineage, 68

features distinct from \textit{B. anthracis}, 90T

gene regulation, 157

genes encoded by, 77–78

heme homeostasis in, 114

insect-virulent progenitor, 82

interactions with dendritic cells, 213–16, 215

intracellular vs. invasive, 235

invasion, 235–38

lack of motility, 75, 240

metabolism, and the intracellular macrophage environment, 194–96

nutrient acquisition and growth, 239–40

phylogenetic history, 81

plasmid content, 95T

plasmid mobilization, 98–99

plasmids used for allelic exchange in, 59–60T

population biology, 80–82

regulatory genes, 94

as sporulation model, 17

\textit{(see also spores)}

strategies for acquiring iron, 110–16

transport, in inhalational anthrax, 220

\textit{Bacillus cereus}, 18, 19, 67, 77

cereolysin, 168

cwlJ and \textit{gerQ} operons, 49

and emetic food poisoning, 100

and epithelial C1q receptors, 28

exosporium, 33

ExsH, and \textit{B. anthracis} BclB, 26T (note d)

features distinct from \textit{B. anthracis}, 90T

food poisoning from, 100, 166

G9241 strain, 101

\textit{gerP} operon, 46

as human pathogen, 89

in insect guts, 79

motility, 90

multi-locus typing schemes for, 80

nucleoside hydrolase in, 28

penicillin-resistant, 167

plasmid content of strains of, 95–96T

Plcr in, 166

produces petrobactin, 112

pXO1-harboring strain, 165

pXO1-like plasmids, 93–94

regulatory genes, 94

VIP2 toxin, 127

\textit{Bacillus cereus} group, 72, 73, 82, 89

and \textit{B. anthracis} plasmid similarities, 99–103

cryptic proteins of, 99

gene regulation differences within, 166–67

replication outside host, 104

\textit{Bacillus clausii}, 18, 19

\textit{Bacillus holodurans}, 96

\textit{Bacillus licheniformis}, 19, 112

\textit{Bacillus medusa}, 89

\textit{Bacillus megaterium}, 19, 70T

\textit{Bacillus mycoides}, 72, 89

bacillus nitrogen oxide synthase, 170

\textit{Bacillus odyseyi}, 19

\textit{Bacillus pseudomycoides}, 89

\textit{Bacillus sphaericus}, 18

\textit{Bacillus subtilis}, 17, 18, 19, 77, 96, 112

AbrB, 162

biosynthesis of spore-associated polysaccharides, 33

in bioweapons research, 299

coat proteins and germination, 21

\textit{dhb} siderophore locus, 111

germination, 164–65

role of Alr in, 28

\textit{sleB} and \textit{ypeB} bicistronic operon, 49

spore coat assembly, 31

spore formation, 229

\textit{Bacillus thuringiensis}, 18, 19, 45, 72, 89, 112, 166

and insect defenses, 79

\textit{israeliensis} subspecies, 99

nucleoside hydrolase in, 28
Index

Bacillus thuringiensis (cont’d)
pAW63 replicon, 98
penicillin-resistant, 167
plasmid content of strains of, 96T
Pcr in, 166
pXO2-like plasmids, 97, 102–3, 103, 104
Bacillus weihenstephanensis, 72, 89
bac operon, 111
baculoviruses, in insect guts, 79
bafilomycin A, 188
basal layer, 19
proteins of, 27
BasI, 63
B cells, 239
PA-specific IgG memory, 277
B-cells, 138
BclA, 22, 27, 28, 30, 33, 184, 214, 234
BclB, 26T(note d), 33
BclB (ExsH), 22
bcr1 repeats, 76
Bell, John Henry, 269
Belton and Strange vaccine, see AVP vaccine, 272
bestatin methyl ester, 131
β-galactosidase, 63
bicarbonate
and adhesion, 171
and capsule synthesis, 163
in culture, and diminished protease levels, 169
signal-transducing sensor, 82
target gene transcription enhanced by, 161
and virulence gene expression, 158
binding, of PA, to target cell receptors, 280
See also adhesion
bioaggression, 9, 13
See also biological warfare; bioterrorism
biofilm formation, and sporulation, 102
biological warfare
preparations for, mid-20th-c., 10
See also bioaggression; biological weapons; bioterrorism
biological weapons
anthrax, 9, 227, 251, 269, 301, 302
botulin toxin, 302
bubonic plague, 295–96
Escherichia coli, 302
glanders, 9
history, 295–97
potential, 302
smallpox, 295
biological weapons conventions
BWC of 1972, 11, 299–300
Geneva Protocol of 1925, 298
Bioluminescent Imaging (BLI), 236
Biopreparat, 300
bioterrorism, 39, 251
anthrax letters
(see anthrax letters of 2001)
by Aum Shinrikyo
(see Aum Shinrikyo sarin attack)
diagnostics, 257
preparedness, 255
Bioterrorism and Response Program, CDC, 302
biting flies (Tabanus spp.), 10
bla, 167
Black Death, 296
See also bubonic plague
blackleg vaccine, 270
β-lactamase, 167, 263
blastomycosis, cutaneous anthrax misdiagnosable as, 253–54
bloody murraine, 1
See also anthrax
Bnip3, 133
bNOS, 186
Boor-Tresselt vaccine, 272
Bordetella pertussis, 142, 143
botulin toxin
bioweapons use in Iraq, 301
β-propiolactone, 270
brachycardia, ET-induced, 144
Bradford Anthrax Investigation Board, 8
Bradford disease, 1
See also anthrax
Brevibacillus laterosporus, 19
British Government Wool Disinfection Station, Liverpool, 9
bronchoepithelium, as infection pathway, 184, 185
bronchopneumonia, 260
BslA, 78, 171, 234–35, 242, 243
bubonic plague
as bioweapon, 295–96, 298, 302
cutaneous, cutaneous anthrax misdiagnosable as, 253
See also Yersinia pestis
Buchnera aphidicola, 76
bullous formation, 259
Bush, Dr. Larry, 302
BxpA, 22T
BxpB (ExsFA), 23T
BxpC, 22T
C1q receptor, 28
Caenorhabditis elegans, 21
calcium
expulsion from spore, 44, 46
host cell, and EF, 230
calcium channel blockers and antagonists, 132
calcium influx
 ET as trigger for, 142
calmodulin (CaM), 127, 142, 230
cAMP, 216, 217
 and activation of PKA, 143
pathway, 146
cAMP, ATP converted to, 92
Campbell-type plasmid insertion, mutants derived from, 56–57
Camp Detrick (Fort Detrick), 11
cAMP production, 142
Cao Yaun Fang, 3
cap, spore, 32
 and exosporium basal layer, 29–30, 30
cap operon, 157, 163
regulation, 164
capABC operon, 97, 98
CapB, 157
capB, 163
capBCADE expression, 163
capBCADE operon, 157, 159
capBCAD operon, 219
CapC, 157
CapD, 97, 158, 186, 219
capD, 98
CapE, 157
capillaritis, 260
capsule, 10, 121, 157, 186, 209, 230, 235, 242, 243, 257
 B. cereus G9241 analog, 101
encoded by pXO2, 89, 92, 97
functional complements in other B. cereus spp., 98
gene cluster absent from B. thuringiensis, 102
genes, 12
 and genes on pXO2, 54
phagocytosis inhibited by, 219–20
polysaccharide, encoded by B. cereus G9241, 101
presence of, and gamma-phage lysis, 258
regulation of operon for, 163
revealed in testing, 257
role in pathogenesis unclear, 97
capsule cluster, 79
capsules, 82
carbonchio, 1
 See also anthrax
carbon dioxide
 concentration of, and virulence gene expression, 158
 in culture, and diminished protease levels, 169
carbuncle, malignant, 1
 See also anthrax
 “Cardinal’s cap” sign, 260
cas, 76
casein, digested by proteases, 242
caspase, 198, 217
caspase-1, 129, 130, 133
 activation, 130, 131, 200, 218
 inhibitors, 131
caspase-11, 129
catalase, 170
catalase multidrug-resistant genes, 196
catheterization trauma, tracheal, 232
 See also abrasions
cationic peptides, 79, 191–92
cat-scratch disease, cutaneous anthrax misdiagnosable as, 253
cattle cakes, anthrax-contaminated, 11
cauter, chemical, and thermocautery, 7
CccA, 166
CccB, 166
CCR7, 221
CD1a, 212
CD11b, 212, 213
CD11b/CD18 cell surface integrin, 28
CD11c, 212, 213
CD-25 strain, B. anthracis, 272
CD103, 212, 213
CD123, 212
CD163, 109
CD207, 212
CDC, see Centers for Disease Control and Prevention
 CDC 684 strain, B. anthracis, 70T
celastrol, 131
cell cycle arrest
 by ET, 143
 by LT, 133, 134
cell migration, changes in, following infection, 196
 cellular vaccines, 270–71
Centers for Disease Control and Prevention (CDC), 258, 269(note), 276, 302
Anthrax Vaccine Research Program (AVRP), 277
AVA/Fort Detrick vaccine study, 276
Bioterrorism and Response Program, 302
and VAERS, 279
cereolysin, 168
chancre, syphilitic, cutaneous anthrax misdiagnosable as, 253
charbon, 1
 See also anthrax
chemical caustics, 7
chemokines, 186, 189, 190, 216
chemotherapy, anthrax, 10
children
 AVA not licensed for, 273
 and contraindicated anthrax drugs, 263
China, ancient, anthrax in, 3
chloramphenicol, 264
 resistance to, 60T(note a), 62T(note a)
chloramphenicol acetyltransferase, 63
chloroform, B. anthracis coat resistance to, 20–21
chloroquinine, 188
CHO-K1 cells, 123
cholera toxin, fusion protein with LF, 282
Chr, 160
chromosome-plasmid crosstalk, in gene regulation, 160
chromosome size, and G+C nucleotide content, 72, 73
ciprofloxacin, as anthrax therapy, 263, 264
clarythromycin, as anthrax therapy, 264
clothrin, 216
cleavage
 hemin, 240
 MEK, 127, 133, 134, 135, 136, 138, 145, 229
 PA, 124, 229
 S-ribosylhomocysteine, 159
clindamycin, as anthrax therapy, 264
clostridium, 39
 coat formation, 229
Clostridium chauvoei, β-propiolactone-killed, 270
Clostridium perfringens enteritis, oropharyngeal
 anthrax misdiagnosable as, 256
clotting function, suppressed by ET, 144
ClyA-PA fusion protein, 282–83
CMG2, 122–23, 124
CNA, S. aureus, 235
CNEVA-9066 strain, B. anthracis, 71T
 genetic sequencing and plasmid status of, 91T
coagulation necrosis, 259
coat, 39, 229
coat, B. anthracis spore
 functions of, 20–21
 proteins of, 21
coat, spore, 18–19, 229
COGs, functional category breakdown for Ames
 Ancestor strain, 78
collagen, digested by proteases, 242
Commission on the Prevention of Weapons of
 Mass Destruction Proliferation and
 Terrorism, 305
Committee of Imperial Defence of a Biological
 Warfare Subcommittee, 10
Committee of Inquiry on Anthrax (U. K.), 12
Committee on Biological Warfare, U. S. Dept. of
 Defense, 299
compartment syndrome, 263
complementation, 61–62
Conference on Progress in Understanding Anthrax
 (Bethesda, MD), 11
conjugation, 54–55
core, spore, 229
cortex, spore, 229
corticosteroids, in anthrax therapy, 264
Corynebacterium spp., 257
Corynebacterium ovis, 274
Costeridium taeniosporum, 19–20
CotA, 22T
Cotα, 22T, 32
cotα mutant spores, 32
Cotβ, 22T, 32
Cotβ-GFP fusion protein, 32
CotB1, 22T
CotB2, 22T
CotD, 22T
CotE, 21, 22T, 31, 32
 spores, effect of macrophages on, 21
CotF, 22T
CotH, 21, 22T, 31, 32
 spores effect of macrophages on, 21
CotJA, 22T
CotJB, 22T
CotJC, 22T
CotK, 22T
CotM, 22T
CotN, 22T
CotO, 23T
CotS, 23T
CotSA, 23T
CotY (CotZ2), 23T, 32
cotY mutant spores, B. cereus, 32
CotZ1 (ExsY), 23T
CotZ2 (CotY), 23T, 32
cowpox, cutaneous anthrax misdiagnosable as, 253–54
CP-51 phage, 54
CP-54 phage, 54
CREB, 217, 218
 activation, 144, 145
Cre recombinase, 61
Crescenzi, Pietro di, 3
CRISPRs, 76
Cryptosporidium parvum, 302
Cry toxin, 102
cutaneous anthrax, 20, 40, 209, 228, 231, 240, 242,
 251, 253
 in the Brachman study, 276
diagnostic clinical characteristics of, 252–54
host-induced germination in, 42
obtaining specimens, 256–57
pathology of, in human cases, 259
treatment, 263
without lymph node involvement, 181
cutaneous entry, 233, 235
cutaneous plague, cutaneous anthrax misdiagnosable as, 253
cutaneous tuberculosis, cutaneous anthrax misdiagnosable as, 253–54
CwlJ, 46, 48
cwlJ, 49
CwlJ1, 21, 26T(note f)
cwlJ1, 49
CwlJ2, 23T, 26T(note f)
cwlJ2, 49
CXCR4, 221
cya, 92, 157, 159, 162, 196
cyclin D1/D3 breakdown, 134
cytochalasins, 193
cytokine, 186, 216
production of, 229
cytokine response, 140
impaired, 135, 189, 218, 219, 239
vs. intoxication, 190
cytoskeletal biogenesis and organization, changes in, following infection, 196
cytotoxicity, toxin-mediated, macrophage models for, 199–200

Dal-1, see Alr
D-alanine, 27, 232
esterification system, 195
Davaine, Casimir-Joseph, 39
DCs, see dendritic cells
defensin-like peptides, 191
defensins, 191–92
Deinococcus radiodurans, 82
Delépine, Sheridan, 9
D-enantiomer, of alanine, 45
dendritic cells (DC), 143, 145
dendritic cells (DCs), 134–35, 200, 235, 239
biology of, 210–212
cutaneous, 212
gastrointestinal, 210, 212–13
interactions with B. anthracis, 213–16, 215
LT disrupts signaling, 200
of the lung, 41, 181, 210, 213, 220
maturation and role shift of, 211
mucosal, 212–13
in peripheral tissues and lymphoid organs, 212
phagocytosis by, 243
plasmacytoid, 212
PLCs dampen responses to TLR ligands, 186
spore exposure and cytokine response, 190
and spore resistance, 20
and spore uptake, 184
vaccine delivery to, 283
Departmental Committee on Anthrax, 8
Dep (CapD), 158
dermis, anthrax histopathology of, 259
desferal, 110
diphtheria
 cutaneous anthrax misdiagnosable as, 253
 oropharyngeal anthrax misdiagnosable as, 256
toxin, translocation of, 127
dltABCD locus, and cationic bacterial peptides, 79
dltABCD operon, 195
DNA
 repair pathways, 82
 segments unique to B. anthracis, 75
 synthesis, and ribonucleotide reductase enzymes, 195
 transduction of, 53–54
DNA vaccines, 283–84
doxycycline, as anthrax therapy, 263, 264
DPA, 39
 expulsion from spore, 44, 46
 drums, playing of, and anthrax exposure, 275
dual cell morphology, 39
 see also spores; vegetative cells
Duckering, Elmhirst, 9
Duckering Process, 9
dyspnea, 254
EA1, 164, 171, 272
Eag, 78
eag, 164, 171
East India Wool Regulations of 1909 (U. K.), 8
ECF, 167
ecthyma, gangrenous, cutaneous anthrax misdiagnosable as, 253
edema, 259
 in “Cardinal’s cap” sign, 260
 in cutaneous anthrax, 253, 254
gastrointestinal, 263
inter-alveolar, 260
of lymph nodes, 260
malignant, 253
mediastinal, 260, 264
of mesenteric lymph nodes, 263
toxin
 (see ET)
edema fluid vaccine, 271
edible anthrax vaccines, 282
EF (edema factor), 12, 92, 100, 101, 121, 122, 157, 209, 216, 217, 218–19, 229, 272
associated with host cell calcium and calmodulin, 230
binding sites, 125
binds to PA63 heptamer, 280
and cell signaling pathways, 142
immunomodulatory effects, 143–44
lethality in animals, 144–45
novel binding sites, and CaM, 142
in polyvalent vaccine, 274
released to cytoplasm, 125
structure and enzymatic function, 142–43
translocation of, 126–27

Egypt, ancient, anthrax in, 3, 227, 296
EIIB domain, 161
elderly persons (65+), A V A not licensed for, 273
electroporated plasmid DNA from Escherichia coli, 54, 55
endocytosis, 216
of LRP6, 124
of PA63, 125
endothelial barrier, disruption of, 240, 241–42, 244
endothelial cells
ET nontoxic to, 143
hepatic sinusoidal, 220
endothelium, 236
LT’s effect on, 135–36
and TEM8, 123
enteritis, necrotizing, oropharyngeal anthrax misdiagnosable as, 256
Enterobactericeae, genome islands in, 75
Enterococcus faecalis, 97, 98, 235
enzymes, and spore coat, 45, 46
Epac/Rap1 pathway, 143, 144
epidermis, anthrax histopathology of, 259
epithelial cells
cell cycle arrest from LT, 138
spore adhesion to, 184, 185
squamous, 243
epithelium, 236, 243
alveolar, and cytokine production, 190
barrier, disruption of, 187, 231, 236
ERK1/2, 136
signaling pathways, 127, 218
ERK pathway inhibitors, 136
erysipelas, cutaneous anthrax misdiagnosable as, 253
erthromycin, resistance to, 60T(note a), 62T (note a)
erthrophagocytosis, 109
esaAB, 78
eschar, 240, 253
excision of, 263
Escherichia coli, 82, 139
and allelic exchange, 60T(note a), 61
as bioweapon, 302
as source for electroporated DNA, 54, 55
ESTs, 124
ET, 121, 123, 139, 209, 219, 229, 236, 237
as cause of hemorrhaging, 241
cooperation with LT, 145
and cytokine regulation, 143
immunosuppressive, 189, 230
impairs cytokine secretion, 218
intracellular effects of, 217
produces cell cycle arrest, 143
Eurasian strain, B. anthracis, 81
A3 lineage, 68
exosporium, 13, 18, 19–20, 214–16, 229
and arginine scavenging, 238
basal layer forms from cap, 29–30, 30
functions of, 26–29
lost after germination, 234
protects against phagocytosis, 188
SODs, 195
ExsA, 23T, 32
ExsB, 23T
ExsC, 23T
ExsD, 23T
ExsE, 23T
ExsFA/BxpB, 7, 23T, 32
exsFA/bxpB mutant spores, 30, 33
ExsFB, 23T, 32
ExsFB-GFP, 33
ExsG, 23T
ExsH, 26T(note d)
ExsH (BclB), 22
ExsJ, 23T
ExsK, 23T
ExsY (CotZ1), 23T, 32
facial nerve palsy, 253
fasciotomy, 263
Fc receptors, 213
FDA (U.S.) Food and Drug Administration, 279
ferrichrome, 110
ferritin, 109
ferroportin, 109
fibrin
in the meninges, 261
vascular deposition, 260
fibroblasts, 236
fibroblasts, spore adhesion to, 184
fibronectin, 242
flagella, in \textit{B. anthracis}, 82, 90
\textit{flM}, 75
Flock House Virus platform, 284–85
Food and Drug Administration, see FDA
food poisoning
from \textit{B. cereus}, 100, 166
oropharyngeal anthrax misdiagnosable as, 256
forespore, 29–31, 32
Fort Detrick formula (Merck Anthrax Vaccine),
272–73, 276
\textit{FtsZ}, 95
Fur, 107, 111, 169, 170
binding sites, 113
furin, 125
\textit{fur} mutations, 107

G9241 strain, \textit{B. cereus}, 101
Galen, on anthrax, 3
GALT, see gut-associated lymphoid tissues
GamR, 75
GAPDH, 109
gas, poison
use of in World War I, 297–98
gastrointestinal anthrax, 40, 209, 228, 236, 241,
252, 255–56
diagnostic problems from autopsy, 257
pathology of, in human cases, 263
Saint-Domingue outbreak, 1770, 297
treatment, 264
without lymph node involvement, 181
gastrointestinal dendritic cells, 212–13
GBAA2291, 165
G+C content, 82
G+C nucleotide richness, and genome size, 72
GC skew, 73, 74, 96
G+C variation, across \textit{B. anthracis} chromosome, 73
Ge Hong, 3
gelatin, digested by proteases, 242
gender-related immunogenicity, 279
gene naming, 77

\textit{General Treatise on the Etiology and
Symptomatology of Diseases} (Cao Yaun Fang), 3
genetic acquisition, and bacterial lifestyle, 100
genetic manipulation methods, 53–63
gene transfer, horizontal, 72, 77
Geneva Protocol of 1925, 9, 10
genistein, 132
genome
Ames Ancestor, 72
circular map of \textit{B. anthracis}, 74
“islands” in \textit{Enterobactericeae}, 75
size, and G+C nucleotide richness, 72
genome sequencing, 13, 53
and gene naming, 77
projects as of 2009, 68–71
gentamicin, 193
\textit{gerA}, 47, 232
\textit{gerA} mutants, 43
\textit{gerH}, 232
\textit{gerH}-encoded receptors, 183
\textit{gerH} operon, 47, 188
GerH receptor, 47
\textit{gerK}, 232
\textit{gerK} operon, 47
GerK receptor, 47
\textit{gerL}, 232
\textit{gerL} operon, 47
GerL receptor, 47
germinant recognition, 46–47
germination, spore, 18, 44, 213, 232–33, 236
affected by CotE and CotH, 32
alternative means of initiation, 48
high toxin levels after, 20
and macrophages, 180–83, 188
mechanics of, 44–49
upregulation of siderophore systems during, 110
\textit{in vitro}, 42–44
\textit{in vivo}, 40–42
GerP, 46
\textit{gerP} operon, 46
GerQ, 24T
\textit{gerQ} operon, 49
\textit{gerS}, 232
\textit{gerS}-encoded receptors, 183
\textit{gerS} operon, 47
GerS receptor, 47, 48
gerX, 47
\textit{gerX} operon, 46, 188
gerY, 47
\textit{gerY}, 232
glanders
as biological weapon, 9
cutaneous anthrax misdiagnosable as, 253
glucocorticoid receptor inhibition, 138–39
GM-CSF, 190
Graham, Bob, 306
Gram stain
of lymph node, 262
Gram stain, vs. Steiner silver stain, 259, 260
Greece, ancient, anthrax in, 3
Greenfield, William Smith, 270
green fluorescent protein, 63
Grotius, Hugo, 297
Gruinard Island, anthrax experiments, 298
Gruinard Island experiment, 296–97
Gruinard Island experiments, 11
GSK-3β, 132, 143
GSLEs, 48
GTP, 165
GTP-linked signaling cascades, 196
gut-associated lymphoid tissues (GALT), 236, 244
Hadernkrankheit, 1
Handbook of Prescriptions (Ge Hong), 3
hantavirus, 302
haptoglobin, 109
Hatfield, Steven, 304
Health and Human Services, U.S. Department of, 258
“helper” plasmids, 55, 99
heme, 107, 108, 239
acquisition, 113–16, 117
homeostasis in *B. anthracis*, 114
toxicity, 116
heme iron, 80
scavenging of, and IsdC anchoring, 80
heme oxygenases, 109, 116, 239, 242
hemin, cleavage of, 240
HemL, 166
hemoglobin, 109, 110, 113, 115, 169, 240
capture of, 108
hemolysins, 196
hemophores, 114
hemorrhage
and bacterial lesions, 240
“Cardinal’s cap,” 260
dermal and epidermal, 259
gastrointestinal, 263
of the intestine, 261
of mediastinal lymph nodes, 260
of the meninges, 261
pulmonary, 260
heptamerization of PA, 122, 125, 126, 229
HKO-K1 cells, 124
hide processors, susceptible to anthrax, 227
Hides and Skins Regulations of 1921 (U. K.), 8
“Hippiatrika” (10th-c. veterinary text), 3
Hippocrates, 3
His-351, 143
histamine, 144
histidine kinases, sporulation sensor, 165
HL-60, 133
HNP1–3, 192
holo-hemoglobin, 114
Homeland Security Council, 306
Homer, anthrax mentioned by, 3
homocysteine, 159
horizontal gene transfer, 72, 77
Horsehair Regulations of 1907 (U. K.), 8
hospitals, testing performed at, 257–58
host defenses, role of macrophages in, 187–94
host-induced germination, in cutaneous anthrax, 42
host-iron metabolism, 108–9
HPA (U.K. Health Protective Agency), 272
HPA axis, 138
HrTAB, 116
HrTB, 116
Hsp27 phosphorylation, blocking of, 137
HssR, 116
HssRS, 116
HssS, 116
HTH motif, 160, 161
human mononuclear cells, apoptosis of, 133–34
HUVECs, 123, 124, 135, 136
hyaline fibromatosis, juvenile, 123
hyaline membrane formation, 260
hyalinosis, infantile, systemic, 123
hydrogen carbonate anions, and toxin yield, 271
hypochlorite, *B. anthracis* coat resistance to, 20–21
hypotension, ET-induced, 144
IAP family, 131
IFN-γ, 190
activation, 110
response, 211, 211
IgG, 213
IhnA, 79
IL-1, 217
IL-1α, 189
IL-1β, 129, 130, 140, 189, 200
IL-6, 189, 190
IL-8, 189, 190
IL-8 production, inhibition of, 136
IL-10, 190, 219
IL-12, 190
IL-18, 129, 200
IL-β, 190
imipenem, as anthrax therapy, 264
immune-based therapies, 264
immune response to *B. anthracis*, innate, 188–91
immunity
duration of, 277–78
gender-variable, 279
immunoblasts, infiltration by, 260, 261
immunoglobulin G antibodies to PA, 258
immunosuppressive effects of anthrax toxins, 189, 190
India, descriptions of anthrax in Vedic texts, 3
industrial anthrax, public health measures for, 8–9
infantile systemic hyalinosis, 123
infection
 predispositions toward, 231–32
 spore, and effects on host cell metabolism, 196–97
 vs. intoxication, 188–91
inflammasomes, 129, 130, 131, 133
inflammatory response, 189, 190
InhA, 242
InhA1, 169
inhA1, 169
inhalation anthrax, 8, 11, 13, 20, 40, 41, 209, 228, 235–38, 240, 252
 in the Brachman study, 276
 and the cap operon, 163
 clinical/diagnostic characteristics of, 254
 dendritic cells as “Trojan horse,” 220
 diagnostic problems from autopsy, 257
 pathology of, in human cases, 260–63
 pleural fluid, 261
 and spore germination, 179–81
 treatment, 264
 without lymph node involvement, 181
iNOS, 141
inosine, 43
insect bites, 231, 242
 cutaneous anthrax misdiagnosable as, 253–54
insect virulence, 79, 82
Institute for Genomic Research, see TIGR
integrin receptors, 123
inter-alveolar edema, 260
interferon-γ, see IFN-γ
interstitial cells, and inflammatory response, 190
intestines, submucosal hemorrhages of, 261
intoxication
 of macrophages, 239
 vs. infection, 188–91
 (See also individual toxins)
intramuscular vs. subcutaneous vaccine
 administration, and immunogenicity, 279
intranasal delivery of rPA vaccines, 283
invertebrate virulence, 79, 82
in vitro cultures, “Medusa head” appearance, 257
ionizing radiation, B. anthracis coat resistance to, 20–21
Iraq, biological weapons use by, 301
iron, 79
 acquisition of, 107–8
 B. anthracis’ strategies for acquiring, 110–16
 free, reduced upon IFN-γ activation, 110
 heme, 80, 107, 109, 113
 within macrophages, 109–10
 sequestration of, by host, 239
transferrin, 109
iron acquisition, 169–70
I-SceI, 60T(note e)
isd, 169–70
Isd system, 113
isd locus, S. aureus, 240
IsdC, 80, 113, 114, 115, 170, 240
isdC, 114
isdCX1X2EE2F operon, 114
isdCX1X2E1E2FsrB operon, 170
IsdE, 113
IsdE2 (IsdF), 113
IsdF (IsdX), 113
IsdG, 113, 240
isdG, 114
isdG, 195
isdI, 195
IsdJ (IsdX1), 113, 170
IsdK (IsdX2), 113, 170
isdK, 195
IsdX1, 114, 115, 117, 240
isdX1, 114
IsdX1 (IsdJ), 113, 170
IsdX2, 114, 115, 117, 240
isdX2, 114
IsdX2 (IsdK), 113, 170
IsdX (IsdF), 113
IunH, 32
IunH1, 24T
IunH2, 24T
IunH-GFP, 33
Ivins, Bruce, 304
Japan, World War II bioweapons program, 298
Jenner, Edward, 270
JNK/SAPK signaling pathway, 127
Justinian Plague, 296
 See also bubonic plague
juvenile hyaline fibromatosis, 123
Kamel, Hussein, 301
kanamycin, resistance to, 60T(note a), 62T(note a)
keratinocytes, 138
Kercheval, J., 4
Kif1c, 129
KinA-E, 165
kinase C inhibitors, 132
Klebsiella pneumoniae, 239
Koch, Robert, 5, 17, 39, 227, 270, 297
Koch’s Postulates, 227
Kruger B strain, B. anthracis, 70, 70T, 91T
Kupffer cells, 220, 263
Laboratory Response Network (LRN), 258, 302
lactate dehydrogenase leakage, 130
lactating women, and contraindicated anthrax drugs, 263
Lactobacillus spp., and vaccine delivery, 283
lactoferrin, 109, 110, 239
lacZ reporter, 46
L-alanine, 27, 43, 47
laminin, 242
LAMP1, 110
Lander-Waterman model curve, 68
langerhans cells, 212
langerin, 212
Langerin+ cells, 213
lanine ribonucleosides, 43
Lee, Philip, 302
lef, 92, 157, 159, 162, 196
Lepidoptera, and B. thuringiensis, 166
leprosy, cutaneous anthrax misdiagnosable as, 253–54
leptomeninges, inflammatory infiltrates of, 260
lethal factor, see LF
lethal toxin, see LT
leukocytes, polymorphonuclear, and θ-defensins, 192
leukocytosis, 254
LF-induced cell death, 218
LF (lethal factor), 12, 92, 100, 101, 121, 157, 209, 216, 217, 218, 229, 231, 272
binding sites, 125
binds to PA63 heptamer, 280
cleavage of MEKs
(see MEKs: substrate cleavage)
Cytotoxic and immunomodulatory effects, 128–139
effect on macrophages, 128–134
fusion protein with cholera toxin, 282
inhibits cytokine production, 229
and lethality in animals, 139–41
in polyvalent vaccine, 274
recombinant preparations from E. coli, 139, 140
released to cytoplasm, 125
stability of, 134
structure and enzymatic function of, 127–28
translocation of, 126–27
in vaccine, 281
LFn domain, 127
LF plasmid DNA, in vaccine, 284
L-histidine, 43, 47, 232
LicT, 161
Lieber, Francis, 297
lipid rafts, 216, 217
LRP6 relocated to, 124
PA63 movement to, 125, 126
Listeria monocytogenes, 231
Listeria spp., 96
listeriolysin O, 231
liver, accumulation of capsule molecules in, 220
live spore vaccines, 271
Livingstone, David, 4
Livius, 3
LL37 peptide, 187
L-methionine, 43, 47
Lodiana fever, 1
See also anthrax
loxP sites, 61
LPR6, 124
L-proline, 43, 47, 232
LPS, 145
LRN, see Laboratory Response Network
LRP6
phosphorylation of, 124
L-serine, 43, 47
LT (lethal toxin), 121, 122, 124, 198–99, 209, 229, 236, 237
as cause of hemorrhaging, 241
and cell cycle arrest, 134
cooperation with ET, 145
in early infection, 141–42
immunosuppressive, 230
impairs cytokine secretion, 218
inhibits neutrophil actin assembly, 137
inhibits oxidative burst of neutrophils, 238
intracellular effects of, 217
mechanisms of toxicity, 199–200
potency assaying, 274
primate vs. murine macrophage lethality, 191
and suppression of cytokine response, 189
LT-mediated death
role of macrophage sensitivity in, 140–41
LT-mediated macrophage death, 129
protective treatments, 131
L-tryptophan, 43, 47, 232
Ltxs1 locus, murine, 129
L-tyrosine, 43, 232
Ludwig angina, oropharyngeal anthrax misdiagnosable as, 256
Lundgren, Ottillie, 304
lung
alveoli, as infection pathway, 244
colonization by B. anthracis, 241, 242
dendritic cells, 135
fluid accumulation, 92
spore germination and vegetative cell growth in, 237
See also pulmonary dendritic cells
lungs
 dendritic cells, 41
 in spore uptake, 179

lux operon, 63
LuxS, 159
L-valine, 43, 47
lymphatic ducts, 240–41
lymph nodes, 41, 240, 244
 and dendritic cells, 211
 mediastinal, 254, 260, 262
 mesenteric, 212, 213, 256, 263
 as site of germination, 180
 submandibular, 237
 thoracic, 181, 210, 220
lymphocytes
 LT disrupts signaling, 200
 proliferation of, 263
lymphocytes, effects of LT on, 137–38
lymphocytolysis, 260, 261
lyophilization of PA, 272
lysis by gamma-phage, testing for, 258
lysozyme, B. anthracis coat resistance to, 20–21
Mac-1 receptor, 184–85
macrophages, 13, 168
 aberrant signaling within, 92
 adhesion and uptake of spores, 214
 alveolar, 243
 and autoinhibition, 26–27
 cell cycle arrest, 143
 correlate assays of immunity, 200–201
 divergent findings and models, for anthrax, 192–94
 effect on spores of cotH vs. cotE mutants, 21
 ET nontoxic to, 143
 as facilitors of spore trafficking, 179–81
 and germination, 180–83
 and inflammatory response, 190
 and inhalation anthrax, 20
 innate immune activity against B. anthracis, 191–92
 intracellular environment, and B. anthracis metabolism, 194–96
 lysis of, 122, 128, 130–32, 140
 migration of, 144, 236
 models for toxin-mediated cytotoxicity, 199–200
 Nalp1b', resistant, 133
 role of, in innate host defenses, 187–94
 sensitivity of, role in LT-mediated death, 140–41
 of the spleen, 220
 spore adhesion and uptake, 28, 97, 210
 and spore anti-host activities, 185–87
 sporicidal, 187–88
toxity of PA to, 127
 transport of spores by, 210
See also phagocytes
major histocompatability complex (MHC), 210
 class II, 212
malignant caruncle, 1
See also anthrax
malignant edema, 253
MAPK kinases, 92
 inhibition of, 198–99
MAPK signaling pathway, 189
Marinobacter hydrocarbonoclasticus, 112
M-cell engulfment, 243
See also macrophages
mediastinitis, 235, 237, 240, 243
“The Medicine of Quadrupeds” (11th-c. veterinary text), 3
medistium, widened, 254, 255
“Medusa head” appearance of cultures, 257
MEKs
 substrate cleavage, 129, 130, 131, 133, 134, 135, 136, 138, 145, 146, 229
 and signaling pathway disruption, 127–28
 targeted by LT, 140–41
MEK1/2
 impairment, 200
 pathways, 200
melanoma cells, LT apoptosis of, 138
meninges, hemorrhages of, 261
meningitis, 264
anthrax, 256
meningoencephalitis, 253
anthrax, 254
“Merck Anthrax Vaccine” (“Fort Detrick” formula), 272–73
meropenem, as anthrax therapy, 264
Mesopotamia, ancient, anthrax in, 3
metabolism
 of anthrax cell, and virulence, 164–65
 host cell, effects of spore infection on, 196–97
 metalloproteases, extracellular, in B. anthracis, 187
 metS1, 63
Mga, S. pyogenes, 160, 161
MHC, see major histocompartability complex
microangiopathic hemolytic anemia, 253
microarray analysis, 80
microarray technology, 53
microbial surface component recognizing adhesive matrix molecules (MSCRAMMs), 235, 242, 243
microfold cells (M cells), 213
micronutrients, and B. anthracis growth, 79–80
MIDAS domain, 123
Milzbrand, 1
See also anthrax
mitochondria
and antioxidants, 131
membrane, loss of potential, 130
targeted by pathogens, 197
M KKs, 217
MLSTs, 80
mntA, 80
mobilization, of *B. anthracis* plasmids, 98–99
MOI
and delay in germination, 45
molecular evolution, Neutral Theory of, 81
molecular typing, 13
monocyte-derived dendritic cells (MoDCs), 218
monocytes, 168
adhesion to epithelial cells, 136
Moore’s law, 72
morphogenetic proteins, 32
Morse, Stephen A., 302
mortality rates, of types of anthrax, 252
motility
B. cereus vs. *B. anthracis*, 90
lacking, in *B. anthracis*, 75, 240
testing, 257
multigene operons, 74
multi-locus typing schemes, see MLST
multiplicity of infection, 193
multivesicular bodies (MVBs), 216
murata, 298
murB2, 63
murrain, bloody, 1
See also anthrax
mutants
derived from Campbell-type plasmid insertion, 56–57
isolation of, 55–63
Mycobacterium tuberculosis, 108, 110, 232, 239
myoglobin, 109, 115
N-acetyl glucosamine, 48
N-acetyl muramic acid, 48
NAD, 196
NADPH oxidase production, reduced by ET, 144
Nalp1, 130
Nalp1, 129
Nalp1b, 129, 135, 217, 218
nalp1b, 129, 146, 200
sensitivity, 190
Nalp1b’, 130
Nalp1b’ macrophages, 129, 132, 140
Nalp1b’, 130
Nalp1b’ macrophages, 129, 132, 140
resistant, 133
Nalp3, 129, 135
NALT, see nasal-associated lymphoid tissues
nap, spore surface, 33
nasal-associated lymphoid tissues (NALT), 210, 236, 237, 241, 244
NEAT domains, 114, 115, 170
neck, deep-tissue infection of, oropharyngeal anthrax misdiagnosable as, 256
necrosis
gastrointestinal, 263
of mediastinal lymph nodes, 260
of the spleen, 261
necrosis, dermal and epidermal, 259, 261
necrotizing enteritis, oropharyngeal anthrax misdiagnosable as, 256
Neisseria meningitidis, 110
nematodes, spore resistance to digestion by, 21
neomycin, 132
neurokinins, 144
Neutral Theory of molecular evolution, 81
neutrophils, 20, 113, 137, 143, 168, 186, 239
chemotaxis, enhanced, 144
infiltration by, 260, 261
oxidative burst, inhibited by LT, 238
Nipah virus, 302
nitric acid, 186
nitric oxide, 170, 191, 214
nitric oxide synthase, 191
Nixon, Richard, 299
NLR proteins, 200
NOMP2, 130
Norican plague, 3
NPKTG cell wall anchoring motif, 115
Npr599, 79, 169, 242
Nramp1, 110
NSKTA sequence, 115
nuchal rigidity, 256
nucleoside hydrolase
and the exosporium, 23
nutrient-triggered germination, 42–43
O-carbonyl-D-serine, 45
oligodeoxynucleotides (ODNs), 274
oligosaccharide antigens, 283
opsonization of spores, 5, 28, 197–98
oral inoculation, 233
orf, cutaneous anthrax misdiagnosable as, 253–54
ORFans, 77
Orientia tsutsuamushi, 76
oriT, 55
oropharyngeal anthrax, 40, 256
ovalbumin, 218
OxD, 24T
oxidants, 191
oxidative burst, 238–39
oxidative stress, 111

P1, 162
transcription site, 161
p38
inhibitors, 134
MAPK activation, inhibition of, 198, 199
signaling pathway, 127, 145
PA (protective antigen), 92, 100, 101, 121, 157, 200–201, 209, 216, 271–72
antibodies to, 258
binding to receptors, 122–24, 123, 134
cleavage of, 229
cytoplasmic tail, 126
expressed in tobacco chloroplasts and transgenic tomato plants, 282
heptamerization of, 122, 125, 126, 229
increase in receptors, ET-induced, 145
large-scale manufacturing of, 273
levels of, and expression of pagR, 164
LF binding to, 127
lyophilization of, 272
Phe427, 126
recombinant preparations from E. coli, 139, 140
structure, 122
synthesis, 159
toxicity to macrophages, 127
in vaccines, 183, 197, 274, 276, 280
See also rPA
PA20, 125
PA63, 122, 125, 216, 217, 280, 281
heptamerization of, 125
movement to lipid rafts, 125, 126
PA83, 123, 124, 125, 280
pagA, 92, 157, 159, 160, 162, 166, 196
pagA::lux reporter, 183
pagAR, 162
PagR, 92
pagR, 160, 196
PagR repressor, 164
Pali plague, 1
See also anthrax
palmitoylation, of PA's cytoplasmic tail, 126
palsy, facial nerve, 253
pamB, E. faecalis, 97, 98
PAMPS, 220
pan-caspase inhibitors, 132
PA (protective antigen), 12
parapharyngeal abscess, oropharyngeal anthrax misdiagnosable as, 256
parenchyma, vasculitis of, 261
particle size, 233–34
pASD2, 60T
PA-specific IgG memory B cells, 277
Pasteur, Louis, 5, 6, 270, 297
Pasteur vaccine, 90
pAT18, 59T, 62T
pAT28, 62T
pAT113, 60T
pAT187, 59T, 62T
pATΔS28, 60T
pathoadaptive mutations, 80
pathogen-associated molecular patterns (PAMPs), 214, 216
pattern recognition receptors (PRRs), 213, 214, 220
pAW63, 99
replicon, 98
pBAK, 60T
pBAX-2, 63
pBC10987, B. cereus, 101–2
pBCXO1, 100–101
pBKJ223, 61
pBKJ236, 60T, 61, 62T
pBKJ258, 60T, 62T
pBT9727, 99, 103
and pXO2 compared, 103
pBT9727, B. thuringiensis, 97
pCE104, 62T
pclR mutations, 82
pCLIT1376, 60T
pCN55, 62T
PC-PLC, 186
PcrA, 97
PCR-based detection, 258
PDGA, 157
See also capsule
Penclawdd beaches tests, 11
penicillin, 11–12
as anthrax therapy, 263, 264
as anthrax treatment, 252
resistance to, 167
pEO-3, 60T
peptoglycan, 48, 78, 194
and binding of TLR2 and TLR6, 216
IsdC anchoring to, 80, 115
peroxidases, 170
peroxide, 191
pertussis vaccine, 274
petrobactin, 79, 80, 111–13, 117, 169, 194, 240
synthesis pathway, 112
Peyer's patches, 210, 212–13, 213, 236
PGA, 220
pGhost5, 60T
pGuvMCS-5, 62T
phagocytes, 20
engulfment and germination of spores, 233
preferential spore binding to, and BclA, 234
spore resistance to, 21
See also macrophages

phagocytosis, 5, 10
by dendritic cells, 214
erythrophagocytosis, 109
inhibited by capsule, 219–20
inhibited by ET, 144
and SoaA spore protein, 28
and spore germination, 41
and spore opsonization, 197–98
of spores, 182
in the “Trojan horse” model, 235–36

phagolysomes, vegetative cells escape from, 110
phenol, *B. anthracis* coat resistance to, 20–21
phenylalanine, 271
clamp, 126

phospholipases, 168, 196
A2, 143, 189, 191
Cs (PLCs), 230–31
phosphopilase inhibitors, 132
phosphorylated histidines, 161, 161
phosphorylation, 196
of LRP6, 124
phosphotransferase system, 161

pHP13, 62T
pHT304, 62T
pHT304−18z, 62T
pHT315, 62T
pHY304, 60T
PKA, 216
cAMP-modulated activation of, 143
PKA/CREB pathway, 143
pKS1, 60T
pKSV7, 60T
plague, *see* bubonic plague
plasmacytoid dendritic cells (PDCs), 212
plasmid-chromosome crosstalk, in gener regulation, 160
plasmids, 12–13
B. cereus group, 99
Campbell-type insertion of, mutants derived from, 56–57
content, of close relative to *B. anthracis*, 95–96T
“helper,” 55, 99

size of, in *B. cereus* group, 89
with stable *B. anthracis* replicons, 62T
used for allelic exchange in *B. anthracis*, 59–60T
virulence, 82
(see also pXO1; pXO2)

platelets
aggregation of, suppressed by ET, 144
effects of LT on, 138
pLC1, 59T
PlcA, 168
PlcB, 168
PlcR, 74
plcR, 74, 101, 167
plcR mutant, 79
PlcR regulon, 166–67
PLET medium, selective, 12
pleural effusions, 254, 260, 264
pleural fluid, 261
pLM4, 60T
pLTVAΔXba, 60T
Plutarch, references to anthrax in, 3
pMK4, 62T
pMR1, 59T
pneumonia, not directly caused by anthrax, 179
pneumonic anthrax, 209

See also inhalational anthrax
poisons, as weapons, 297–98
poly-γ-D-glutamic acid capsule, *see* capsule
polymixin B, 55
polysaccharides, spore-associated, in *Bacillus subtilis*, 33

pores, 231
formation of, 125, 126, 229
pORI-Cm, 60T
pORI-Cm-SceI, 61
pORI-I-SceI, 60T
Porton Down laboratory, 11, 70
pOS1, 62T
potassium efflux, 129, 130, 133, 218
pOX11, 99
pPL703, 62T
PRDs, 161
precipitin reaction, Ascoli’s, 7
predispositions towards infection, 231–32
pregnant women
AVA not licensed for, 273
and non-contraindicated anthrax drugs, 263, 264
PrkC, 48
prostanoids, 144
proteases, 77, 169, 230–31
and breakdown of host tissues, 242
proteasome inhibition, 130
protective antigen, *see* PA
proteins
assays of, 258
basal layer, 27
exosporium, 26
morphogenetic, 32
of spore outer structure, 21, 22–26T
protein-tagged fusions, 63
proteomics methodology, 53
protozoan predators, spore resistance to digestion by, 21
pSABA-3, 60T, 61
pseudogenes, in *B. anthracis*, 74
Pseudomonas aeruginosa, 242
pSS4332, 61
pT181, 61, 97
pTCV- lac, 62T
public health
and industrial anthrax, 8–9
pulmonary dendritic cells, 213, 220
purine hydrolase, 45
purine-mediated germination, 45
purine ribonucleosides, 43, 47
pUTE29, 59T, 62T
pUTE568, 62T
pUTE583, 59T
pXO1, 46, 81, 82, 89, 90–92, 102, 104, 121, 157, 165, 166, 209, 228, 231, 270
backbone, 100, 102
carries *gerX*, 232
circular gene map, 93
copy number, 92–94, 98
in gene regulation, 160
marker, 80–81
replication of, 94–97
Sterne, 67, 69
targeted by *Tn917*, 55
virulence encoded on, 92
pXO1-like plasmids, *B. cereus*, 100
pXO2, 54, 81, 90, 104, 157, 165, 166, 186, 209, 228, 270
amino acid matches, 103
circular gene map, 93
copy number, 98
encodes *capBCADE* operon, 159
encodes for capsule, 89, 92, 97
in gene regulation, 160
marker, 80–81
Pasteur, 67, 69
targeted by *Tn917*, 55
virulence factors, 97–98
pXO2-like plasmids, *B. thuringiensis*, 102–3, 103
pXO12, 99
pXO16, 99
pXXMcS, 63
quarantine, 252
radiation, *B. anthracis* coat resistance to, 20–21
radiographs
chest, of inhalational anthrax patients, 254
mediastinum, widened, in anthrax, 255
ragpicker’s disease, 1
See also anthrax
RANTES, 138
rapamycin, 132
rat bite fever, cutaneous anthrax misdiagnosable as, 253
RAW246.7, 133
See also *Nalp1b*
RAW264.7
macrophages, 141
recA, 76
recognition of germinants, 46–48
recombinant PA (rPA) vaccine
transcutaneous vaccination, 282
recombinant PA (rPA) vaccines, 280–81
RepC, 61
repC, 61
repeat sequences, genetic, 75–76
RepS, 102
RepX, 95, 97, 100
ResA, 165
res*ABCDE* operon, 165
ResB, 165, 166
ResC, 165, 166
ResD, 165
ResE, 165
respiration, *B. anthracis*, 165–66
reticulum cells, proliferation of, 263
retrocyclins, 192
rhamnose, 214
biosynthesis operon, 33
Rhizomucor infections, cutaneous anthrax misdiagnosable as, 253–54
ribonucleotide reductase enzymes, 195
rickettsiosis, cutaneous anthrax misdiagnosable as, 253
rifampicin
as anthrax therapy, 264
resistance, 82
RNA polymerase, 161, 162
RocA, 24T
Rome, ancient, anthrax in, 3
Roosevelt, Franklin D., 299
ROS (reactive oxygen species), 131, 170, 191, 195
rPA vaccines, 274
(rPA) vaccines
 intranasal delivery, 283
rpoB, 82
RSK-C/ENPβ pathway, 132
Rsp, 167
rsp, 167
SafA, 32
safety of vaccines, 278–79
Salmon, D. E., 3
Salmonella, 3
Salmonella enterica
 serovar Typhi Ty21a, 282
Salmonella spp., 281
 as bioweapon, 302
SaoA, 24T
Sap, 78, 164, 171, 272
sap, 164, 171
saponin, 270
sarin nerve agent, 301
scarring, 253
secondary bacterial infection, 253
selective PLET medium, 12
sepsis, 264
 as anthrax complication, 256
septicemia, 121
Serratia marcescens, 299
Shaving Brushes Order of 1920 (U. K.), 8
Shewanella spp., capsular polysaccharide of, 283
shock, ET-induced, 144
shotgun genome sequencing, 68, 69
 of Ames Porton strain, 72
Sanger, 81
Siberian plague, 1
 See also anthrax
siderocalin, 113, 117, 240
siderophores, 107, 110, 169–70, 239–40
 biosynthesis genes, 196
dhb locus, B. subtilis, 111
secretion of, 117
upregulation of systems during germination, 110
 See also bacillibactin; petrobactin
SigA, 161, 162
SigH, 162, 171
signaling
 aberrant, within macrophages, 92
effect of infection on, 196
 molecules, in nutrient-triggered germination, 43
P38 pathways, 145
pathway disruption, and MEK substrate cleavage, 127–28
proteins dedicated to, 82
for virulence gene expression, 158–59
SigP, 167
sigP, 167
siRNA silencing, 124
skin patches, rPA vaccination through, 282
skin trauma, 231
σK promoter, 46
skull, opening of, discouraged, 257
S-layer, B. anthracis, 13, 171, 234–35
SleB, 26T(note f), 48
smallpox, as bioweapon, 295, 302
Smase, 186
SmcA, 168
Smith, Andrew, 4
SNPs, 80
 analysis, 80
canonical, 81
SoaA, 28
soaA, 79
Sod15, 24T, 238
sod15, 170
soda, 111
SodA1, 24T, 195, 238
soda1, 170
SodA2, 238
soda2, 170
SodA15, 195
soda mutant, 113
SodC, 238
sodC, 170
sodium, low, in anthrax patients, 254
SODs, 170, 242
sortase B (SrtB), 113, 115, 196
sortase genes, 78
Soviet Union, violation of biological weapons conventions by, 300–301
 See also Sverdlovsk anthrax outbreak
Spanish Flu Pandemic, 296
specimen gathering, 256–57
spectinomycin
 resistance to, 60T(note a), 62T(note a)
spectinomycin cassette, 61
spleen
 colonization by B. anthracis, 241, 242
dendritic cells, 135
macrophages of, 220
pathology of, 261
splenic fever, 1
 See also anthrax
Spo0A, 165
Spo0B, 165
Spo0F, 165
SpoIVA, 24T, 29
spongiosis of the epidermis, 259
spores, 18, 179–81, 231
 - anti-host activities of, 185–87
 - assembly, 29–33, 30
 - as bioweapon, 39
 - core hydration, 44
 - degradation of the cortex of, 48–49
 - enzymes of, and germination, 44–45
 - exsFA/bxpB mutant, 21
 - and genome sequencing, 79
 - germinant permeation of outer layers, 45–46
 - germination of
 see germination, s
 - macrophage binding and uptake, 28, 97, 141, 184–85, 185
 - metabolically dormant, 39, 40
 - opsonization of, 197–98
 - outer layer functions, 20
 - outer structure proteins, 22–26T
 - phagocytosis of, 182
 - superdormant, 27
 - transport by macrophages, 179–81
 - ultrastructure, 17–20
sporotrichosis, cutaneous anthrax misdiagnosable as, 253–54
sporulation, 17, 209
 and AbrB, 102
 - genes, 165
 - phosphorelay system, 82
 - sensor histidine kinases, 165
 - testing for, 258
SpoVID, 24T
SpoVM, 24T
squamous epithelial cells, 243
S-ribosylhomocysteine, 159
srtA, 78, 195
SrtB, 80
srtB, 78, 115, 195
srtC, 78
staphylococcal enterotoxin B, 302
staphylococcal infection, anthrax misdiagnosable as, 253

Staphylococcus spp., 96
Staphylococcus aureus, 59–61, 97, 242
 - CNA, 235
 - isd locus, 240
 - Isd system, 113, 114
Staphylococcus carnosus, 235
Staphylococcus pyogenes, 168
Steiner silver stain, 259
 of lymph node, 262
 vs. Gram stain, 259, 260
Sterne A strain, B. anthracis
 - genetic sequencing and plasmid status of, 91T
Sterne strain, B. anthracis, 70T, 115–16, 181, 252
 - attempted weapons use of, 301
 - dermal penetration by, 183
 - and germinant receptors, 183
 - vaccine, 90, 138, 270
Stevens, Robert, 302, 304
streptococcal pharyngitis, oropharyngeal anthrax misdiagnosable as, 256

Streptococcus pyogenes, 160, 161, 231
streptolysin O, 168, 231
stringent response, in toxic gene expression, 159
subcutaneous vs. intramuscular vaccine administration, and immunogenicity, 279
substrate-binding proteins, 79, 80
suicide vectors, 59
sulfathioazole, 10
superoxide, 137, 144, 170, 191
SV40, 136
Sverdlovsk anthrax outbreak of 1979, 11, 198, 232, 234, 251, 254, 260, 264, 300
sXO2, 121
syndecan-1, ET targeting of, 144
syphilitic chancre, cutaneous anthrax misdiagnosable as, 253

Tabaniid flies, as infection vector, 79
Tabanus biting flies, 10
Talent, Jim, 306
tandem repeat analysis, 80
target cell receptor binding, 280
Taylor, Jeffrey, 305
T cells, 138, 143, 145, 211, 211, 218, 239
TEM8, 122–24, 123, 124, 125
tail-truncated mutants, 126
temperature, and virulence gene expression, 158
tetracycline, resistance to, 60T(note a), 62T(note a)

Tetrahymena thermophila, 21
Tgl, 24T
Th1 response, 218, 219
Th2 response, 211, 211, 211, 218
Th17
 - lineage impairment, 219
 - responses, 211, 211
thermocautery, 7
θ-defensins, 192
THP-1, 133
TIGR (Institute for Genomic Research), 68, 70
tiling and sequencing macroarray analysis, 80
TLR2, 216
TLR6, 216
TLR ligands, 186
Tn916, 55, 271
Tn917, 55
TNF-α, 140, 189, 190, 216
TNF-α-dependent pathway, 132
tomato plants, transgenetic, PA, expressed in, 282
tonsillitis, complicated, oropharyngeal anthrax misdiagnosable as, 256
toxin, B. cereus VIP2, 127
toxin, cholera, fusion protein with LF, 282
toxin, Cry, 102
toxin, diphtheria, translocation of, 127
toxin, emetic, of B. cereus, 100
Toxins, anthrax, 12, 82, 92, 100, 209, 229–30
adenylate cyclase, encoding of, 121
expression, 239
and the immune system, 216–19
immunosuppressive, 189, 190, 243
inhibits cytokine release, 190
levels of, after germination, 20
overview of research into, 121–22
suppress cytokine production, 239
synthesis, 111
traceal catheterization trauma, 232
See also abrasions
transaminases, elevated, 254
transcript destabilization, 136
transcutaneous rPA vaccination, 282
transcytosis, 243
transduction of DNA, 53–54
transferrin, 108–9, 110, 239
translocation of EF and LF, 126–27
transposons, 55–56, 56T
Treg, 219
Treg cells, 213
trimethoprim, 55
“triparental” crosses, 55
“Trojan horse” model of anthrax infection, 235–38
tryptophan, 271
See also L-tryptophan
Tsiankovskii-I strain, B. anthracis, 71T, 91T
tuberculosis, cutaneous, cutaneous anthrax misdiagnosable as, 253
tularemia
as bioweapon, 302
cutaneous anthrax misdiagnosable as, 253
Ty21a serovar, 282–83
Type II inoculation, 270
Type I inoculation, 270
typhus, cutaneous anthrax misdiagnosable as, 253
tyrosinase, 102
tyrosine, 271
U-937, 133
ubiquitination, of PA’s cytoplasmic tail, 126
ulcers, in gastrointestinal anthrax, 263
ultraviolet radiation, B. anthracis coat resistance to, 20–21
Unit 731 Japanese biological warfare lab, Manchuria, 298
USA6153 strain, B. anthracis, 71T
USAMRIID (U.S. Army Research Institute), 70
UT500 strain, B. anthracis, 54
vaccination of animals, 252
vaccines, 6, 10, 269
acellular, 271–73
AdC7PA, 284
with antitoxins, 284
AVA, 200, 272, 273, 276, 278, 285
AVP, 272, 285
AVP-pertussis, 278
Belton and Strange (see vaccines: AVP)
Boor-Tresselt, 272
cellular, 270–71
combination, 284–85
delivery, 279, 282–83
DNA, 283–84
duration of immunity, 277–78
edema fluid, 271
effective, 282
efficacy of, in animals, 273–75
efficacy of, in humans, 275–77
“Fort Detrick” formula (“Merck Anthrax Vaccine”), 272–73, 276
and gender variable, 279
from killed Clostridium chauvoei, 270
live spore, 271
Merck Anthrax Vaccine (Fort Detrick formula), 272–73, 276
ongoing research, 281–85
PA-based, 122, 276, 280
Pasteur, 90
pertussis, 274, 278
recombinant PA (rPA), 200, 201, 274, 280–81
Sterne strain, 90, 138, 252, 270–71
Type II inoculation, 270
Type I inoculation, 270
VAERS (Vaccine Adverse Event Reporting System), 279
vancomycin, as anthrax therapy, 264
vascular collapse, 146
Index 329

vascularization, LT’s effect on, 136
vasculitis, 259, 260, 261
 cutaneous anthrax misdiagnosable as, 253–54
VCAM-1 expression, TNF-induced, 136
vegetative cells, 39–40, 165, 232, 243
 escape from phagolysomes, 110
 growth in bloodstream, 97
 protected from oxidative stress by SODs, 238
 surface, attachment to, 78, 79
 treated with CapD, 186
vegetative cells, B. anthracis, 171
Vegetius, 3
VEGF, 143
vessel dilatation, of mesenteric lymph nodes, 263
Vibrio cholerae, 302
Vibrio vulnificus, 242
Vincent angina, oropharyngeal anthrax misdiagnosable as, 256
viral hemorrhagic fevers, as bioweapon, 302
viral vectors, for vaccine delivery, 284
Virgil, 3
virulence
 and iron uptake, 107
 and metabolism, 164
virulence-associated genes, regulation of, in B. anthracis, 167–71
virulence factors, 12, 13
virulence factors, B. anthracis, 228–31
virulence genes, 196
 regulation of, and plasmid-chromosome crosstalk, 160
 VNTR typing scheme, 80
Volumn strain, B. anthracis, 70, 71T, 80, 273, 275
 genetic sequencing and plasmid status of, 91T
 M36
 (see CD-25 strain)
 vaccines derived from, 271
 Volumn 1B, 194
VWA domain, 123

War Cabinet Biological Warfare Committee, 10
War, Robert, 297
Washington, George, 1
weapon, anthrax as, 9, 227, 251, 269, 301, 302
Western North America strains, B. anthracis, 71T, 81, 100
 genetic sequencing and plasmid status of, 91T
WH motif, 160, 161
WHO, anthrax surveillance and control by, 251–52
 whole-genome sequencing, 80
Wnt signaling, 124

women, pregnant/lactating
 AVA not licensed for, 273
 contraindicated anthrax drugs, 263
Wool, Goat, and Camel Hair Processes Regulations of 1905 (U. K.), 8
wool sorters, 227, 297
woolsorter’s disease, 1
 See also anthrax
World at Risk (Commission on the Prevention of Weapons of Mass Destruction Proliferation and Terrorism), 305–6
World Health Organization, see WHO
World War I, use of anthrax as weapon in, 9
World War II, Axis and Allied biological warfare R&D, 298–99
X-rays, see radiographs
xylose-inducible expression vector, 63

YabG, 24T
YadA, Yersinia enterocolitica, 235
YckK, 24T
YdhD, 24T
Yekaterinburg anthrax outbreak, see Sverdlovsk anthrax outbreak
Yeltsin, Boris, 300
Yersinia enterocolitica, 235
Yersinia pestis, 239, 295, 298
YhaX, 25T
YhbA, 25T
YhbB, 25T
YheC, 25T
YheD, 25T
YhjR, 25T
YirY, 25T
YisY, 25T
YjdH, 25T
YknT, 25T
YkuD, 26T
YlbD, 26T
YobN, 26T
YodI, 26T
YpeB, 49
ypeB operon, 49
Zimbabwe anthrax outbreak of 1978–82, 12