CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxiii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Class Discovery</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Dimensional Reduction</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Class Prediction</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Classification Rules of Thumb</td>
<td>5</td>
</tr>
<tr>
<td>1.5 DNA Microarray Datasets Used</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>PART I CLASS DISCOVERY</td>
<td>13</td>
</tr>
<tr>
<td>2 Crisp K-Means Cluster Analysis</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Algorithm</td>
<td>16</td>
</tr>
<tr>
<td>2.3 Implementation</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Distance Metrics</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Cluster Validity</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1 Davies–Bouldin Index</td>
<td>25</td>
</tr>
<tr>
<td>2.5.2 Dunn’s Index</td>
<td>25</td>
</tr>
<tr>
<td>2.5.3 Intracluster Distance</td>
<td>26</td>
</tr>
<tr>
<td>2.5.4 Intercluster Distance</td>
<td>27</td>
</tr>
<tr>
<td>2.5.5 Silhouette Index</td>
<td>30</td>
</tr>
<tr>
<td>2.5.6 Hubert’s Γ Statistic</td>
<td>31</td>
</tr>
<tr>
<td>2.5.7 Randomization Tests for Optimal Value of K</td>
<td>31</td>
</tr>
<tr>
<td>2.6 V-Fold Cross-Validation</td>
<td>35</td>
</tr>
<tr>
<td>2.7 Cluster Initialization</td>
<td>37</td>
</tr>
</tbody>
</table>
CONTENTS

2.7.1 K Randomly Selected Microarrays 37
2.7.2 K Random Partitions 40
2.7.3 Prototype Splitting 41
2.8 Cluster Outliers 44
2.9 Summary 44
References 45

3 Fuzzy K-Means Cluster Analysis 47
3.1 Introduction 47
3.2 Fuzzy K-Means Algorithm 47
3.3 Implementation 49
3.4 Summary 54
References 54

4 Self-Organizing Maps 57
4.1 Introduction 57
4.2 Algorithm 57
4.2.1 Feature Transformation and Reference Vector Initialization 59
4.2.2 Learning 60
4.2.3 Conscience 61
4.3 Implementation 63
4.3.1 Feature Transformation and Reference Vector Initialization 63
4.3.2 Reference Vector Weight Learning 66
4.4 Cluster Visualization 67
4.4.1 Crisp K-Means Cluster Analysis 67
4.4.2 Adjacency Matrix Method 68
4.4.3 Cluster Connectivity Method 69
4.4.4 Hue–Saturation–Value (HSV) Color Normalization 69
4.5 Unified Distance Matrix (U Matrix) 71
4.6 Component Map 71
4.7 Map Quality 73
4.8 Nonlinear Dimension Reduction 75
References 79

5 Unsupervised Neural Gas 81
5.1 Introduction 81
5.2 Algorithm 82
5.3 Implementation 82
CONTENTS

5.3.1 Feature Transformation and Prototype Initialization 82
5.3.2 Prototype Learning 83
5.4 Nonlinear Dimension Reduction 85
5.5 Summary 87
References 88

6 Hierarchical Cluster Analysis 91
6.1 Introduction 91
6.2 Methods 91
6.2.1 General Programming Methods 91
6.2.2 Step 1: Cluster-Analyzing Arrays as Objects with Genes as Attributes 92
6.2.3 Step 2: Cluster-Analyzing Genes as Objects with Arrays as Attributes 94
6.3 Algorithm 96
6.4 Implementation 96
6.4.1 Heatmap Color Control 96
6.4.2 User Choices for Clustering Arrays and Genes 97
6.4.3 Distance Matrices and Agglomeration Sequences 98
6.4.4 Drawing Dendograms and Heatmaps 104
References 105

7 Model-Based Clustering 107
7.1 Introduction 107
7.2 Algorithm 110
7.3 Implementation 111
7.4 Summary 116
References 117

8 Text Mining: Document Clustering 119
8.1 Introduction 119
8.2 Duo-Mining 119
8.3 Streams and Documents 120
8.4 Lexical Analysis 120
8.4.1 Automatic Indexing 120
8.4.2 Removing Stopwords 121
8.5 Stemming 121
8.6 Term Weighting 121
8.7 Concept Vectors 124
CONTENTS

8.8 Main Terms Representing Concept Vectors 124
8.9 Algorithm 125
8.10 Preprocessing 127
8.11 Summary 137
 References 137

9 Text Mining: N-Gram Analysis 139
9.1 Introduction 139
9.2 Algorithm 140
9.3 Implementation 141
9.4 Summary 154
 References 156

PART II DIMENSION REDUCTION 159

10 Principal Components Analysis 161
10.1 Introduction 161
10.2 Multivariate Statistical Theory 161
 10.2.1 Matrix Definitions 162
 10.2.2 Principal Component Solution of R 163
 10.2.3 Extraction of Principal Components 164
 10.2.4 Varimax Orthogonal Rotation of Components 166
 10.2.5 Principal Component Score Coefficients 168
 10.2.6 Principal Component Scores 169
10.3 Algorithm 170
10.4 When to Use Loadings and PC Scores 170
10.5 Implementation 171
 10.5.1 Correlation Matrix R 171
 10.5.2 Eigenanalysis of Correlation Matrix R 172
 10.5.3 Determination of Loadings and Varimax Rotation 174
 10.5.4 Calculating Principal Component (PC) Scores 176
10.6 Rules of Thumb For PCA 182
10.7 Summary 186
 References 187

11 Nonlinear Manifold Learning 189
11.1 Introduction 189
11.2 Correlation-Based PCA 190
11.3 Kernel PCA 191
11.4 Diffusion Maps 192
CONTENTS

11.5 Laplacian Eigenmaps 192
11.6 Local Linear Embedding 193
11.7 Locality Preserving Projections 194
11.8 Sammon Mapping 195
11.9 NLML Prior to Classification Analysis 195
11.10 Classification Results 197
11.11 Summary 200
References 203

PART III CLASS PREDICTION 205

12 Feature Selection 207
12.1 Introduction 207
12.2 Filtering versus Wrapping 208
12.3 Data 209
 12.3.1 Numbers 209
 12.3.2 Responses 209
 12.3.3 Measurement Scales 210
 12.3.4 Variables 211
12.4 Data Arrangement 211
12.5 Filtering 213
 12.5.1 Continuous Features 213
 12.5.2 Best Rank Filters 219
 12.5.3 Randomization Tests 236
 12.5.4 Multitestinig Problem 237
 12.5.5 Filtering Qualitative Features 242
 12.5.6 Multiclass Gini Diversity Index 246
 12.5.7 Class Comparison Techniques 247
 12.5.8 Generation of Nonredundant Gene List 250
12.6 Selection Methods 254
 12.6.1 Greedy Plus Takeaway (Greedy PTA) 254
 12.6.2 Best Ranked Genes 258
12.7 Multicollinearity 259
12.8 Summary 270
References 270

13 Classifier Performance 273
13.1 Introduction 273
13.2 Input–Output, Speed, and Efficiency 273
13.3 Training, Testing, and Validation 277
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td>Ensemble Classifier Fusion</td>
<td>280</td>
</tr>
<tr>
<td>13.5</td>
<td>Sensitivity and Specificity</td>
<td>283</td>
</tr>
<tr>
<td>13.6</td>
<td>Bias</td>
<td>284</td>
</tr>
<tr>
<td>13.7</td>
<td>Variance</td>
<td>285</td>
</tr>
<tr>
<td>13.8</td>
<td>Receiver–Operator Characteristic (ROC) Curves</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>295</td>
</tr>
<tr>
<td>14</td>
<td>Linear Regression</td>
<td>297</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>297</td>
</tr>
<tr>
<td>14.2</td>
<td>Algorithm</td>
<td>299</td>
</tr>
<tr>
<td>14.3</td>
<td>Implementation</td>
<td>299</td>
</tr>
<tr>
<td>14.4</td>
<td>Cross-Validation Results</td>
<td>300</td>
</tr>
<tr>
<td>14.5</td>
<td>Bootstrap Bias</td>
<td>303</td>
</tr>
<tr>
<td>14.6</td>
<td>Multiclass ROC Curves</td>
<td>306</td>
</tr>
<tr>
<td>14.7</td>
<td>Decision Boundaries</td>
<td>308</td>
</tr>
<tr>
<td>14.8</td>
<td>Summary</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>310</td>
</tr>
<tr>
<td>15</td>
<td>Decision Tree Classification</td>
<td>311</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>311</td>
</tr>
<tr>
<td>15.2</td>
<td>Features Used</td>
<td>314</td>
</tr>
<tr>
<td>15.3</td>
<td>Terminal Nodes and Stopping Criteria</td>
<td>315</td>
</tr>
<tr>
<td>15.4</td>
<td>Algorithm</td>
<td>315</td>
</tr>
<tr>
<td>15.5</td>
<td>Implementation</td>
<td>315</td>
</tr>
<tr>
<td>15.6</td>
<td>Cross-Validation Results</td>
<td>318</td>
</tr>
<tr>
<td>15.7</td>
<td>Decision Boundaries</td>
<td>326</td>
</tr>
<tr>
<td>15.8</td>
<td>Summary</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>329</td>
</tr>
<tr>
<td>16</td>
<td>Random Forests</td>
<td>331</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>331</td>
</tr>
<tr>
<td>16.2</td>
<td>Algorithm</td>
<td>333</td>
</tr>
<tr>
<td>16.3</td>
<td>Importance Scores</td>
<td>334</td>
</tr>
<tr>
<td>16.4</td>
<td>Strength and Correlation</td>
<td>338</td>
</tr>
<tr>
<td>16.5</td>
<td>Proximity and Supervised Clustering</td>
<td>342</td>
</tr>
<tr>
<td>16.6</td>
<td>Unsupervised Clustering</td>
<td>345</td>
</tr>
<tr>
<td>16.7</td>
<td>Class Outlier Detection</td>
<td>348</td>
</tr>
<tr>
<td>16.8</td>
<td>Implementation</td>
<td>350</td>
</tr>
<tr>
<td>16.9</td>
<td>Parameter Effects</td>
<td>350</td>
</tr>
<tr>
<td>16.10</td>
<td>Summary</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>358</td>
</tr>
</tbody>
</table>
17 K Nearest Neighbor 361
 17.1 Introduction 361
 17.2 Algorithm 362
 17.3 Implementation 363
 17.4 Cross-Validation Results 364
 17.5 Bootstrap Bias 369
 17.6 Multiclass ROC Curves 373
 17.7 Decision Boundaries 374
 17.8 Summary 377
 References 378

18 Naive Bayes Classifier 379
 18.1 Introduction 379
 18.2 Algorithm 380
 18.3 Cross-Validation Results 380
 18.4 Bootstrap Bias 384
 18.5 Multiclass ROC Curves 386
 18.6 Decision Boundaries 386
 18.7 Summary 389
 References 391

19 Linear Discriminant Analysis 393
 19.1 Introduction 393
 19.2 Multivariate Matrix Definitions 394
 19.3 Linear Discriminant Analysis 396
 19.3.1 Algorithm 397
 19.3.2 Cross-Validation Results 397
 19.3.3 Bootstrap Bias 401
 19.3.4 Multiclass ROC Curves 402
 19.3.5 Decision Boundaries 403
 19.4 Quadratic Discriminant Analysis 403
 19.5 Fisher’s Discriminant Analysis 406
 19.6 Summary 411
 References 412

20 Learning Vector Quantization 415
 20.1 Introduction 415
 20.2 Cross-Validation Results 417
 20.3 Bootstrap Bias 417
 20.4 Multiclass ROC Curves 426
20.5 Decision Boundaries 428
20.6 Summary 428
References 430

21 Logistic Regression 433
21.1 Introduction 433
21.2 Binary Logistic Regression 434
21.3 Polytomous Logistic Regression 439
21.4 Cross-Validation Results 443
21.5 Decision Boundaries 444
21.6 Summary 444
References 447

22 Support Vector Machines 449
22.1 Introduction 449
22.2 Hard-Margin SVM for Linearly Separable Classes 449
22.3 Kernel Mapping into Nonlinear Feature Space 452
22.4 Soft-Margin SVM for Nonlinearly Separable Classes 452
22.5 Gradient Ascent Soft-Margin SVM 454
22.5.1 Cross-Validation Results 455
22.5.2 Bootstrap Bias 457
22.5.3 Multiclass ROC Curves 465
22.5.4 Decision Boundaries 465
22.6 Least-Squares Soft-Margin SVM 465
22.6.1 Cross-Validation Results 470
22.6.2 Bootstrap Bias 477
22.6.3 Multiclass ROC Curves 477
22.6.4 Decision Boundaries 477
22.7 Summary 481
References 483

23 Artificial Neural Networks 487
23.1 Introduction 487
23.2 ANN Architecture 488
23.3 Basics of ANN Training 488
23.3.1 Backpropagation Learning 493
23.3.2 Resilient Backpropagation (RPROP) Learning 496
23.3.3 Cycles and Epochs 496
23.4 ANN Training Methods 497
23.4.1 Method 1: Gene Dimensional Reduction and Recursive Feature Elimination for Large Gene Lists 497
23.4.2 Method 2: Gene Filtering and Selection 502
CONTENTS

27 Mixture of Experts
- 27.1 Introduction 591
- 27.2 Algorithm 595
- 27.3 Cross-Validation Results 596
- 27.4 Decision Boundaries 597
- 27.5 Summary 597

References 599

28 Covariance Matrix Filtering
- 28.1 Introduction 601
- 28.2 Covariance and Correlation Matrices 601
- 28.3 Random Matrices 602
- 28.4 Component Subtraction 608
- 28.5 Covariance Matrix Shrinkage 610
- 28.6 Covariance Matrix Filtering 613
- 28.7 Summary 621

References 622

APPENDIXES

A Probability Primer
- A.1 Choices 627
- A.2 Permutations 628
- A.3 Combinations 630
- A.4 Probability 632
 - A.4.1 Addition Rule 633
 - A.4.2 Multiplication Rule and Conditional Probabilities 634
 - A.4.3 Multiplication Rule for Independent Events 635
 - A.4.4 Elimination Rule (Disease Prevalence) 636
 - A.4.5 Bayes’ Rule (Pathway Probabilities) 637

B Matrix Algebra
- B.1 Vectors 639
- B.2 Matrices 642
- B.3 Sample Mean, Covariance, and Correlation 647
- B.4 Diagonal Matrices 648
- B.5 Identity Matrices 649
- B.6 Trace of a Matrix 650