Contents

Preface ix
List of Abbreviations xi
List of Symbols xvii

1 Introduction to EEG 1

1.1 History 1
1.2 Neural Activities 4
1.3 Action Potentials 5
1.4 EEG Generation 7
1.5 Brain Rhythms 10
1.6 EEG Recording and Measurement 13
1.6.1 Conventional Electrode Positioning 15
1.6.2 Conditioning the Signals 18
1.7 Abnormal EEG Patterns 20
1.8 Ageing 22
1.9 Mental Disorders 22
1.9.1 Dementia 22
1.9.2 Epileptic Seizure and Nonepileptic Attacks 24
1.9.3 Psychiatric Disorders 28
1.9.4 External Effects 29
1.10 Summary and Conclusions 30
References 31

2 Fundamentals of EEG Signal Processing 35

2.1 EEG Signal Modelling 36
2.1.1 Linear Models 42
2.1.2 Nonlinear Modelling 45
2.1.3 Generating EEG Signals Based on Modelling the Neuronal Activities 47
2.2 Nonlinearity of the Medium 50
2.3 Nonstationarity 50
2.4 Signal Segmentation 51
2.5 Signal Transforms and Joint Time–Frequency Analysis 55
2.5.1 Wavelet Transform 58
2.5.2 Ambiguity Function and the Wigner–Ville Distribution 64
2.6 Coherency, Multivariate Autoregressive (MVAR) Modelling, and Directed Transfer Function (DTF) 67
2.7 Chaos and Dynamical Analysis 71
 2.7.1 Entropy 71
 2.7.2 Kolmogorov Entropy 71
 2.7.3 Lyapunov Exponents 72
 2.7.4 Plotting the Attractor Dimensions from the Time Series 74
 2.7.5 Estimation of Lyapunov Exponents from the Time Series 75
 2.7.6 Approximate Entropy 77
 2.7.7 Using the Prediction Order 78
2.8 Filtering and Denoising 79
2.9 Principal Component Analysis 83
 2.9.1 Singular-Value Decomposition 84
2.10 Independent Component Analysis 86
 2.10.1 Instantaneous BSS 90
 2.10.2 Convolutive BSS 95
 2.10.3 Sparse Component Analysis 98
 2.10.4 Nonlinear BSS 99
 2.10.5 Constrained BSS 100
2.11 Application of Constrained BSS: Example 102
2.12 Signal Parameter Estimation 104
2.13 Classification Algorithms 105
 2.13.1 Support Vector Machines 106
 2.13.2 The k-Means Algorithm 114
2.14 Matching Pursuits 117
2.15 Summary and Conclusions 118
References 119

3 Event-Related Potentials 127
3.1 Detection, Separation, Localization, and Classification of P300 Signals 131
 3.1.1 Using ICA 132
 3.1.2 Estimating Single Brain Potential Components by Modelling ERP Waveforms 132
 3.1.3 Source Tracking 135
 3.1.4 Localization of the ERP 137
 3.1.5 Time–Frequency Domain Analysis 142
 3.1.6 Adaptive Filtering Approach 145
 3.1.7 Prony’s Approach for Detection of P300 Signals 148
 3.1.8 Adaptive Time–Frequency Methods 151
3.2 Brain Activity Assessment Using ERP 153
3.3 Application of P300 to BCI 154
3.4 Summary and Conclusions 155
References 156

4 Seizure Signal Analysis 161
4.1 Seizure Detection 166
 4.1.1 Adult Seizure Detection 166
 4.1.2 Detection of Neonate Seizure 171
4.2 Chaotic Behaviour of EEG Sources 175
4.3 Predictability of Seizure from the EEGs 176
4.4 Fusion of EEG–fMRI Data for Seizure Prediction 189
4.5 Summary and Conclusions 191
References 191

5 EEG Source Localization 197

5.1 Introduction 197
 5.1.1 General Approaches to Source Localization 198
 5.1.2 Dipole Assumption 198
5.2 Overview of the Traditional Approaches 201
 5.2.1 ICA Method 201
 5.2.2 MUSIC Algorithm 201
 5.2.3 LORETA Algorithm 204
 5.2.4 FOCUSS Algorithm 206
 5.2.5 Standardized LORETA 206
 5.2.6 Other Weighted Minimum Norm Solutions 208
 5.2.7 Evaluation Indices 209
 5.2.8 Joint ICA–LORETA Approach 210
 5.2.9 Partially Constrained BSS Method 211
5.3 Determination of the Number of Sources 213
5.4 Summary and Conclusions 215
References 215

6 Sleep EEG 219

6.1 Stages of Sleep 220
 6.1.1 NREM Sleep 220
 6.1.2 REM Sleep 222
6.2 The Influence of Circadian Rhythms 222
6.3 Sleep Deprivation 224
6.4 Psychological Effects 224
6.5 Detection and Monitoring of Brain Abnormalities During Sleep by EEG Analysis 225
 6.5.1 Detection of the Rhythmic Waveforms and Spindles Incorporating Blind Source Separation 225
 6.5.2 Application of Matching Pursuit 227
 6.5.3 Detection of Normal Rhythms and Spindles using Higher Order Statistics 228
 6.5.4 Application of Neural Networks 231
 6.5.5 Model-Based Analysis 232
 6.5.6 Hybrid Methods 234
6.6 Concluding Remarks 235
References 235

7 Brain–Computer Interfacing 239

7.1 State of the Art in BCI 240
 7.1.1 ERD and ERS 243
 7.1.2 Transient Beta Activity after the Movement 244
 7.1.3 Gamma Band Oscillations 245
 7.1.4 Long Delta Activity 245
7.2 Major Problems in BCI 245
 7.2.1 Preprocessing of the EEGs 245
Contents

7.3 Multidimensional EEG Decomposition 248
 7.3.1 Space–Time–Frequency Method 251
 7.3.2 Parallel Factor Analysis 251
7.4 Detection and Separation of ERP Signals 255
7.5 Source Localization and Tracking of the Moving Sources within the Brain 255
7.6 Multivariant Autoregressive (MVAR) Modelling and Coherency Maps 255
7.7 Estimation of Cortical Connectivity 257
7.8 Summary and Conclusions 260
References 261

Index 267