Index

a
Absorbed dose 306, 360–363
Absorbed Fraction AF (T–S) 425, 431, 433–436
Absorption spectra 58–60
Absorption edges 346–348
Accelerator(s)
 – cyclotron 165–166
 – linear accelerator 165
Accumulated dose 426–428
Actinium series 267, 269
Activation products
 – calculations 175–182
 – cross sections (n,γ) 177–181
 – in reactors 246
 – photon activation 188
Activity 116
Activity-mass 128
Alpha–neutron sources 640
Alpha-particle(s)
 – Bragg–Kleeman rule 315
 – energy of 94
 – identification 313
 – interactions 162, 163, 312
 – mass, exact 744
 – range 314–316
 – recoil energy 95–96
 – theory of 96
 – transformation by 93
 – scattering 55 57
Annihilation radiation 89
Annual Limit on Intake (ALI) 446, 452–457, 459–464
Atmospheric dispersion 485–490
 – atmospheric stability classes 490
 – building wake effects – mechanical turbulence 500–506
 – deposition/depletion-guassian plumes 511–518
 – distance, x_max, of maximum concentration (γ_max) 494
 – fumigation 497–499
 – ground level release 503
 – puff release 506–507
 – sector-averaged γ/Q values 507–511
 – stack effects on atmospheric dispersion 495–496
Atomic mass unit 10
Atomic structure 54–63
Atom(s)
 – atom dimensions 9
 – Bohr model 57
 – nebular 69, 76
 – nuclear atom 56
 – nuclear shell model 74, 76
 – structure of 2–7, 73–75
Attenuation coefficient, photons 375–381
Auger electrons 154
Avogadro’s number 10, 37–39

b
Background radiation 255ff
 – cosmic rays 260–263
 – cosmogenic 263–264
 – terrestrial 259
Backscatter peak 571
Backscatter of beta particles 327
Backscatter factors, x-rays 721
Barn, unit of 159
Bateman equations 134
 – for radon 288–292
Becquerel, definition of 117
Beryllium-7 265–266
Beta contamination 328
Beta dose 324–328
 – backscatter effect 327
 – bremsstrahlung production 318

Physics for Radiation Protection: A Handbook, James E. Martin
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40611-5
Index

- calculations 324–330
- contaminated surface 327
- hot particles 329

Beta energy 84, 87, App D (pp. 763–790)
- average energy 90
- spectra 84

Beta particle(s)
- absorption coefficients 323–326
- attenuation of 321, 368
- backscatter effect 327
- bremsstrahlung effect 371–374
- dose 324–330
- energy of 84, 87, App. D (pp. 763–790)
- interactions 317–321
- measurement 575
- range–energy curve 322
- range–energy determination 587
- shielding 368–373
- stopping powers 326
- transformation by 81

Beta–beta transformation 85

Beta transformation 81

Binding energy 25–26
- nuclear binding energy 24–26, 746–753
- of electrons App. C (pp. 755–761)
- per nucleon 25

Binomial distribution 593

Bioassay 468, 473, 477–478

Biokinetics of radionuclides 446–448

Boiling water reactor 217–219

Bohr model of atom 57–63, 66

Bonner-sphere counter 668–669

Boron neutron capture therapy 659

Boron-trifluoride counter 667

Bragg curve 314

Bragg–Gray theory 355

Bragg–Kleeman rule 315

Breeder reactor 227–229

Bremsstrahlung 318
- beta interactions 371–374
- shielding 373–374
- x-rays 149–151, 678–682

Building wake effects-plume dispersion 500–506

Buildup factor 384ff
- area source 402–404
- layered absorbers 416
- line source 398–401
- mathematical formulations 393–398
- neutrons 662
- photons 374–382
- protons 417–419

- shield thickness 391–393
- tables of 385–389
- thick slabs 410–414

C

Cadmium ratio 671

Calandria 224

CANDU reactor 226–227

Carbon-14
- beta spectrum 84
- dating 284
- liquid scintillation analysis 581–583
- natural occurrence 284
- production reactions 161, 174
- transformation of 81

Cathode rays 30–31

Cerenkov radiation 319–321

Characteristic x-rays 151–153

Charged particle emission 173

Chart of nuclides, excerpts 7–9, 80, 86, 180, 181, 237, 247, 248

Chauvenet’s criterion 617–618

Chernobyl reactor 526–528

Chi-square test 615

Chlorine-36, production of 263

Committed Effective Dose Equivalent (CEDE) 445–446

Compound nucleus 156–158, 173

Compton continuum 567

Compton edge 567

Compton effect 50–52, 332–334
- absorption coefficient 333
- maximum recoil electron energy 52
- recoil electron energy 51
- scattered photon energy 52
- wavelength 333

Confidence interval, statistical 596–598

Conversion electrons 102–107

Convertor reactor 226

Coulomb’s law 2

Criticality accidents 538–544

Criticality safety 544–550

Cross section(s) 158–160
- fission 207
- heavy elements 181
- light elements 180
- neutron-particle emission, App. F
- photon interactions 189
- deuteron reactions 169–172
- unit (barn) 159
- 1/v dependence 159

Curie, definition of 116

Cyclotron 165–169
Index

radionuclide production by 166–172
neutron production 640

D
Davison and Germer experiment 64–65
DeBroglie waves 63–66
Decay heat, reactor 221
Decay scheme(s) 112–115,
 App. D (pp. 763–790)
 35Br, 87mKr 109
 252Cf 110
 137Cs 103
 64Cu 108
 131I 114
 7Kr, 73mBr 111
 99Mo, 99mTc 101
 226Ra 96
Deep dose 309, 362
Delayed critical 211
Delayed neutrons 109, 211,
 App. E (pp. 792–812)
Delta ray(s) 318
Density, selected materials 342–343,
 376–381, 383
Density thickness 323, 326
Deposition/Depletion – Gaussian Plumes
511
 dry deposition 511–514
 resuspension 515–516
 wet deposition 517–519
Derived Air Concentration (DAC) 446,
 452–457
Detectors 557ff
 gas filled 557–560
 GM 559, 572
 proportional 560
 semiconducting 562
 spectrometers 561
Deuteron(s)
 cross section data 170–173
 interactions 169, 640
 mass 744
Disintegration constant 120
Dose equivalent 306
Dose Reciprocity Theorem 437
Dosimeters 577ff
 exposure/dose 356–361
 Faraday 38–39
 film badge 577
 first collision dose 649–651
Fission, nuclear 191
 reactions 191
Fission counters 667
Fission product(s) 236ff
 activity 242–243

E
Effective half life 122, 426
Elastic scattering reaction 157, 209, 647–649
Electromagnetic force 2
Electromagnetic radiation 39–50
 Planck’s hypothesis 43–45
 Raleigh-Jeans law 42
 spectrum 48
 Weins law 41
Electromagnetic spectrum 48
Electron capture 91
Electronic equilibrium 353–355
Electrons
 charge 3, 35, 36, 744
 discovery 34
 mass, approx. 3, 35
 mass, exact 37, 744
Electron volt 22
Emanation 288
Emission spectra 59
Endoergic reaction 160
Energy
 alpha particle energy 94–96
 basic concepts 11–15
 beta particle energy 84
 kinetic energy 12
 mass-energy 20
 potential energy 12
 relativistic energy 15–19
 transferred by photons 348–351
Energy absorption coefficient 340–347
Energy transfer coefficient 349–353
Entrance skin exposure 725
Environmental models, elements of 483–485
Escape peak 570
 double escape 570
 iodine escape 570
 single escape 570
 x-ray escape 570
$E_1(x)$ and $E_2(x)$ functions 405–408
Exclusion principle 70
Exoergic reaction 160
Exponential integral functions, tables of
 405–408
Exposure/dose 356–361

F
Faraday 38–39
Film badge 577
First collision dose 649–651
Fission, nuclear 191
 reactions 191
Fission counters 667
Fission product(s) 236ff
 activity 242–243
Index

- criticality 550–553
- dose from 535–538
- fast fission 551–553
- fission yields 238, 239, App. E (pp. 791–811)
- poisons 243
- production of 240
- radioactivity of 246
- rules-of-thumb 537
- thermal fission of 239Pu 238, App. E (pp. 791–811)
- thermal fission of 235U 238, App. E (pp. 791–811)
- yield curve 238

Fission yields
- by mass number 791–811
- curve 238
- curve for 252Cf 110

Flux depression, neutrons 672–673
Focal spot 684
Forces of nature 1
Fuel cladding 235–236
Full width at half maximum (FWHM) 566
Fumigation 497–499
Fusion, nuclear
- reactions 192
- weapons 195, 533

Gamma emission 99
Gamma ray constant 358–359
Gamma spectroscopy 563–572
- energy resolution 566
- photons, $E \leq 1.022$ MeV 563
- photons, $E \geq 1.022$ MeV 568
- positron emitters 571
Gas-cooled reactor 232
Gaussian plumes 486–488
Geiger–Müller
- thin-window detector 572
- end-window GM 583
- region 559
Geiger–Nuttal rule 98
Generators, radionuclide, for 99mTc 139–141
GI Tract Model 458
Good geometry 337, 375, 645
Gray 306

Halflife 120
- determination of 126
- effective 122, 426
Half-value layer 381–384

Helium
- alpha particle 5, 80, 313
- mass 744
Helium-filled detectors (neutrons) 667
Hot particles, dose from 329
HTGR 233

In
Inelastic scattering reaction 157, 209
Ingested radionuclides, doses of 458
Ingestion dose factors 459–464
Ingestion model 458
Inhalation deposition/clearance 446–451
Inhalation dose factors 452–457
Inhaled radionuclides, doses of 448
Intake retention fractions 468–475
Intake retention functions 442

Interactions
- absorption 157
- alpha particles, heavy nuclei 311–317
- beta particles 317–324
- photons 330
- pickup and stripping 157
- scattering 157
Internal conversion 101–105
Internal Radiation Dose 425–481
- absorbed fractions 433–436
- accumulated Dose 426–428
- bioassay Estimates 468, 473
- deposition and clearance data 439–441
- energy emission per transformation 431
- dose rate 426
- medical uses 429
- retention functions 442
- tissue masses 430
Internal transition 100
International Commission on Radiological Protection (ICRP) 444
Inverse-square law 309
Ion chamber 576
Isomeric (metastable) state 100

K
K-edge absorption 564, 696
K-edge filters 694
Kerma 348–355, 361–363, 656

L
Line of stability 80
Light ions, range of 418
Linear attenuation coefficient 339
Linear energy transfer (LET) 311
Liquid scintillation analysis 579–582
-- sample quench 582
Lithium
-- 'Li 167, 195, 250, 534, 667
-- 'Li 164, 165, 168, 250, 534
Lithium detectors (neutrons) 667
Log normal statistics 630
Long counter 668
Lower level of detection 622
Lung Model 447–451

m
Macroscopic cross section 645, 663
Magic numbers 74–75
Manhattan project radionuclides 281–283
Mass-energy 20
Mass-energy absorption coefficient 341–346
Masses
-- nuclides, amu App. B (pp. 746–753)
-- particles, amu 744
Maximum activity, time of 135
Mean free path, neutrons 646
Mean life 121
Medical radionuclides 184–186
Metastable states of radionuclides 100
Minimum detectable activity 619ff
-- concentration in a sample 626
-- for contamination 628
Moderator 214
Multi-Compartment Clearance/Retention of Radionuclides 438–441

n
Narrow beam geometry 337
Natural reactor 524
Naturally occurring radiation and radioactivity 255ff
-- naturally radioactive series 267–274
-- Neptunium series 271, 274
-- Th radionuclides 270, 274
-- U radionuclides 267, 268, 272
Neutrino(s)
-- discovery of 144
-- energy of 81
-- in beta transformation 84
-- losses in nuclear energy 204
-- monoenergetic 92
Neutron activation 177–181
Neutron(s) 73, 639–674
-- activation foil measurement 670
-- attenuation and absorption 644–646
-- buildup factor 662
-- cross sections 160, 178, 180–182, 642, 647–649
-- discovery of 73
-- dosimetry 646–656
-- flux depression 672–673
-- interactions 171–177, 643–646
-- kerma 656
-- mass, approx. 3
-- mass, exact 744
-- measurement 666–671
-- particle emission cross sections App. F
-- removal coefficient 622–664
-- shielding 659–665
Nitrogen-16 production 249
NORM 276
Normal distribution 594
Nuclear criticality
-- accidents 524–531, 538–542
-- critical masses 547
-- critical thicknesses 548
-- fission product releases 550
-- radiation dose 543
-- safety parameters 546
Nuclear force 1, 2
Nuclear interactions 156ff
-- alpha–neutron 163
-- deuterons 168, 169
-- medical isotopes 184–185
-- neutrons 171–178
-- pick up interactions 157
-- proton–alpha 166
-- proton–neutron 167
-- stripping interactions 157
Nuclear reactors 212–234
-- boiling water reactor 217
-- breeder reactor 227
-- CANDU 223
-- decay heat 221
-- design systems 213
-- four-factor formula 210
-- gas-cooled 232
-- heavy water reactor 223
-- light water reactors 215–221
-- liquid metal cooled 229
-- neutron economy 210
-- power reactors 212–232
-- pressurized water reactor 215
-- radioactivity 234
-- reactivity k eff 210
-- safety features 219–221
-- six-factor formula 210
-- wastes from 250
Nuclear weapons 532–535
-- fission products from 535
-- fusion weapons 533
Index

- radiation doses 535
Nucleus
- liquid-drop model 74, 201
- shell model 74
- size 4

O
Ores
- phosphate 279–280
- phosphorous (elemental) 280
- pitchblende 278, 281
- radioactive 276–278
- thorium 283
- uranium 278–283

P
Pair production 334–336
- absorption coefficient 336
Particle size determination 633–637
Pauli exclusion principle 70–71
Personnel dosimeter 577–579
PET (positron emission tomography) 184
Photodisintegration 336
Photoelectric effect 46–50, 331–332
- absorption coefficient 332
Photon(s) 49, 188, 330, 342, 343
- absorption/attenuation coefficients 376–382
- attenuation, good geometry 337, 383
- attenuation, poor geometry 337, 384
- capture gammas 201
- energy absorption 342–343
- energy transfer 348–353
- interactions 188
- prompt gammas 204
- shielding for 374–390
Photoneutron sources 188, 640
Photonuclear cross sections 189–190
Planck’s constant 44, 53, 743
Plutonium 212, 227–230, 238, 532–533, 541–550, 552
Point kernel 399
Point sources
- dose from 310
- shielding for 374–390
Poisson distribution 593
Poor geometry 374–382, 384, 645
Positron emission 87
Positron-emitting radionuclides 571
Pressurized water reactor 215–217
Primordial radionuclides 274–276
Prompt gammas 204
Prompt critical 351

Propagation of error(s) 602–605
- background subtraction 603
- multiple parameters 605
Proportional counter 583
- windowless 585
Proton emission 111
Proton(s)
- charge 3
- cross sections 185
- emission 111
- interactions 165–169
- mass, approx. 3
- mass, exact 744
- range 418

Quantized energy 44–45, 53
Quantum numbers 70
Quantum theory of radiation 46–52
- Planck’s distribution law 45
Q-value 24, 93, 160
- in fission 191, 203

rad 306
Radiation detectors 557ff
- crystalline 561
- gas-filled 583
- Geiger–Müller 585
- germanium 562, 569
- ion-chamber 573
- micro-rem meter 574
- semiconductor 562
- sodium-iodide 572
- surface barrier 586
Radiation dose 305–306
- absorbed dose 306
- beta particles 324–328
- calculations 356–362
- dose equivalent 306
Radiation exposure 307
- calculations 356
- energy deposition 308
- point sources 357
- unit (R) 307
- X unit 307
Radiation measurement(s) 557ff
- beta energy 332, 587
- Geiger–Müller counter(s) 572
- laboratory instruments 579–585
- portable instruments 572
- proportional counter 583
Radiation shielding, see Shielding
Index

Radiative capture reactions 172
- cross sections for 180, 181
Radioactive constant, see Disintegration constant
Radioactive transformation 79ff
- decay schemes 112
- delayed neutron emission 109
- disintegration constant 120
- heavy nuclides 98
- multiple modes 107
- neutron-rich nuclides 81
- number of transformations 142
- processes 79–81
- proton-rich nuclides 85
- spontaneous fission 109
Radioactivity
- activation products 246
- calculations 123ff
- discovery of 32–34, 256–258
- natural 174ff
- series 131–139
- units of 134
Radioactivity dating 284ff
- by primordial nuclides 285
- carbon dating 284
- 210Pb method 287
- potassium-argon method 286
- 230Th (ionium) method 287
Radium
- in water treatment sludge 279
- 223Ra 282
- 226Ra 94–96, 272–273, 279, 281
- 228Ra 274, 283
Radon 288–296
- calculations 290–296
- transformation products 288
- working level 292
- measurement 296
RBMK reactor 527
Reactors, see Nuclear reactors
Reactor accidents(s)
- Chernobyl 526–528
- NRX 529
- SL-1 529
- Three Mile Island 524–526
Reactor containment 215
Reactor pressure vessel 215
Reflector 217
Rejection of data 617
Rem ball (neutrons) 668
Rem, definition of 307
Resonance capture 208
Resonance energies 208, 345
Resonance escape probability 209
Respiratory Tract Model 447–451
Risk based standards 444–446
Röntgen, definition of 307
- energy equivalence 307
S
Samarium reactor poison 245
Schrödinger wave equation 68–70
Secular radioactive equilibrium 136
Series decay 131–134
Shallow dose 309, 326, 362
Shielding
- alpha particle sources 367
- area sources 403, 409
- beta sources 368
- disk and planar sources 402
- line sources 399
- photon sources, good geometry 375–381
- photon sources, poor geometry 384
- point sources 374–390
- protons 417
- ring sources 401
- thick slabs 410–414
- volume sources 414
Sievert 307
Sodium-22 87–88
- gamma spectrum 571
- natural production 263
Specific activity 128–130
Spectroscopy, gamma 563–572
Spontaneous fission sources 109
Statistics for radioactivity determinations 591ff
- activity measurement(s) 598
- background subtraction 603
- critical level 620
- data sets 626
- efficient distribution of count time 612
- error propagation 602–605
- gamma spectroscopy 613
- laboratory measurements 609–617
- less than level 622
- lower level of detection (LLD) 622
Stopping power 312
Student t test 606
Submersion dose 468–469
Sum peak 571, 572
Surface barrier detectors 586
T
Target depletion 177
Tenth-value layer 382
Index

Ternary fission 250
Thermal neutrons 641, 644
Thermoluminescent dosimeter (TLD) 578
Thermonuclear weapons 533–535
Thorium series 268
Three Mile Island reactor 524
Tissue Masses 430
Tissue Weighing Factors, \(w_T \) 445
Total Effective Dose Equivalent (TEDE) 444
Transient radioactive equilibrium 138
Transuranic elements 98, 186
Tritium
 – bioassay 477
 – biokinetics 475–478
 – dosimetry of 475
 – in reactors 249
 – natural production 264
 – weapons 533
Tritons, range of 418

U
Uncertainty principle 71–72
Uranium enrichment 222

V
Virtual source, atmospheric dispersion 412

W
Water treatment radioactivity 279
Wave mechanics 67–69
Weighted sample mean 616
Working level, Rn 292

X
X rays 675–735
 – airgaps and grids 703–707
 – bucky factor 707
 – backscatter factors 721
 – discovery of 31
 – energies 678, 682
 – equipment techniques 687
 – exposure guides 725
 – exposure rate(s) 722
 – film/screen systems 707–710, 722
 – filters 691–695
 – generators 677–679
 – H&D curve(s) 711
 – heel effect 685
 – image formation 697–699, 702
 – image processing 710–716
 – mammography 696, 716, 677
 – production of 148, 677
 – radiation protection for 717–724
 – rotating anodes 686
 – shielding calculations 726–733
 – three-phase 691
 – x-ray tubes 682–684
 – x-ray yield 679–681
Xenon-135 243–245