Contents

Preface XIX

1 Atoms and Energy 1
 1.1 Structure of Atoms 2
 1.1.1 Two-proton Atoms 6
 1.1.2 Three-proton Atoms 7
 1.2 Nuclide Chart 7
 1.3 Atom Measures 9
 1.3.1 Avogadro’s Number 10
 1.3.2 Atomic Mass Unit (u) 10
 1.4 Energy Concepts for Atoms 11
 Checkpoints 14
 1.5 Relativistic Energy 15
 1.5.1 Momentum and Energy 18
 1.5.2 Effects of Velocity 18
 1.5.3 A Natural Limit 19
 1.5.4 Mass-energy 20
 Checkpoints 21
 1.6 Electron Volt (eV) 22
 1.7 Binding Energy of Nuclei 23
 1.7.1 Calculation of Binding Energy 24
 1.7.2 Q-value Calculations 24
 1.8 Summary and Checkpoints 26

Other Suggested Sources 28

Problems – Chapter 1 28

2 Major Discoveries in Radiation Physics 29
 2.1 Great Discoveries from Simple Tools 30
 2.1.1 Discovery of X-rays (1895) 31
 2.1.2 Discovery of Radioactivity 32
 2.1.3 Discovery of the Electron 34
 2.1.4 The Electron’s Charge 35
 2.2 First Concept of the Atom 37
Checkpoints

2.3 Theory of Electromagnetic Radiation: the Quantum

2.3.1 Wein’s Law
2.3.2 Rayleigh–Jeans Law
2.3.3 Planck’s Quantum Theory of Radiation

2.3.4 Quantum Theory and the Photoelectric Effect
2.3.5 Electromagnetic Spectrum
2.3.6 The Photon
2.3.7 Compton Effect

Checkpoints: Quantized Energy

2.4 Discovery of the Atom’s Structure

2.4.1 Rutherford’s Alpha Scattering Experiments
2.4.2 Bohr Model of the Atom
2.4.3 Emission and Absorption Spectra

2.5 Wave Mechanics: a Necessary Theory

2.5.1 De Broglie Waves
2.5.2 Confirmation of de Broglie’s Hypothesis
2.5.3 De Broglie Waves and the Bohr Model
2.5.4 Wave Mechanics
2.5.5 Exclusion Principle
2.5.6 Uncertainty Principle

2.6 Atom Systems

2.6.1 The Neutron
2.6.2 Nuclear Shell Model

2.7 Summary

Other Suggested Sources

Problems – Chapter 2

3 Radioactive Transformation

3.1 Processes of Radioactive Transformation
3.1.1 Transformation of Neutron-rich Radioactive Nuclei
3.1.2 Double Beta ($\beta\beta$) Transformation
3.1.3 Transformation of Proton-rich Nuclei
3.1.4 Positron Emission
3.1.5 Average Energy of Neutron and Positron Emitters
3.1.6 Electron Capture (EC)
3.1.7 Radioactive Transformation of Heavy Nuclei by Alpha Particle Emission
3.1.8 Theory of Alpha Particle Transformation
3.1.9 Transuranic (TRU) Radionuclides
3.1.10 Gamma Emission
3.1.11 Internal Transition (Metastable or Isomeric States)
3.1.12 Internal Conversion
3.1.13 Multiple Modes of Radioactive Transformation
4.6 Neutron Interactions

4.6.1 Radiative Capture \((n,\gamma)\) Reactions

4.6.2 Charged Particle Emission (CPE)

4.6.3 Neutron–Proton \((n,p)\) Reactions

4.6.4 Neutron–Neutron \((n,2n)\) Reactions

4.7 Activation Product Calculations

4.7.1 Neutron Activation Product Calculations

4.7.2 Charged Particles Calculations

4.8 Medical Isotope Reactions

4.9 Transuranium Elements

4.10 Photon Interactions

4.10.1 Activation by Photons

4.11 Fission and Fusion Reactions

4.11.1 Fission

4.11.2 Fusion

4.12 Summary

5 Nuclear Fission and its Products

5.1 Fission Energy

5.2 Physics of Sustained Nuclear Fission

5.3 Neutron Economy and Reactivity

5.4 Nuclear Power Reactors

5.4.1 Reactor Design: Basic Systems

5.5 Light Water Reactors (LWRs)

5.5.1 Pressurized Water Reactor (PWR)

5.5.2 Boiling Water Reactor (BWR)

5.5.3 Inherent Safety Features of LWRs

5.5.4 Decay Heat in Power Reactors

5.5.5 Uranium Enrichment

5.6 Heavy Water Reactors (HWRs)

5.6.1 HWR Safety Systems

5.7 Breeder Reactors

5.7.1 Liquid Metal Fast Breeder Reactor (LMFBR)

5.8 Gas-cooled Reactors

5.8.1 High-temperature Gas Reactor (HTGR)

5.9 Reactor Radioactivity

5.9.1 Fuel Cladding

5.9.2 Radioactive Products of Fission

5.9.3 Production of Individual Fission Products

5.9.4 Fission Products in Spent Fuel

5.9.5 Fission Product Poisons

5.10 Radioactivity in Reactors

5.10.1 Activation Products in Nuclear Reactors
5.10.2 Tritium Production in Reactors 249
5.10.3 Low-level Radioactive Waste 250
5.11 Summary 251
Acknowledgments 252
Other Suggested Sources 253
Problems – Chapter 5 253

6 Naturally Occurring Radiation and Radioactivity 255
6.1 Discovery and Interpretation 256
6.2 Background Radiation 259
6.3 Cosmic Radiation 260
6.4 Cosmogenic Radionuclides 263
6.5 Naturally Radioactive Series 267
6.5.1 Neptunium Series Radionuclides 274
6.6 Singly Occurring Primordial Radionuclides 274
6.7 Radioactive Ores and Byproducts 276
6.7.1 Resource Recovery 278
6.7.2 Uranium Ores 278
6.7.3 Water Treatment Sludge 279
6.7.4 Phosphate Industry Wastes 279
6.7.5 Elemental Phosphorus 280
6.7.6 Manhattan Project Wastes 281
6.7.7 Thorium Ores 283
6.8 Radioactivity Dating 284
6.8.1 Carbon Dating 284
6.8.2 Dating by Primordial Radionuclides 285
6.8.3 Potassium–Argon Dating 286
6.8.4 Ionium (\(^{230}\)Th) Method 287
6.8.5 Lead-210 Dating 287
6.9 Radon and its Progeny 288
6.9.1 Radon Subseries 289
6.9.2 Working Level for Radon Progeny 292
6.9.3 Measurement of Radon 296
6.10 Summary 300
Acknowledgements 301
Other Suggested Sources 301
Problems – Chapter 6 302

7 Interactions of Radiation with Matter 305
7.1 Radiation Dose and Units 305
7.1.1 Radiation Absorbed Dose 306
7.1.2 Radiation Dose Equivalent 306
7.1.3 Radiation Exposure 307
7.2 Radiation Dose Calculations 309
7.2.1 Inverse Square Law 309
8.3.3 Shielding of Poor Geometry Photon Sources 384
8.3.4 Use of Buildup Factors 390
8.3.5 Effect of Buildup on Shield Thickness 391
8.3.6 Mathematical Formulations of the Buildup Factor 393
8.4 Gamma Flux for Distributed Sources 398
8.4.1 Line Sources 399
8.4.2 Ring Sources 401
8.4.3 Disc and Planar Sources 402
8.4.4 Shield Designs for Area Sources 403
8.4.5 Gamma Exposure from Thick Slabs 410
8.4.6 Volume Sources 415
8.4.7 Buildup Factors for Layered Absorbers 416
8.5 Shielding of Protons and Light Ions 417
8.6 Summary 420
Acknowledgments 420
Other Suggested Sources 421
Problems – Chapter 8 421

9 Internal Radiation Dose 425
9.1 Absorbed Dose in Tissue 425
9.2 Accumulated Dose 426
9.2.1 Internal Dose: Medical Uses 429
Checkpoints 429
9.3 Factors In The Internal Dose Equation 430
9.3.1 The Dose Reciprocity Theorem 437
9.3.2 Deposition and Clearance Data 438
9.3.3 Multicompartment Retention 438
9.4 Radiation Dose from Radionuclide Intakes 443
9.4.1 Risk-Based Radiation Standards 444
9.4.2 Committed Effective Dose Equivalent (CEDE) 445
9.4.3 Biokinetic Models: Risk-Based Internal Dosimetry 446
9.4.4 Radiation Doses Due to Inhaled Radionuclides 448
9.4.5 Radiation Doses Due to Ingested Radionuclides 458
9.5 Operational Determinations of Internal Dose 465
9.5.1 Submersion Dose 466
Checkpoints 466
9.6 Bioassay Determination Of Intake 468
9.6.1 Weighted Estimate Of Intake 474
9.6.2 Tritium: a Special Case 475
9.6.3 Bioassay of Tritium: a Special Case 477
9.7 Summary 479
Other Suggested Sources 479
Problems – Chapter 9 480
10 Environmental Dispersion 483
10.1 Atmospheric Dispersion 485
10.1.1 Atmospheric Stability Effects on Dispersion 488
10.1.2 Atmospheric Stability Classes 490
10.1.3 Calculational Procedure: Uniform Stability Conditions 492
10.1.4 Distance x_{max} of Maximum Concentration (x_{max}) 494
10.1.5 Stack Effects 495
10.2 Nonuniform turbulence: Fumigation, Building Effects 497
10.2.1 Fumigation 497
10.2.2 Dispersion for an Elevated Receptor 499
10.2.3 Building Wake Effects: Mechanical Turbulence 500
10.2.4 Concentrations of Effluents in Building Wakes 501
10.2.5 Ground-level Area Sources 503
10.2.6 Effect of Mechanical Turbulence on Far-field Diffusion 504
10.3 Puff Releases 506
10.4 Sector-Averaged v/Q Values 507
10.5 Deposition/Depletion: Gaussian Plumes 511
10.5.1 Dry Deposition 511
10.5.2 Air Concentration Due to Resuspension 515
10.5.3 Wet Deposition 517
10.6 Summary 520
Other Suggested Sources 520
Problems – Chapter 10 521

11 Nuclear Criticality 523
11.1 Nuclear Reactors and Criticality 524
11.1.1 Three Mile Island Accident 524
11.1.2 Chernobyl Accident 526
11.1.3 NRX Reactor: Chalk River, Ontario, December 1952 529
11.1.4 SL-1 Accident 529
11.1.5 K-reactor, Savannah River Site, 1988 530
11.1.6 Special Reactor Experiments 531
11.2 Nuclear Explosions 532
11.2.1 Fission Weapons 532
11.2.2 Fusion Weapons 533
11.2.3 Products of Nuclear Explosions 534
11.2.4 Fission Product Activity and Exposure 535
Checkpoints 537
11.3 Criticality Accidents 538
11.3.1 Y-12 Plant, Oak Ridge National Laboratory, TN: June 16, 1958 538
11.3.2 Los Alamos Scientific Laboratory, NM: December 30, 1958 539
11.3.3 Idaho Chemical Processing Plant: October 16, 1959, January 25, 1961, and October 17, 1978 540
11.3.4 Hanford Recuplex Plant: April 7, 1962 541
11.3.5 Wood River Junction RI: July 24, 1964 541
11.3.6 UKAEA Windscale Works, UK: August 24, 1970 542
11.3.7 Bare and Reflected Metal Assemblies 542
11.4 Radiation Exposures in Criticality Events 543
11.5 Criticality Safety 544
11.5.1 Criticality Safety Parameters 546
11.6 Fission Product Release in Criticality Events 550
11.6.1 Fast Fission in Criticality Events 551
11.7 Summary 553
Acknowledgments 554
Other Suggested Sources 554
Problems – Chapter 11 554

12 Radiation Detection and Measurement 557
12.1 Gas-Filled Detectors 557
12.2 Crystalline Detectors/Spectrometers 561
12.3 Semiconducting Detectors 562
12.4 Gamma Spectroscopy 563
12.4.1 Gamma-Ray Spectra: \(h\nu \leq 1.022 \text{ MeV} \) 563
12.4.2 Gamma-Ray Spectra: \(h\nu \geq 1.022 \text{ MeV} \) 568
12.4.3 Escape Peaks and Sum Peaks 570
12.4.4 Gamma Spectroscopy of Positron Emitters 571
12.5 Portable Field Instruments 572
12.5.1 Geiger Counters 572
12.5.2 Ion Chambers 573
12.5.3 Micromem Meters 574
12.5.4 Alpha Radiation Monitoring 574
12.5.5 Beta Radiation Surveys 575
12.5.6 Removable Radioactive Surface Contamination 576
12.5.7 Instrument Calibration 577
12.6 Personnel Dosimeters 577
12.6.1 Film Badges 577
12.6.2 Thermoluminescence Dosimeters (TLDs) 578
12.6.3 Pocket Dosimeters 579
12.7 Laboratory Instruments 579
12.7.1 Liquid Scintillation Analysis 579
12.7.2 Proportional Counters 583
12.7.3 End-window GM Counters 585
12.7.4 Surface Barrier Detectors 586
12.7.5 Range Versus Energy of Beta Particles 587
Other Suggested Sources 588
Problems – Chapter 12 589
13 Statistics in Radiation Physics 591
13.1 Nature of Counting Distributions 591
13.1.1 Binomial Distribution 593
13.1.2 Poisson Distribution 593
13.1.3 Normal Distribution 595
13.1.4 Mean and Standard Deviation of a Set of Measurements 598
13.1.5 Uncertainty in the Activity of a Radioactive Source 599
13.1.6 Uncertainty in a Single Measurement 601
Checkpoints 601
13.2 Propagation of Error 602
13.2.1 Statistical Subtraction of a Background Count or Count Rate 603
13.2.2 Error Propagation of Several Uncertain Parameters 605
13.3 Comparison of Data Sets 606
13.3.1 Are Two Measurements Different? 606
13.4 Statistics for the Counting Laboratory 609
13.4.1 Uncertainty of a Radioactivity Measurement 609
13.4.2 Determining a Count Time 610
13.4.3 Efficient Distribution of Counting Time 612
13.4.4 Detection and Uncertainty for Gamma Spectroscopy 613
13.4.5 Testing the Distribution of a Series of Counts (the Chi-square Statistic) 615
13.4.6 Weighted Sample Mean 616
13.4.7 Rejection of Data 617
13.5 Levels of Detection 619
13.5.1 Critical Level 620
13.5.2 Detection Limit (Ld) or Lower Level of Detection (LLD) 622
13.6 Minimum Detectable Concentration or Contamination 626
13.6.1 Minimum Detectable Concentration (MDConc.) 626
13.6.2 Minimum Detectable Contamination (MDCont.) 628
13.6.3 Less-than Level (Lt) 629
13.6.4 Interpretations and Restrictions 629
13.7 Log Normal Data Distributions 630
13.7.1 Particle Size Analysis 633
Acknowledgment 637
Other Suggested Sources 637
Chapter 13 – Problems 637

14 Neutrons 639
14.1 Neutron Sources 639
14.2 Neutron Parameters 641
14.3 Neutron Interactions 643
14.3.1 Neutron Attenuation and Absorption 644
14.4 Neutron Dosimetry 646
14.4.1 Dosimetry for Fast Neutrons 649
14.4.2 Dose from Thermal Neutrons 651
Acknowledgments 734
Other Suggested Sources 734
Problems – Chapter 15 735

Answers to Selected Problems 737

Appendix A 743
Appendix B 745
Appendix C 755
Appendix D 763
Appendix E 791
Appendix F 813

Index 815