Index

activation energy, 522
adduct precursors, 359
adduct purification, 300, 477, 496, 499
air-mass-zero (AM0) efficiencies, 538
AIX G5 reactor, 457
AIXTRON planetary reactor, 10, 443, 444, 511, 512
alkohols, 361–362
AlGaN alloy systems, 85–86
AlGaN alloy systems, 53
AlGaN alloy systems, 52
AlInGaAs, 516
AlInGaP, 517, 518
lkali metal fluorides, 480
allyl-iso-propyl telluride (AiPTe), 300
AlN, 11, 522, 523
AlP, 517
(AI,Ga)As/GaAs material system, 71, 74–79
(AI,Ga)InP alloy systems, 81
antiphase boundary (APB), 251, 253–255, 266
antiphase domains (APDs), 251–255, 266
Antoine equation, 357, 362
Arnold's base, 478
arzone (AsH3), 364
aspect ratio trapping (ART), 264
atomic force microscopy (AFM), 179, 246
atomic layer deposition (ALD), 472, 490, 514
atomic-level surface processes, 42–44
atomic probe tomography (APT), 46, 54
avalanche photodiodes (APDs), 538
averaged growth rate profile, 457
axial growth, 219, 226–227
back surface field (BSF), 33
ballistic electron emission microscopy/spectroscopy (BEEM/BEES), 201–202
barrel reactor, 445
barrier Schottky rectifiers, 522
Bass-type reactor cell, 9
beginning of life (BOL) efficiency, 167, 168
β-elimination reactions, 37
BGaInAs alloy systems, 59
BGaN alloy systems, 59
BGaP alloy systems, 59
bis(cyclopentadienyl)magnesium (Cp2Mg), 73, 78
bis(cyclopentadienyl)magnesium, 360
bis(ethylcyclopentadienyl)magnesium, 360
bis(methylcyclopentadienyl)magnesium, 360
black phosphorous, 528
blue LEDs, 109, 136
boundary layer, 10
boundary layer model, 21, 35, 36
bubbling gas, 430
cuffer layers, 186
Burst-Moss effect, 356, 534
burst-illumination LIDAR (BIL), 317
cadmium oxide (CdO), 534
cadmium telluride (CdTe), II-VI semiconductor
bandgap energy and lattice parameters, 6, 326
core-shell nanowire photovoltaic devices, 345–347
heteroepitaxy
GaAs, 329–330
InSb substrates, 327–328
sapphire (0001) substrates, 328–329
silicon, 330, 331
homoepitaxy, 326, 327
inline MOCVD for scaling of, 348–349
low-temperature growth of, 330
LR monitoring, 335–337
photoassisted MOVPE, 332–333
planar solar cells
absorber layer, 338–341
CdCl2 treatment layer, 342–343
CD and CDS window layers, 338
photovoltaic planar devices, 343–345
plasma-assisted MOVPE, 333
polycrystalline, 333–334
precursors, 330, 332
radiation detectors, 350–351
capping layers, 186, 188, 189

Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties, and Applications,
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
carbene insertion, 475
carbometallation, 475
carrier gas, ZnO, 390–391, 397
cathodoluminescence (CL) images, 158
CBr₄, 73, 78, 86
CdCl₂, heat treatment (CHT), 342
CdZnTe (CZT), 296
chalcogenides, 325
charge-neutral interface, 250
chemical beam epitaxy (CBE), 43
chemical mechanical polishing (CMP), 271, 368
chemical potential, 21
chemical vapor deposition (CVD), 1, 243, 244, 246, 490, 509
chloride vapor phase epitaxy, 1
Clausius–Clapeyron equation, 8
close-coupled showerhead (CCS) reactors, 513
III-N materials, 458–459
III-V materials, 445–447
close-space sublimation (CSS), 338
column III antimonides properties and deposition
electronic device structures, epitaxy of (see electronic
device structures)
epitaxy of optoelectronic device structures, 95–99
InSb, GaSb, and AISb deposition, 87–89
melting point temperatures and bandgaps, 87
quaternary alloys, 90
ternary column III alloys (AlGaSb) and (GaIn)Sb, 89
ternary column V alloys In(AsSb), GaAsSb, 89, 90
column III phosphides, arsenides, and antimonides
bandgap energy and lattice constant, 71, 72
GaAs-based materials
(AlGa)As/GaAs properties and deposition, 74–79
GaInP, (AlGa)InP/GaAs properties and deposition, 79–82
InP-based materials
AlInAs/GaInAs/AlGaInAs properties and deposition, 83, 84
AlInAs/GaInAs/InP heterostructures, 84
InP properties and deposition, 82–83
InGaAs, P, properties and deposition, 84–86
precursors for, 72–73
in situ optical characterization/growth control, 100
complementary metal-oxide semiconductor (CMOS) processes, 256, 264, 267
composition-graded buffer (CGB), 153, 156–157, 165
concentrator photovoltaics (CPV), 149
conventional MOCVD, 399
convergent beam electron diffraction (CBED), 394
Coriolis effects, 425
Cp₂Fe see bicyclopentadienyl iron (Cp₂Fe)
Cp₂Mg see bicyclopentadienylmagnesium (Cp₂Mg)
cross-sectional scanning tunneling microscopy (XSTM), 201
crystal LED display, 535
CuInGaSe₂ (CIGS), 338
CVD see chemical vapor deposition (CVD)
cyclopentadienyl (tributylphosphine)-copper, 364
cyclopentadienyl metal compounds, 360
Czochralsky (CZ), 138
dark line defects (DLD), 256
decarboxylation, 475–476
decay transitient spectroscopy (DLTS), 203
defect trapping, 277
delta-lattice-parameter (DLP) model, 22–24
dense wavelength-division multiplexing (DWDM), 536
density-functional theory (DFT), 247
deposition type, 440
dialkylicdium precursors, 495, 496
dialkytelluride precursors, 499
dialkylzincs, 495
diallylamine, 364, 402
diborane, 363
dibutyl tin diacetate, 534
diethylcadmium (Cd(C₂H₅)₂), 360
diethylisopropylarsine (DEIPAs), 493
diethylmethylindium, 488
diethyltelluride (DETe), 6, 73, 299
diethyltertiarybutylarsine (DETBAs), 493
diethylzinc (DEZn), 7, 73, 78, 391, 392, 398–400
diffusion-limited, 386
diffusion-limited growth, 21, 36
dissopropyltelluride (DIPTe), 364
dimethylaluminum fluoride, 480
dimethylaluminum hydride, 484
dimethylcadmium (DMCd), 6, 298–300, 304, 325, 360, 477, 478
dimethylethylamine alane (DMEAAI), 73
dimethylethenedime (DMeSe), 7
dimethyl telluride (DMTe), 325
dimethyl zinc (DMZn), 73, 78, 357–358
diphos, 478
dip leg, 430
direct alloy growth (DAG), 294
direct-bandgap materials, 525
direct liquid injection MOCVD (DLI-MOCVD), 375
direct synthesis, 475
dissopropyltelluride (DIPTe), 330
distributed Bragg reflectors (DBRs), 12, 182, 536
ditertiarybutylsilane (DtBSi), 78
DMCd see dimethylcadmium (DMCd)
donor-complex (DX) centers, 169
doping in (AlGa)As structures, 78
Doppler, 425
dot-to-bulk infrared photodetector, 205
double-dilution system, 429
double layer heterojunction device (DLHJ), 311
dual-plasma-enhanced metal organic chemical vapor deposition (DPE-MOCVD), 380
dual-polarization modulation, 536
dual-waveband detector (DWB), 314
eAPDs see electron avalanche photodiode devices (eAPDs)
epitaxial layer growth (PLG) assessment, 306
dot emitters, 11
Ehrlich–Schwoebel barrier, 43
elastomers, 428
electron avalanche photodiode devices (eAPDs), 293, 310, 317, 318, 320
electron beam induced current (EBIC), 158, 160
electron beam lithography, 178
electron channeling contrast imaging (ECCI), 270
electron-counting rule, 41
electronic device structures, 138
HEMT, 90–93
heterojunction bipolar transistor (HBT), 93–95
MESFET and JFET structures, 90
elimination reactions, 473
Emcore (now Veeco) TurboDisc reactor, 10
emissivity-corrected pyrometry, 437
epitaxial lateral overgrowth (ELOG/ELO), 137, 279, 512
epitaxial liftoff (ELO), 162
ether-free processes, 495
ethylidimethylindium, 488
ethyl iodide (EtI), 304
exchange reactions, 473
exhaust system, 433–435
external quantum efficiency (EQE), 522
extremely high temperature (EHT), 512
Eyring’s theory, 36

Fabry–Perot (FP) oscillations, 131
face-down geometry, 444
fiber-to-the-home (FTTH), 538
field effect transistors (FETs), 138, 206, 232, 508
Fin field-effect transistors (FinFETs), 242, 531
flash vaporization, 375
flexible substrates/templates growth, 526–527
float zone (FZ), 138
flow-rate-modulated (FME), 252
focal plane arrays (FPAs), 14, 300
forced-convection parameter, 10
Fourier transform infrared, 402
Frank–van der Merwe (FM) growth mode, 40, 176
FTIR mapping techniques, 300
full-width at half-maximum (FWHM), 381, 386

GaAs-AlGaAs system, 516
GaAs-based materials
(AlGa)As/GaAs properties and deposition, 74–79
GaInP, (AlGa)InP/GaAs properties and deposition, 79–82
GaAsBi alloys, 58–59
GaAsN alloys, 57
GaInN QW layers, 46
GaInP, (AlGa)InP/GaAs, 79–82
GaN, 524
growth on sapphire, 125–126
growth on silicon
 crack-free GaN-on-Si, 128–130
 strain engineering, principles and limitations, 128
QDs, 181
GaN-HEMT, 522
Ga2O3 material, 513–514
GaP, 517
GaPN alloys, 57–58
GaP nucleation on Si(001), 252, 253
GaP/Si heteroepitaxy, 253
“garlic” odor, 325
gas-blending system (GBS), 424–428, 433
GaSb QDs, 180
gas flow, 439, 443
gate-all-around nanowire FETs (GAA-NWFETs), 242
germanium nitride, 118
Gibbs free energy per mole, 20–21
glass substrates
 applications, 372
 properties, 372–373
 grain boundaries (GBs), 342
 graphite, 435
 Grignard reagents, 475
 group III nitrides, 53–56
HBTs see heterojunction bipolar transistors (HBTs)
Helmholtz free energy, 395
HEMT see high-electron-mobility transistor (HEMT)
heteroepitaxy
CdTe, II-VI semiconductor
 GaAs, 329–330
 InSb substrates, 327–328
 sapphire (0001) substrates, 328–329
 silicon, 330, 331
 flexible substrates/templates growth, 526–527
 GaP/Si, 253
nitride substrates
 edge-type dislocation climb, 125
 intrinsic, thermal, and mismatch stresses and strains, 122–123
 island growth and coalescence, heterosubstrates, 123–124
 lattice mismatch, 125
 thermal mismatch, 125
 novel IV semiconductor materials, 525–526
 III-N semiconductor materials, 521–524
 II-VI semiconductor materials, 524–525
 III-V semiconductor materials, III-nitrides, 515–521
 ZnO materials, 382–385
heterojunction bipolar transistors (HBTs), 523
AlInGaAs material, 516
doping, 86
GaAs-based HBTs, 93–94
InAs-channel, 518
InP-based HBTs, 95
heterojunction field effect transistors (HFETs), 111, 516
heterostructure bipolar transistors (HBTs), 138
hexagonal BN (h-BN), 527
high-angle annular dark-field (HAADF), 250
high-electron-mobility transistor (HEMT), 11, 182, 241, 458, 516, 518, 537
AlGaAs/GaAs material system, 90, 91
GaAs-based HEMT Structures, 91–92
InP-based HEMTs, 92–93
higher operating temperature (HOT) device structures, 313–314
high-power electronics, 537
high-quality compound semiconductor (CS), 510
high-resolution transmission electron microscopy (HRTEM) image, 190, 191
high-speed electronics, 536–537
high-temperature superconductors (HTSs), 534
homoepitaxy, ZnO materials, 380–382
horizontal flow reactors
 III-N materials, 459–462
 III-V materials, 439–445
hybrid-physical-chemical-vapor deposition (HP-CVD) method, 375
hydrometallation, 475
“IC-MOVPE I,” 2
IMM solar cell see inverted metamorphic multijunctions (IMM) solar cell
In-containing alloys
 AIIIIBN, 114–115
 InGaN, 115
indium nanoparticle, 453
induction heating, 435
inductively coupled plasma–mass spectrometry (ICP-MS) techniques, 471
inductively coupled plasma–optical emission spectroscopy (ICP-OES), 471
infrared (IR), 536
infrared focal plane arrays (IRFPA), 293, 294, 300, 304, 306
InGaAs strain-reducing layers, 189, 190
InGaAs, 511, 522
InGaSb, 519
InP QDs, 181, 182
insertion reactions, 473
instant growth rate profile, 457
integrated circuits (ICs), 241
integrated detector–cooler assembly (IDCA), 309, 310
integrated optics, 536
interdiffused multilayer process (IMP), 294, 304, 496
interfacial misfit (IMF) array, 261
internal quantum efficiency (IQE), 160, 161
intuitively clear reactors, 449
inverse fast Fourier transformation (IFFT), 268
inverted-gate bipolar transistors, 522
inverted metamorphic multijunctions (IMM) solar cell, 151, 152
challenges and future aspect, 169
growth and device results, 167–168
history of, 162–164
MOVPE growth considerations
 annealing during growth, 166–167
 compositionally graded buffer layers, 165–166
 front contact layer, 164–165
tunnel junctions in, 165
inverted QDs, 178
InGaAsP, material system, 84–86
iso-butyl iodide (IBI), 304
ISO-NW, 434
iso-propyl iodide (IPI), 304
ISO-QF, 434
Joule heat, 435
junction field-effect transistor (JFET) structures, 90
kinetics
 control of solid composition, 37–40
 mass transport, 35–36
 precursor pyrolysis, 36–37
lamp heating, 435, 436
Langmuir–Hinshelwood adsorption isotherm, 42
Langmuir–Hinshelwood mechanism, 391, 392
Langmuir model, 42
laser diodes
 GaAs-based devices, 98
 InP-based devices, 98–99
laser-gated imaging (LGI), 317
laser reflectance (LR) monitoring, 335–337
lasers, 526, 536
lattice mismatch, 515
lattice-mismatched (LM) solar cells, 151–154
lattice-mismatched (LMM) tunnel junction, 166
LCDs, 535
Lewis base, 477–479
LIDAR systems, 537
light-emitting diodes (LEDs), 54, 55, 535
 GaAs-based devices, 96–98
 III-nitrides, 110–111
 InP-based devices, 98–99
linear-mode avalanche photodiode arrays (LmAPDs), 316–320
linear-mode photodiodes, 538
liquid phase epitaxy (LPE), 1, 21, 181, 508
longwave infrared band (LWIR), 14, 309, 315, 316, 525, 538
low-energy electron diffraction (LEED) data, 246
low-energy electron microscopy (LEEM), 253
LP-MOCVD, 390
LWIR see longwave infrared band (LWIR)
Manasevit type reactor cell, 9
mass flow controllers (MFCs), 297, 425–427
mass flow pressure controllers (MFPCs), 297
mass transport, 35–36
MBE see molecular beam epitaxy (MBE)
MCT see mercury cadmium telluride (MCT)
mechanical lapping, 526
mechanical polishing, 368
medium-wave infrared band (MWIR), 309, 313, 315
meltback etching reaction, 127
mercury cadmium telluride (MCT), 3, 14
 annealing, 307–308
doping, 302–304
epitaxial techniques, 293
future aspects, 320–321
higher operating temperature (HOT) device structures, 313–314
hillock macrodefects, 304–307
history, 294–295
infrared detector market in the modern era, 309–311
infrared imaging and atmospheric windows, 308–309
LmAPD arrays, 316–320
manufacturing technology, photodiode arrays
MHJ, 311–312
wafer-scale processing, 312, 313
metalorganic sources, 299
MOVPE reactor designs for, 297–299
nonequilibrium device structures, 316
process parameters, 299
reproducibility, 302, 303
in situ monitoring, 308
small-pixel technology, 313
substrate choices
CZT growth, 296–297
growth orientation, 296
third generation/GEN III is, 312–313
two-color array technology, 314–315
uniformity, 300–302
mesa heterojunction devices (MHJ), 311–312
metal alkyl, 360
metal exchange, 474
metal–halogen exchange, 474
metal–insulator field effect transistor (MISFET), 138
metallation, 474
metalorganic cadmium precursors, 360
metalorganic chemical vapor deposition (MOCVD)
of CdTe photovoltaics, 15
historical background of, 1–4
III-V semiconductors deposition, 5
properties, 8
transport-limited regime, 7
metalorganic deposition (MOD), 534
metalorganic magnesium precursors, 360
metalorganic vapor phase epitaxy (MOVPE)
analyses of
AlN, UV emitters, 11
GaAs/AlGaAs VCSELs, 11–12
GaAs and InP transistors for high-frequency devices, 13
infrared detectors, 14
multijunction solar cells, 12–13
photovoltaic and thermophotovoltaic devices, 14–15
health and safety considerations, 15
preparations, 8–9
reaction mechanisms, 4–8
reactor cells, types of, 9–10
metallurgical zinc precursors, 356–359
metal–oxide semiconductor field effect transistors
(MOSFETs), 13
metal–oxide semiconductors (MOSs), 241
metal-semiconductor field-effect transistors (MESFETs), 90, 537
metamorphic HEMTs (MHEMTs), 516
metamorphic multijunction solar cells, 151–154
metathesis, 474
methylalloytelleride (MArTe), 300
methyl radicals, 5
micro-LED technology, 511
mid-wave infrared (MWIR) detectors, 3, 14
misfit dislocations (MDs), 256
MOCVD see metalorganic chemical vapor deposition (MOCVD)
molar flow, 4
molecular beam epitaxy (MBE), 2, 25, 30, 117, 175, 182, 327, 423, 509, 514, 528
molecular layer deposition (MLD), 472
monolithic evanescently coupled Si laser (MECSL), 280
monolithic III/V integration-Si (001) substrates
antiphase domains, 251–252
atomic III/V on Si interface structure, 249–251
bandgap of, 241, 242
gallium-dominated nucleation, 247, 248
HEMTs and HBTs, 241, 242
heteroepitaxy of bulk layers
lattice-matched growth on Si, 257–258
MDs and TDs, 256
metamorphic growth on blanket, 258–264
planar defects, 256
SAG (see selective-area growth (SAG))
III/V growth on Si(001), 252–256
residual contamination, 247
Si(001) surfaces, 244, 245
Si(111) surfaces, 244–245
Si surface treatments, III/V heteroepitaxy,
245–247
wafer-, chip-, and die-bonding, 242
monolithic microwave integrated circuit (MMIC), 522
monomethylhydrazine (MMHy), 364, 402
MQW see multiple quantum well (MQW)
multijunction III-V solar cells
application of, 149, 150
lattice matched (LM), 150, 151
metamorphic, 151–154
reactor technology for metamorphic epitaxy, 154
multijunction solar cells, 12–13
multiple quantum well (MQW), 115, 272–275, 280, 311, 452
nanoneedles, 397
nanorods, 396
nanostructural materials
nanopatterned, 531
two-dimensional (2D), 527–531
nanostructures, ZnO materials, 393–398
nanotubes, 397
nanowires, 14
advantages of, 218
axial growth, 219
definition, 218
III-V materials
core-shell LEDs, 231, 232
crystal phase, 219–220
nanowires (cont’d)
growth direction, morphology, and side-facets, 220–221
large surface area-to-volume ratio, 232
mechanical flexibility and elasticity, 233
one-dimensionality, 232
particle-assisted MOVPE of (see particle-assisted nanowires)
SA-MOVPE, 228–231
van der Waals heteroepitaxy, 231
wavelength, light trapping, and outcoupling, 233
particle-assisted growth, 219
radial growth, 219
selective-area epitaxy (SAE), 219, 228
semiconductor nanostructures, 217, 218
nanowires (NWs), 397, 405, 531
National Renewable Energy Laboratory (NREL), 165, 167
near-IR, 536
needle-shaped microcrystals, 222
NeXt Triple-Junction (XTJ) solar cells, 538
III-N HBTs, 523
nitric oxide (NO), 364
III-nitride semiconductors
doping of
 n-type doping, 117–119
 p-type doping, 119
semi-insulating layers, 119–120
economic importance
blue LEDs, 136
electronic devices, 138
optoelectronic devices, 137
gas-phase prereactions, 115–117
lattice and thermal mismatch, 111–113
precursors, 130
properties of, 110–111
reactors and in situ monitoring, 130–136
substrates (see nitride substrates)
ternary alloys, miscibility and compositional homogeneity
AlGaN, 113–114
In-containing alloys, 114–115
nitride substrates
GaN growth on sapphire, 125–126
GaN growth on silicon
crack-free GaN-on-Si, 128–130
strain engineering, principles and limitations, 128
heteroepitaxy on foreign substrates
edge-type dislocation climb, 125
intrinsic, thermal, and mismatch stresses and strains, 122–123
island growth and coalescence, heterostructures, 123–124
lattice mismatch, 125
thermal mismatch, 125
III-N growth on SiC, 126–127
nitrogen dioxide (NO), 364
nitrogen-hydrogen-ammonia mixtures, 455
nitrous oxide (N2O), 364
III-N materials
close-coupled showerhead (CCS) reactors, 458–459
horizontal flow reactors for, 459–462
planetary reactors, 455–458
reactor evolution, 462–464
rotating-disk reactors (RDRs), 454–455
nonequilibrium MOVPE technique, 25
normal liters per minute (LN/M), 426
normally closed (NC), 426
normally open (NO), 426
normal state, 426
III-N semiconductor materials, 521–524
n-type doping, 363
nucleation, 396
open-tube VPE, 508
optoelectronic integrated circuits (OEICs), 536
organic LEDs (OLEDs), 535
organolithium reagents, 475
organometallic halides, 475
organometallic product, 474
organometallic sources, 15
organometallic VPE (OMVPE), 2
OSRAM Opto Semiconductors, 137
oxidative addition reactions, 473
oxygen-free synthesis, 479–483
oxygen sources, 362–363
particle-assisted nanowires
axial and radial growth modes, 226–227
particle, role of, 224–226
self-assisted growth, 228
SEM and TEM, 223
VLS growth mechanism, 222–224
VSS growth models, 222, 224
particle-assisted whisker growth, 222
particle-seeded method, 222
passive thermal imaging, 308
patterned sapphire substrates (PSS), 135
Peach–Koehler force, 261
permissible exposure limit (PEL), 15
phase separation, 29–31
Phillips–Van Vechten dielectric theory of electronegativity, 22
phosphine, 2
photoassisted MOCVD technique, 393
photoassisted processes, 376–378
photothermal processes, 377
physical vapor transport (PVT), 121
Piezocon controllers, 297
planar defects (PDs), 256, 265
planar solar cells, CdTe
absorber layer, 338–341
CdCl2 treatment layer, 342–343
CdS and CdZnS window layers, 338
photovoltaic planar devices, 343–345
planetary discs, 442
planetary reactors
III-N materials, 455–458
III-V materials, 439–445
planetary rotation, 442
plasma-assisted processes, 378–380, 399
plasma-enhanced chemical vapor deposition (PE-CVD), 378
plug-flow regime, 448
poly, amorphous
HTSs, 534
metals, 532–533
silicides, 535
TCEs oxides, 533–534
postgrowth annealing processes, 387
postsynthesis purification strategies, 476–479
potassium chloride, 480
power added efficiency (PAE), 522
precise temperature control, 436
precursor pyrolysis, 36–37
precursor ratio, 397–398
pressure controllers, 427
pressure-rotating rate, 448
process abatement systems, 298
p-type doping agents, 364
pulsed atomic layer epitaxy (PALE), 512
pulsed laser deposition (PLD), 534
pulse-injection MOCVD, 399
purification strategies
oxygen-free synthesis, 479–483
postsynthesis, 476–479
pushing flow, 428
pyrometer, 437
pyrophoric compounds, 360
quadrature amplitude modulation (QAM), 536
quantum-cascade lasers (QCLs), 516, 536
quantum-confined Stark effect (QCSE), 115
quantum dots (QDs), 396
applications
detectors, 205, 206
FET, 206, 207
lasers and optical amplifiers, 204
LEDs, 205
photovoltaics, 207, 208
QD memories, 206, 207
defect-filter layer, 261
definition, 175
growth procedures
buffer layer, 186, 187
buffer layer growth, 185
capping layers, 186, 188–190
GaAsSb SRL, 192, 193
growth interruptions for QD formation, 184
growth rate of InAs layer, 184, 185
growth temperature, 182, 183
InAs dosage, 183–184
MBE and MOVPE grown, 181–182
QD capping process growth rate, 184–186
SRL, 188
type-I to type-II heterostructure, 191, 192
history, 175–176
A10B10 materials and structures
QDs embedded, structure, 178–180
semiconductor materials for embedded, 180–181
paradigm of, 176
in situ measurements
direct QD in situ measurements, 198
RAS of growth, 193–197
scanning tunneling microscopy (STM), 197
structure characterization
AFM, 200–201
BEEM/BEES, 201–202
capacitance measurements, 203
electroluminescence (EL), 198–200
magneto-photoluminescence, 198, 199
photocurrent measurements, 202
spin detection, 198–200
TEM, 201
XSTM, 201
types, 176–178
quantum well (QW) diode, 12
quantum wires (QWRs), 175, 222
radial growth, 219, 226–227
radio-frequency generator, 403
Raman backscattering, 402
rapid thermal annealing (RTA), 392
RAS see reflection anisotropy spectroscopy (RAS)
reactors, 435–437
III-N materials
close-coupled showerhead (CCS) reactors, 458–459
horizontal flow reactors for, 459–462
planetary reactors, 455–458
reactor evolution, 462–464
rotating-disk reactors (RDRs), 454–455
III-V materials
close-coupled showerhead (CCS) reactors, 445–447
general features of, 438–439
horizontal flow to planetary reactors, 439–445
rotating-disk reactors (RDRs), 447–450
pressure and substrate rotation rate, 387–388
readout integrated circuit (ROIC), 297, 317
reciprocal space map (RSM), 158, 159
reduced-pressure MOVPE, 431
reflection anisotropy spectroscopy (RAS), 182, 193–197, 246, 335
reflection high-energy electron diffraction (RHEED), 182, 388
regular solution model (RSM), 21, 22
resistive heating, 435
resonant tunneling diodes (RTDs), 182
Reynolds number, 10
RF power amplifiers, 522
rotating-disk reactors (RDRs)
III-N materials, 454–455
III-V materials, 447–450
Royal Signals and Radar Establishment (RSRE), 294

SA-MOVPE see selective-area-MOVPE (SA-MOVPE)
sapphire (Al₂O₃), 328–329, 365
applications, 367–368
cleaning/etching and thermal treatments, 368
sapphire templates, 368–369
saturated vapor pressure (SVP), 4, 8, 9
scanning electron microscope (SEM), 223
scanning transmission electron microscopy (STEM)
micrograph, 247
scanning tunneling microscopy (STM), 41, 197
selective-area epitaxy (SAE), 228
selective-area growth (SAG)
of nanowires, 228
in trenches
antiphase disorder in, 267
APD, 266
applications of, 270–272
aspect ratio trapping, 265
III/V nanoridge engineering, 272–277
InP region, 268, 269
lateral overgrowth, 279–280
patterns, 277–279
selective-area-MOVPE (SA-MOVPE), 228, 229
axial and radial growth modes, 230–231
dielectric mask, 228–229
pillars, micropillars, or nanopillars, 228
process of, 228, 229
selective wet etching, 526
self-compensation process, 339
semiconductor nanowires, 217
semiconductors equipment development
democratization, 514–515
materials, 513–514
production MOCVD, 510–511
R&D MOCVD, 511–512
ultrawide-bandgap III-nitrides, 512–513
semi-insulating (SI) GaN, 523
setpoint, 425
shallow trench isolation (STI), 267
Shockley–Queisser limit, 12
Shockley–Read–Hall (SRH) recombination, 153, 205
Shockley–Read–Hall (SRH) traps, 304
shortwave infrared (SWIR), 309
showerhead reactors, 36
SiCoNi process, 245
silicides, 535
silicon (Si), 241, 365 see also monolithic III/V
integration-Si substrates
applications, 369–370
cleaning and thermal procedures, 370–371
templates on, 371–372
size and site controlled QDs, 178
S–K growth see Stranksi–Krastanov (S–K) growth
SLX-SuperHawk, 313
sodium telluride, 498
SolAero, 168, 169
solar cells, 537–538
solar power–enhanced unmanned aerial vehicle, 149, 150
spectroscopic ellipsometry (SE), 335
standard liters per minute (SLM), 426
statistical roughening, 44
step flow, 40
strained layer superlattice (SLS), 260
strain-reducing layer materials, 180
Stranski–Krastanov (S–K) growth, 40, 44, 176–178
Structured Materials Industries (SMI), 511
surface photoabsorption spectroscopy (SPA), 33
surface processes
adsorption and desorption, 40
atomic-level surface processes, 42–44
ordering, 44–45
phase separation, 45–46
surface reconstruction, 41–42
surfactants
effects of, 47
in GaInP, 49–51
Monte Carlo simulations, 48
SPA anisotropy spectra, 48
use of, 48
surface reconstruction, 41–42
surface thermodynamics, 31–33
synthetic strategies
carbone insertion, 475
carbometallation, 475
decarboxylation, 475–476
direct synthesis, 475
hydrometallation, 475
metal exchange, 474
metal–halogen exchange, 474
metallation, 474
metathesis, 474
transmetallation, 473
system-on-chip (SOC) devices, 536
tellurium precursors, 496–498
template-assisted selective epitaxy (TASE), 277, 279
tertbutylamine, 402
tertiarybutylphosphine (TBP), 1, 33, 37, 73, 83, 247
tertiarybutylarsine (TBAs), 1, 37, 73, 85, 198
tetramethyltin (TMT), 363
thermal-induced diffusion, 404
thermal mass flow controller, 425
thermodynamics
of MOVPE growth
DLP model, 22–24
equilibrium process, 21
Gibbs free energy per mole, 20–21
nonequilibrium process, 21
RSM, 21, 22
vapor and solid phases, 20, 21
VFF model, 22
ordering
growth parameters, 33–35
surface thermodynamics, 31–33
phase separation, 29–31
solid composition
dlp and vff models for, 25
GaAsSb, 27–29
of III/V alloys, 26, 27
lnAsSb, 27, 28
nonequilibrium MOVPE technique, 25
ternary alloy, 25
thermophotovoltaic (TPV) device, 14–15
thickness–composition phase diagrams, 44
threading dislocation density (TDD), 135, 158, 259
threading dislocations (TDs), 256
three-dimensional island nucleation and growth, 40
threshold limit values (TLVs), 15
transition-metal ZnO materials, 400
transmetallation, 473
transmission electron microscopy (TEM), 158, 159, 223
transparent conducting oxide, 356
transparent conductive electrodes (TCEs) oxides, 533–534
transport-limited growth, 7
transverse electric modes, 522
transverse magnetic modes, 522
triethylaluminum (TEAl), 73, 363, 484
triethylantimony (TESb), 73
triethylgallium (TEGa), 73, 75, 247, 363, 468, 513
triethylindium (TEIn), 2, 82, 484
triisobutylgallium (TiBGa), 75, 484
triisopropylgallium, 363, 401, 487
trimethylaluminum (TMAI), 73, 75, 115, 116, 130, 131, 363, 401, 484
trimethylamine alane (TMAA), 73
trimethylantimony (TMAs), 73, 364
trimethylarsenic (TMAs), 198
trimethylgallium (TMGa), 2, 40, 75, 116, 363, 468, 484, 513
trimethylindium (TMIn), 2, 83, 363, 484, 487
trimethylalumina-amine (TMAA), 401
tris-dimethylaminantimony (TDMASb), 73
tris-dimethylaminoarsine (tDMAAs), 304, 492
tritertiarybutylaluminum (TtBAI), 73
tritertiarybutylgallium, 487
tunnel field-effect transistors (TFETs), 242
turbulent flow, 10
two-dimensional electron gas (2DEG), 90
ultrapure metal-organic (MO) precursors
classes, 468–472
dopants, 499–500
environment, health, and safety (EHS) aspects, 500–502
III-V compound semiconductors
group III metalorganic precursors, 483–488
group V precursors, 488–493
II-VI compound semiconductors
group II precursors, 493–496
group VI precursors, 496–499
impurities, 468–472
purification strategies for, 476–483
stringent requirements for, 472
synthetic strategies for, 472–476
workplace exposure limit (WEL), 502
ultrawide-bandgap alloys, 512
UMM 3 J solar cell structure, 151
UMM solar cells see upright metamorphic multijunction (UMM) solar cells
unmanned aerial vehicle (UAV), 149, 150
unsymmetrical-dimethylhydrazine (UDMHy), 364
upright metamorphic multijunction (UMM) solar cells, 151, 152
bandgap-voltage offset (\(W_{oc} \)), 153
challenges and future aspects, 162
growth and device results, 158–161
history of, 154–156
MOVPE growth considerations of CGB layers, 156–157
passivation layers, 157
tunnel junction layers, 158
valence-force-field (VFF) model
vapor-liquid-solid (VLS), 222, 235
vapor phase epitaxy (VPE), 1, 243, 244, 246, 508
vapor pressure-temperature, 494, 499
vapor-solid-solid (VSS) growth models, 222
vapor transport deposition (VTD), 338
VCR-compatible fittings, 425
vertical cavity surface emitting laser (VCSEL), 11–12, 114, 536
visible radiation, 536
Volmer–Weber (VW) growth mode, 176
wafer capacity, 511
wafer-scale processing, 312, 313
waiting-time optimization, 194
water (H2O), 361
white graphene, 527
workplace exposure limit (WEL), 502
wurtzite (WZ) crystal structures, 219, 220
X-ray diffraction (XRD), 381, 385
X-ray photoelectron spectroscopy (XPS), 403
XSTM see cross-sectional scanning tunneling microscopy (XSTM)
zinc (Zn), 86
zinc acetylacetonate, 358
zincblende (ZB), 40, 219, 220
zinc precursor adducts, 358
zinc single precursors, 358–359
zipping mechanism, 124
ZnO materials
assisted processes, 376–380
atmospheric and low-pressure conditions, 374–376
buffer layers, 389
carrier gas, 390–391
crystal growth of layers, 380–393
related materials, 398–400
doping, 363–364, 400–405
experimental setup work conditions, 388–389
Index

ZnO materials (cont’d)

GaN, 365

glass substrates, 372–373

growth temperature, 385–387, 389–390

heteroepitaxy, 382–385

homoepitaxy, 380–382

inplane and out-of-plane defined orientation, 380

layer thickness, 385–387

metalorganic cadmium precursors, 360

metalorganic magnesium precursors, 360

metalorganic zinc precursors, 356–359

nanostructures, 393–398

oxygen precursors, 361–363

postgrowth annealing, 385–387

pre-and postgrowth treatments, 392–393

precursor ratio, 391–392

reactor pressure and substrate rotation rate, 387–388

sapphire (Al₂O₃), 365, 367–369

silicon (Si), 365, 369–372

single crystals and templates, 365–367

sources for, 356

substrates growth of, 364–365

techniques, 373–374

textured and randomly out-of-plane oriented, 387

thermal annealing and chemical etching processes, 385

ZnₓCd₁₋ₓO, 398–399

ZnₓMg₁₋ₓO, 399–400