Contents

Contributors, xxvii
Editor’s Preface, xxxv

Section I: An overview of mesenchymal stem cells and mesenchymal stromal cells

1 The mesenchymal stem cell, the mesenchymal stromal cell, and the mesenchymal stromal cell exosome, 3
Kerry Atkinson
1.1 Nomenclature, 3
1.2 The mesenchymal stem cell, 3
1.3 The mesenchymal stromal cell, 4
1.4 The mesenchymal stromal cell exosome and extracellular vesicles, 6
References, 7

2 The nomenclature of mesenchymal stem cells and mesenchymal stromal cells, 8
Armand Keating
2.1 Introduction, 8
2.2 Historical perspective, 8
2.3 The need for common terminology and definition: the International Society for Cellular Therapy white papers of the mid-2000s, 9
2.4 Updating terminology, 9
References, 10

Section II: The isolation and ex vivo expansion of mesenchymal stromal cells

3 The isolation and expansion of mesenchymal stromal cells from bone marrow, 13
Celena F. Heazlewood
3.1 Introduction, 13
3.2 Stem cells, 14
3.3 Isolation and characterization of bone marrow mesenchymal stromal cells, 14
3.3.1 Cell surface markers, 15
3.3.2 Chemokine receptor display, 15
3.3.3 Mesodermal differentiation capability, 17
3.4 The immunomodulatory properties of mesenchymal stromal cells, 17
3.5 The transcriptome of mesenchymal stromal cells, 18
References, 20

4 The biology and clinical applications of mesenchymal stromal cells derived from human gestational tissues, 24
Celena F. Heazlewood
4.1 Introduction, 24
4.2 Isolation of placental mesenchymal stromal cells, 25
4.3 Characteristics of fetally derived mesenchymal stromal cells isolated from gestational tissues, 26
4.3.1 Amniotic-membrane-derived mesenchymal stromal cells, 26
4.3.2 Chorionic-membrane-derived mesenchymal stromal cells, 26
4.4 Characteristics of maternally derived mesenchymal stromal cells isolated from gestational tissue (the decidua), 27
4.5 Comparison of mesenchymal stromal cells from fetal and maternal tissues isolated from gestational tissues, 27
4.6 Comparison of gene expression profiles between human term-placenta-derived mesenchymal stromal cells, human adult bone-marrow-derived mesenchymal stromal cells, and human umbilical-cord-derived unrestricted somatic stem cells, 28
4.7 Preclinical mesenchymal stromal cell studies, 28
4.8 Clinical applications of placental mesenchymal stromal cells, 29
4.9 Manufacturing clinical-grade placenta-derived mesenchymal stromal cells, 29
4.9.1 Phase 1 clinical trials using unrelated major-histocompatibility-unmatched placenta-derived mesenchymal stromal cells, 30
4.10 Conclusions, 30
References, 30

5 Human placenta-derived mesenchymal stem/stromal cells: fetal and maternal origins and critical parameters for ex vivo expansion, 32
Rebecca A. Pelekanos and Varda S. Sardesai
5.1 Introduction, 32
5.2 Mesenchymal stem/stromal cells: a consensus definition?, 32
5.3 Prenatal and perinatal tissue sources of mesenchymal stem/stromal cells, 33
5.4 Placental tissue-derived mesenchymal stem/stromal cells, 33
5.5 Placental and adnexal stem and progenitor cells, 33
5.6 Comparison of mesenchymal stem/stromal cells from different gestational sources, 33
5.7 Consensus classification of human placental mesenchymal stem/stromal cells, 34
5.8 Differentially isolating fetal or maternal mesenchymal stem/stromal cells from term placental villi, 34
5.9 Confounding factors for the isolation of fetal placental mesenchymal stem/stromal cells from chorionic villi, 34
5.10 Assumptions from the literature: lack of data, specific assays, and specific methodological detail, 35
5.11 Methods for determining fetal and maternal mesenchymal stem/stromal cells in a cultured cell population, 35
5.12 A novel method to isolate fetal and maternal placental mesenchymal stem/stromal cells, 36
5.13 Understanding the maternal origin of the placental mesenchymal stem/stromal cells: the septa, 36
5.14 Conclusions and future directions, 36
Acknowledgments, 37
References, 37

Section III: The cellular and molecular biology of mesenchymal stromal cells

6 Epigenetic regulation of mesenchymal stem/stromal cell growth and multipotentiality, 41
Sarah Elizabeth Hemming, Dimitrios Cakouros, and Stan Gronthos
6.1 Introduction, 41
6.2 Mesenchymal stromal/stem cells, 42
6.3 Epigenetics, 42
6.4 DNA methylation and histone modifications in mesenchymal stem/stromal cells, 45
6.5 Epigenetic regulation of osteogenic differentiation, 45
6.6 Epigenetic regulation of adipogenic differentiation, 47
6.7 Epigenetic regulation of myogenic differentiation, 48
6.8 Epigenetic regulation of chondrogenic differentiation, 48
6.9 Epigenetic regulation of mesenchymal stem/stromal cell lifespan and senescence, 52
6.10 Regulation of epigenetic modifications in mesenchymal stem/stromal cells for clinical use, 52
6.11 Conclusions, 52
References, 53

7 Biological changes in human mesenchymal stromal cells during monolayer culture, 58
Marietta Herrmann and Jennifer J. Bara
7.1 Introduction, 58
7.2 Mesenchymal stromal cell isolation from bone marrow, 59
7.3 Mesenchymal stromal cell isolation from adipose tissue, 60
7.4 Biological characteristics, 60
7.4.1 Morphology and colony formation, 60
7.4.2 Growth kinetics, 61
7.4.3 In vitro multipotency, 62
7.4.4 Gene expression, 62
7.4.5 Cell surface marker profile, 63
7.4.6 Secretory profile, 66
7.5 Influences on tissue culture parameters, 66
7.5.1 Seeding density, 66
7.5.2 Culture medium and supplementation, 67
7.5.3 Growth factors, 67
7.5.4 Xeno-free media, 67
7.5.5 Platelet-derived supplements, 67
7.5.6 Serum-free media, 68
7.5.7 Hypoxia, 68
7.6 Implications for basic and clinical research, 68
7.6.1 Trial disparity, 68
7.6.2 Alternative culture systems, 69
7.7 Conclusions and future directions, 70
References, 70

8 The effect of three-dimensional aggregates on the biology of mesenchymal stromal cells, 75
Yijun Liu, Ang-Chen Tsai, Xuegang Yuan, and Teng Ma
8.1 Three-dimensional multicellular aggregates, 75
8.2 Three-dimensional aggregates of mesenchymal stromal cells, 76
8.3 Mechanism of mesenchymal stromal cells self-assembly into three-dimensional aggregates, 77
8.3.1 Cell–cell contact, 77
8.3.2 Extracellular matrix and the cytoskeleton, 77
8.3.3 Mesenchymal stromal cells heterospheroids, 78
8.4 Mechanisms of aggregate-mediated mesenchymal stromal cell functional enhancement, 78
8.4.1 Role of cell adhesion molecules in the fate decision of mesenchymal stromal cell three-dimensional aggregates, 79
8.4.2 Effects of extracellular matrix, cytoskeleton, and morphology on mesenchymal stromal cell lineage commitment in three-dimensional aggregates, 80
8.4.3 Role of molecular milieu and hypoxia-inducible factor activation, 80
8.4.4 Metabolism changes in three-dimensional aggregates of mesenchymal stromal cells, 81
8.4.5 Enhanced anti-inflammatory properties of three-dimensional aggregates of mesenchymal stromal cells, 81
8.5 Bioreactor systems for three-dimensional aggregate production, 81
8.5.1 Scale-up and dynamics of culture, 81
8.5.2 Spinner flasks, 82
8.5.3 Rotary wall vessel, 82
8.5.4 Rotary orbital system, 83
8.5.5 Comparison of spinner flask and rotary wall vessel, 83
8.5.6 Other systems, 84
8.6 Transplantation of three-dimensional mesenchymal stromal cell aggregates in preclinical animal models of disease, 84
8.6.1 Enhanced secretory properties of mesenchymal stromal cells aggregates, 84
8.6.2 Immunomodulation by mesenchymal stromal cell aggregates, 84
8.6.3 Enhanced multilineage differentiation of three-dimensional mesenchymal stromal cells aggregates, 84
8.6.4 Recapitulation of mesenchymal condensation and osteochondral differentiation in bone and cartilage regeneration, 86
References, 87

9 Cell–cell signaling pathways that regulate mesenchymal stromal cell differentiation, 91
Leah Etheridge, Rebecca A. Mason, Fatima Saleh, and Paul Genever
9.1 Introduction, 91
9.2 Mesenchymal stromal cell signaling is dependent on its type, 91
9.3 Identity of bone-marrow-derived mesenchymal stromal cells, 92
9.4 Mesenchymal stromal cell signaling in the stem cell niche, 93
9.5 Regulation of mesenchymal stromal cell differentiation by the TGF-β/BMP signaling pathway, 95
9.6 Regulation of mesenchymal stromal cell differentiation by the Wnt signaling pathway, 97
9.7 Conclusions, 99
References, 99

10 Regulation of mitochondrial transport in mesenchymal stromal cells, 104
Shravani Mukherjee, Naveen K. Bhatraju, Tanveer Ahmad, and Anurag Agrawal
10.1 Introduction, 104
10.2 Intercellular organelle transport, 105
10.2.1 Intercellular communication, 105
10.2.2 Mitochondrial biology, 105
10.2.3 Intercellular mitochondrial transport/mitochondrial donation, 105
10.3 Mesenchymal stromal cells as potential mitochondrial donors, 107
10.3.1 Mechanism of intercellular mitochondrial transport regulation, 108
10.4 Strategies to improve mitochondrial delivery to target cells, 110
10.5 The road ahead, 111
References, 111

11 The regulation of adipogenesis from adipose-derived stem/stromal cells, 114
Lin Chen and Lei Liu
11.1 Introduction, 114
11.2 Adipose-derived stem/stromal cells, 115
11.2.1 Preparation and molecular characterization of adipose-derived stem/stromal cells, 115
11.2.2 Differentiation capacity of adipose-derived stem/stromal cells, 116
11.3 Process of adipogenic differentiation from adipose-derived stem/stromal cells, 116
11.3.1 Adipocyte development program, 116
11.3.2 Signaling pathways associated with adipogenic differentiation, 117
11.4 Regulation of adipogenic differentiation from adipose-derived stem/stromal cells, 118
11.4.1 Transcriptional regulation, 118
11.4.2 Epigenetic regulation, 119
11.4.3 Post-transcriptional regulation, 121
11.5 The future, 125
References, 125

12 Modulation of osteogenic differentiation in mesenchymal stromal cells, 131
Sean Gaynard, Jessica Hayes, and Mary Murphy
12.1 Introduction, 131
12.2 Biology, 132
12.2.1 Sources of mesenchymal stromal cells, 132
12.2.2 Cellular regulation of osteogenic differentiation from mesenchymal stromal cells, 132
12.2.3 Molecular regulation of osteogenic differentiation from mesenchymal stromal cells, 134
12.2.4 Factors regulating homing of mesenchymal stromal cells to bone, 136
12.2.5 In vivo detection and contribution of mesenchymal stromal cells to osteogenesis, 137
12.2.6 Regulating the immune system for bone formation, 138
12.3 Clinical applications of mesenchymal stromal cells in bone disorders, 138
12.3.1 Bone regeneration, 138
12.3.2 Osteoarthritis, 139
12.3.3 Osteogenesis imperfecta, 140
12.4 Summary, 141
References, 141

13 The role of glycogen synthase kinase-3 inhibitors on bone remodeling, 148
K. Jane Escott and Patrick J. O’Shea
13.1 Overview of glycogen synthase kinase-3, 148
13.2 The response of skeletal cells to glycogen synthase kinase-3 inhibitors in vitro, 149
13.2.1 Lithium chloride, 149
13.2.2 SB-216763 and SB-415286, 151
13.2.3 6-bromoindirubin-3’-oxime, 152
13.2.4 LY603281-31-8, 153
13.2.5 CT99021/CHIR99021, 153
13.2.6 AR28 (AZD2858), AR79, and AZ13282107, 154
13.3 Bone anabolism through inhibition of glycogen synthase kinase-3 in vivo, 155
13.3.1 Functional Wnt/β-catenin responses in Xenopus laevis model systems, 156
13.3.2 Progenitor cell involvement in bone anabolism in vivo, 156
13.3.3 Alteration in bone resorption in vivo, 158
13.4 Impact of glycogen synthase kinase-3 inhibition in bone disease, 159
13.4.1 Osteopenia and osteoporosis, 159
13.4.2 Methotrexate-induced bone loss, 160
13.4.3 Fracture healing, 160
13.4.4 Multiple myeloma-associated bone disease, 161
13.4.5 Periodontal disease, 161
13.4.6 Clinical findings with lithium, 161
13.5 Summary, 162
References, 163

14 Early molecular events during in vitro chondrogenesis, 167
Tommy A. Karlsen, Rune B. Jakobsen, and Jan E. Brinchmann
14.1 Introduction, 167
14.2 Adult articular cartilage, 168
14.3 Developmental chondrogenesis, 168
14.4 Molecular aspects of in vivo chondrogenesis, 169
14.5 Determinants of in vitro chondrogenesis, 171
14.6 Tissue source of mesenchymal stromal cells, 171
14.6.1 In vitro cell culture, 171
14.7 Three-dimensional culture systems and bioscaffolds, 172
14.8 Epigenetic changes during early in vitro chondrogenesis, 172
14.8.1 An introduction to epigenetics, 172
14.8.2 DNA methylation of the COL2A1 and COL10A1 promoters, 173
14.8.3 DNA methylation of promoters in other chondrogenesis candidate genes, 173
14.8.4 Genome-wide map of quantified epigenetic changes during in vitro chondrogenesis of bone marrow mesenchymal stromal cells, 174
14.8.5 Epigenetics: conclusions, 175
14.9 Role of microRNAs during early in vitro chondrogenesis, 176
14.9.1 An introduction to microRNAs, 176
14.9.2 Role of miRNA-140 in developmental chondrogenesis, 177
14.9.3 miR-140 targets identified in vivo and in vitro, 178
14.9.4 Defining the role of miR-140 during chondrogenic differentiation of mesenchymal stromal cells and dedifferentiation of articular chondrocytes, 178
14.9.5 Impact of microRNAs other than miR-140 on chondrogenic differentiation of mesenchymal stromal cells, 179
14.9.6 MicroRNAs in chondrogenesis: conclusions, 181
14.10 Early changes in gene expression during in vitro chondrogenesis, 182
14.10.1 Genes involved in collagen fibrillogenesis, 183
14.10.2 Genes involved in synthesis of proteoglycans and glycosaminoglycans, 183
14.10.3 Transcription factor genes, 183
14.10.4 Genes encoding other important cartilage molecules, 184
14.10.5 Genes encoding unwanted molecules, 184
14.10.6 Effect on gene expression of changes in the differentiation cocktail, 184
14.11 Conclusions, 186
References, 186

15 The role of the extracellular matrix in the differentiation of mesenchymal stromal cells, 191
Peishun Shou, Qing Chen, and Yufang Shi
15.1 Summary, 191
15.2 Multipotency of mesenchymal stromal cells, 191
15.3 The extracellular matrix and mesenchymal stromal cell differentiation, 192
15.3.1 The role of osteopontin in mesenchymal stromal cell differentiation, 193
15.3.2 Geometric cues in mesenchymal stromal cell differentiation, 193
15.3.3 Crosstalk between the extracellular matrix and mesenchymal stromal cells, 193
15.4 Conclusions and future perspectives, 194
Acknowledgments, 194
References, 194
16 Effects of hypoxic culture on bone marrow multipotent mesenchymal stromal cells: from bench to bedside, 196
Shih-Chieh Hung
16.1 Introduction, 196
16.2 Multipotent mesenchymal stromal cells, 196
16.3 Criteria for defining human multipotent stromal cells, 197
16.4 Problems encountered in the clinical application of multipotent mesenchymal stromal cells, 197
16.5 The hypoxic niche of multipotent mesenchymal stromal cells, 197
16.6 Involvement of hypoxia-inducible factor-1α in hypoxia-mediated effects, 198
16.7 Effects of hypoxic culture on glucose metabolism and oxidative stress of multipotent mesenchymal stromal cells, 198
16.8 Effects of hypoxic culture on the apoptosis of multipotent mesenchymal stromal cells, 199
16.9 Effects of hypoxic culture on expansion and life span of multipotent mesenchymal stromal cells, 199
16.10 Effects of hypoxic culture on maintaining self-renewal and differentiation potential of multipotent mesenchymal stromal cells, 200
16.11 Differentiation of multipotent mesenchymal stromal cells under hypoxic conditions, 200
16.12 Effects of hypoxic culture on secretion of paracrine factors by multipotent mesenchymal stromal cells, 201
16.13 Effects of hypoxic culture on engraftment of multipotent mesenchymal stromal cells, 202
16.14 Effects of hypoxic culture on allogeneic transplantation of multipotent mesenchymal stromal cells, 202
16.15 Conclusions, 203
Acknowledgments, 203
References, 203

17 The role of cyclic tensile strain on osteogenesis and angiogenesis in human mesenchymal stem/stromal cells, 208
Adisri Charoenpanich, Josephine Bodle, and Elizabeth Loboa
17.1 Introduction, 208
17.2 Applications of tensile strain: an interpretation from physiological stimuli in vivo to bioreactors in vitro, 209
17.2.1 Uniaxial tensile strain, 209
17.2.2 Equi-/biaxial tensile strain, 210
17.3 Mechanical sensing of mesenchymal stem/stromal cells, 211
17.3.1 Integrins and the cytoskeleton, 211
17.3.2 The nucleoskeleton and lamins, 212
17.3.3 Primary cilia, 212
17.3.4 Stretch-activated calcium channels, 213
17.4 The molecular response of mesenchymal stem/stromal cells to cyclic tensile strain, 214
17.4.1 Restructuring of mesenchymal stem/stromal cells and the surrounding extracellular matrix by mesenchymal stem/stromal cells in response to cyclic tensile strain, 215
17.4.2 Mesenchymal stem/stromal cell secretomes that induce further responses from other cells, 216
17.5 Summary, 217
Acknowledgments, 217
References, 217

18 The evolving concept of mesenchymal stromal cells in regenerative medicine: from cell differentiation to secretome, 222
18.1 Mesenchymal stromal cells, 222
18.2 The mesenchymal stromal cell secretome, 224
18.2.1 Concept, 224
18.2.2 Characterization techniques, 224
18.3 The mesenchymal stromal cell secretome in transplantation and regenerative medicine, 225
18.3.1 Graft-versus-host-disease, 225
18.3.2 The central nervous system, 226
18.4 The peripheral nervous system, 229
18.5 Future perspectives, 230
References, 231

19 The secretome of mesenchymal stem/stromal cells undergoing chondrogenic differentiation and those undergoing osteogenic or adipogenic differentiation, 236
Beatriz Rocha, Francisco J. Blanco, and Cristina Ruiz-Romero
19.1 Introduction to protein secretion and the analysis of secretomes, 236
19.2 Analysis of mesenchymal stem/stromal cell secretomes using proteomic approaches, 237
19.2.1 Approaches to obtaining secretome samples, 237
19.2.2 Experimental strategies for in vitro secretome analysis of mesenchymal stem/stromal cells, 237
19.3 Analysis of the secretome of mesenchymal stem/stromal cells undergoing chondrogenesis, 242
19.4 Characterization of chondrogenesis markers by secretome analysis, 242
19.5 Characterization of osteogenesis markers by secretome analysis, 247
19.6 Characterization of adipogenesis markers by secretome analysis, 247
19.7 Conclusions and future perspectives, 247
References, 247
20 Mesenchymal stromal cell extracellular vesicles/exosomes, 250
Ronne Wee Yeh Yeo, Ruenn Chai Lai, and Sai Kiang Lim

20.1 From cell to secretion to exosome, 250
20.1.1 Mesenchymal stromal cells, 250
20.1.2 Cell secretion, 251
20.1.3 Mesenchymal stromal cell extracellular vesicles as the active therapeutic factor, 251

20.2 Extracellular vesicles, 251
20.2.1 Exosome biology and general functions, 252

20.3 The therapeutic use of exosomes, 252
20.3.1 Mesenchymal stromal cell exosomes, 253
20.3.2 Characterization of mesenchymal stromal cell exosomes, 254
20.3.3 The biochemical potential of mesenchymal stromal cell exosomes, 254
20.3.4 Biochemical potency, 255
20.3.5 Glycolysis, 256
20.3.6 Proteasome activity, 256
20.3.7 Signaling: adenosine signaling, 256
20.3.8 Inhibition of complement activation, 256
20.3.9 Restoring homeostasis, 256
20.3.10 Bioenergetic homeostasis, 257
20.3.11 Immune homeostasis, 257

20.4 The clinical translation of mesenchymal stromal cell exosomes, 258

20.5 Conclusions, 258
References, 258

21 Role of tunneling nanotube crosstalk with distressed cardiomyocytes in controlling the heart repair potential of mesenchymal stromal cells, 264
Anne-Marie Rodriguez and Meriem Mahrouf-Yorgov

21.1 Introduction, 264
21.2 Mesenchymal stromal cells as a promising tool to regenerate damaged heart tissue, 264
21.2.1 Degenerative cardiac diseases: a major public health problem, 264
21.2.2 Mesenchymal stromal cells: a promising tool to treat the effects of myocardial infarction, 265
21.2.3 Mechanisms underlying the regenerative effects of mesenchymal stromal cells, 266

21.3 Tunneling nanotubes: a universal route of intercellular communication between distant cells, 268
21.3.1 Structural diversity of tunneling nanotubes, 269
21.3.2 Mechanisms and factors involved in tunneling nanotube formation, 269
21.3.3 The diversity of compounds transferred by tunneling nanotubes and their physiological relevance, 271

21.4 Tunneling nanotubes: a novel cell-to-cell communication pathway improving the cardiac regenerative properties of mesenchymal stromal cells, 273
21.4.1 Evidence of tunneling-nanotube-mediated communications between stromal cells and cardiomyocytes, 273
21.4.2 Tunneling nanotube cell-to-cell communication with mesenchymal stromal cells rejuvenates distressed cardiomyocytes through a progenitor-like state, 275
21.4.3 Tunneling nanotube cell-to-cell communication with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stromal cells, 277

21.5 Conclusions, 279
References, 280

22 The preferential homing of mesenchymal stromal cells to sites of inflammation, 286
Catherine Sullivan

22.1 Introduction, 286
22.2 Molecular mechanisms of migration, 287
22.2.1 Chemokines, 287
22.2.2 Integrins, 289
22.2.3 Toll-like receptors, 289
22.2.4 Matrix metalloproteinases, 290
22.2.5 Growth factors, 291

22.3 The inflammatory milieu, 291
22.3.1 Passive migration, 291
22.3.2 Hypoxia, 291
22.3.3 Cytokines, 292
22.3.4 Complement, 293
22.3.5 Macrophages, 294

22.4 Mesenchymal stromal cell extravasation, 294

22.5 In vivo migration, 294
22.5.1 In vivo migration studies, 294
22.5.2 Controversies surrounding in vivo migration, 297
22.5.3 Real-time in vivo imaging, 301

22.6 Optimizing homing, 302
22.6.1 Culture conditions, 302
22.6.2 Pretreatment of mesenchymal stromal cells, 303
22.6.3 Cell engineering, 303
22.6.4 The host environment, 304

22.7 Conclusions, 305
References, 306

23 The role of chemokines in mesenchymal stromal cell homing to sites of inflammation, including infarcted myocardium, 314
Shan Wang and Yaojiong Wu

23.1 Summary, 314
23.2 Introduction, 314
23.3 Homing capacity of mesenchymal stromal cells, 315
23.4 Homing ability of mesenchymal stromal cells and their therapeutic effects, 316
23.5 Mechanisms of leukocyte trafficking to sites of inflammation, 316
23.6 Potential ligands/receptors for mesenchymal stromal cell homing, 317
23.7 Chemokine involvement in mesenchymal stromal cell homing, 317
 23.7.1 CCR1 and CCR2 involvement in mesenchymal stromal cell homing, 317
 23.7.2 The CXCR4–SDF-1 axis in mesenchymal stromal cell homing, 318
 23.7.3 Other chemokines, 319
23.8 Pretreatment of mesenchymal stromal cells with cytokines and growth factors, 319
23.9 Summary and future prospects, 319
Acknowledgments, 319
References, 320

24 Live cell imaging and single cell tracking of mesenchymal stromal cells in vitro, 323
James A. Cornwell, Maria Z. Gutierrez, Richard P. Harvey and Robert E. Nordon
24.1 Introduction, 323
24.2 Technical considerations, 326
 24.2.1 Equipment, software, and hardware requirements, 326
 24.2.2 Image acquisition parameters, 327
 24.2.3 Image processing, 327
 24.2.4 Data storage, 328
24.3 Single cell tracking and analysis, 329
 24.3.1 Cell tracking platforms, 329
 24.3.2 Recording live cell characteristics, 331
 24.3.3 Vital biomarkers for mesenchymal stromal cells, 332
 24.3.4 Mimicking in vivo microenvironments in vitro, 335
24.4 Case study: tracking differentiation of endothelial cells from cardiac-derived mesenchymal stromal cells, 337
 24.4.1 Background and experimental aims, 337
 24.4.2 Methods, 337
 24.4.3 Results and discussion, 340
 24.4.4 Conclusion and future work, 342
24.5 Future perspective on live cell imaging and single cell tracking, 342
References, 344

25 The role of mesenchymal stem/stromal cells in angiogenesis, 347
Annelies Bronckaers and Ivo Lambrichts
25.1 Introduction, 347
25.2 The current concept of angiogenesis, 347
25.3 Proangiogenic properties of mesenchymal stem/stromal cells, 350
 25.3.1 The mesenchymal stem/stromal cell secretome: a kaleidoscope of angiogenic molecules, 350
 25.3.2 The effect of mesenchymal stem/stromal cells on the behavior of endothelial cells in vitro, 352
 25.3.3 Mesenchymal stem/stromal cells induce angiogenesis in vivo, 354
25.4 Mesenchymal stem/stromal cells as a therapeutic tool for diseases caused by insufficient angiogenesis, 355
 25.4.1 Peripheral ischemic arterial disease, 355
 25.4.2 Stroke, 355
 25.4.3 Myocardial infarction, 356
 25.4.4 Failure of surface wound healing, 357
 25.4.5 The dual role of mesenchymal stem/stromal cells in cancer biology, 357
25.5 Enhancing the angiogenic efficacy of mesenchymal stem/stromal cells, 358
25.6 Transdifferentiation of mesenchymal stem/stromal cells towards endothelial cells, 359
25.7 Conclusions, therapeutic expectations, and challenges, 359
References, 361

26 The relationship between mesenchymal stromal cells and endothelial cells, 366
Seyed Mahdi Nassiri and Reza Rahbarghazi
26.1 Introduction, 366
26.2 Transendothelial migration of mesenchymal stromal cells, 366
 26.2.1 Mesenchymal stromal cell adhesion to endothelial cells, 366
 26.2.2 Trans-endothelial migration, 369
26.3 Mesenchymal stromal cell–endothelial cell crosstalk in angiogenesis, 370
 26.3.1 Juxtacrine interactions of mesenchymal stromal cells and endothelial cells, 370
 26.3.2 Paracrine interactions of mesenchymal stromal cells and endothelial cells, 372
26.4 Mesenchymal stromal cell–endothelial cell crosstalk in tumor angiogenesis, 373
 26.4.1 Stimulation, 373
 26.4.2 Inhibition, 375
26.5 Endothelial differentiation of mesenchymal stromal cells, 375
26.6 Development of a biologically active niche through bidirectional endothelial cell–stromal cell crosstalk, 378
26.7 Determination of stem cell fate through crosstalk with endothelial cells, 380
26.8 Beneficial effects of mesenchymal stromal cell–endothelial cell interactions in some tissue pathologies, 382
References, 382

27 The radioresistance of mesenchymal stromal cells and their potential role in the management of radiation injury, 391
Tara Sugrue, Irene Calvo-Asensio, and Rhodri Ceredig
27.1 Mesenchymal stromal cells: modulators of hematopoiesis, 391
27.2 The response of mesenchymal stromal cells to ionizing radiation, 393
27.3 The DNA damage response, 394
27.3.1 Sensing damage: DNA damage response initiation, 396
27.3.2 Sending an SOS: DNA damage response signal transduction and amplification, 396
27.3.3 DNA damage checkpoints, 397
27.4 DNA double-strand break repair, 398
27.4.1 Nonhomologous end joining, 398
27.4.2 Homologous recombination, 400
27.4.3 DNA double-strand break repair pathway choice, 400
27.5 Apoptosis, 400
27.6 Cellular senescence, 401
27.7 Stem cells exhibit a mixed response to DNA damage, 401
27.8 The DNA damage response of mesenchymal stromal cells, 401
27.9 Effects of hypoxia on mesenchymal stromal cell radioresistance, 403
27.10 Clinical relevance of mesenchymal stromal cells in radiation injury: two sides to the coin, 405
27.10.1 Mesenchymal stromal cells and hematopoietic stem cell transplantation, 405
27.10.2 Mesenchymal stromal cells and the tumor microenvironment, 406
References, 407

28 The implications of multipotent mesenchymal stromal cells in tumor biology and therapy, 415
Pratika Y. Hernandez, Maikel P. Peppelenbosch, and Qiuwei Pan
28.1 Introduction, 415
28.2 Origin and identification of mesenchymal stromal cells in the tumor microenvironment, 415
28.3 The migratory capacity of mesenchymal stromal cells, 416
28.3.1 Intrinsic migratory properties of mesenchymal stromal cells, 416
28.3.2 Stimuli produced by the tumor, 416
28.4 Context-dependent role of mesenchymal stromal cells in the tumor microenvironment, 417
28.4.1 Hypotheses on context-dependent roles of mesenchymal stromal cells in cancer, 417
28.4.2 The tumor-suppressing roles of mesenchymal stromal cells, 418
28.4.3 The tumor-promoting roles of mesenchymal stromal cells, 418
28.5 The potential immunomodulation by mesenchymal stromal cells in the tumor microenvironment, 419
28.5.1 Mesenchymal stromal cells inhibit natural killer cells and macrophages, 419
28.5.2 Mesenchymal stromal cells inhibit T cell proliferation, 420
28.5.3 Mesenchymal stromal cells promote the expansion and function of regulatory T cells, 420
28.5.4 Mesenchymal stromal cells inhibit the function of dendritic cells, 420
28.6 Therapeutic application of mesenchymal stromal cells in cancer, 420
28.6.1 Potential therapeutic application, 420
28.6.2 Reasons for caution, 420
Acknowledgments, 421
References, 421

29 Mesenchymal stem/stromal cell therapy: mechanism of action and host response, 426
Aideen Ryan, Mary Murphy, and Frank Barry
29.1 Mesenchymal stem/stromal cells, 426
29.2 Therapeutic application of mesenchymal stem/stromal cells, 427
29.3 Mechanism of action, 429
29.4 Host immune response to autologous mesenchymal stem/stromal cell transplantation, 430
29.5 Mesenchymal stromal cells in an inflammatory microenvironment, 430
29.6 Mesenchymal stem/stromal cells-mediated immunomodulation of the innate immune system, 432
29.7 Mesenchymal stem/stromal cells-mediated immune modulation of the adaptive immune system, 434
29.8 Host immune response to transplantation of allogeneic mesenchymal stem/stromal cells, 434
29.9 Summary, 435
References, 436

30 The differences between mesenchymal stromal cells and fibroblasts, 441
Luigi Balducci, Sharon Natasha Cox, and Giulio Alessandri
30.1 Introduction, 441
30.2 Phenotypic similarities and differences between mesenchymal stromal cells and fibroblasts, 442
30.3 Cell surface membrane markers, 442
30.4 Gene expression profile of mesenchymal stromal cells and fibroblasts, 443
30.5 Differentiation potential of mesenchymal stromal cells and fibroblasts, 445
30.6 Immune modulation capability of mesenchymal stromal cells and fibroblasts, 446
30.7 Modulation of inflammation by mesenchymal stromal cells and fibroblasts, 448
30.8 Angiogenic properties of mesenchymal stromal cells and fibroblasts, 450
30.9 Conclusions, 451
References, 451

31 Derivation of mesenchymal stem/stromal cells from induced pluripotent stem cells, 456
Rebecca A. Pelekanos
31.1 Introduction, 456
31.2 Mesenchymal stem/stromal cells as candidates for cellular therapy, 457
31.3 Mesenchymal stem/stromal cells, 457
31.4 Adult bone-marrow-derived mesenchymal stem/stromal cells, 457
31.5 Fetal tissue-derived mesenchymal stem/stromal cells, 457
31.6 Embryonic stem cells, 458
31.7 Embryonic stem-cell-derived mesenchymal stem/stromal cells, 458
31.8 Induced pluripotent stem cells, 458
31.9 Small-molecule methods for differentiating pluripotent stem cells into mesenchymal stem/stromal cells, 459
31.10 Derivation of induced pluripotent stem cell–mesenchymal stem/stromal cells through a novel transforming growth factor-β inhibitor method, 459
31.11 Mesenchymal characterization of induced pluripotent stem cell–mesenchymal stem/stromal cells derived through the inhibitor method, 461
31.12 Immune tolerance to induced pluripotent stem cell–mesenchymal stem/stromal cells, 461
31.13 Kinetics of the proliferation of induced pluripotent stem cell–mesenchymal stem/stromal cells, 461
31.14 Tumorigenic potential of induced pluripotent stem cell–mesenchymal stem/stromal cells, 462
31.15 Critical parameters for future preclinical production of induced pluripotent stem cell–mesenchymal stem/stromal cells, 462
31.16 Plasticity of lineage commitment: reprogramming, deprogramming and dedifferentiation, 462
31.17 How to develop “young” mesenchymal stem/stromal cells: going backward to go forward?, 463
31.18 Small-molecules inhibitors for generating “young” stem cells, 463
31.19 Primitive stem cells and mesenchymal stem/stromal cell generation by physical factors, 463
31.20 Conclusions, 463
31.21 Future directions, 464
Acknowledgments, 464
References, 464

32 The role of mesenchymal stem cells in hematopoiesis, 467
Jean-Pierre Levesque, Rebecca N. Jacobsen, and Ingrid G. Winkler
32.1 Introduction, 467
32.2 Hematopoietic stem cells need a niche, 468
32.3 A mesenchymal hierarchy, 468
32.4 Identification of mesenchymal stem cells and their relationship with hematopoietic stem cells in the mouse, 469
32.5 More than one nestin+ cell type and hematopoietic stem cell niche exist in the mouse bone marrow, 470
32.6 Controversies surrounding nestin+ mesenchymal stem cells and other genetic models for alternative mesenchymal stem cells, 471
32.7 Other stromal cells regulate hematopoietic stem cells and additional tools to study their role in regulating hematopoiesis, 472
32.7.1 Osteoblastic lineage and osteoblasts, 473
32.7.2 Endothelial cells, 473
32.7.3 Megakaryocytes, Schwann cells, and the transforming growth factor-β connection, 474
32.7.4 Adrenergic neurons, 475
32.7.5 Macrophages, 475
32.8 Human mesenchymal stem cells and human hematopoiesis, 476
32.9 Conclusions, 477
References, 477

33 The modulatory effects of mesenchymal stromal cells on the innate immune system, 481
Ko-Jiunn Liu, Men-Luh Yen, Li-Tzu Wang, and B. Linju Yen
33.1 Introduction to the innate immune system, 481
33.2 Interactions with dendritic cells, 481
33.3 Interactions with monocytes, macrophages, and immature myeloid cells, 483
33.4 Interactions with natural killer lymphocytes, 484
33.5 Interactions with neutrophils, other granulocytes, and mast cells, 485
33.6 Interactions with complement, 485
References, 486

34 The modulatory effects of mesenchymal stromal cells on the adaptive immune system, 490
B. Linju Yen, Ko-Jiunn Liu, Men-Luh Yen, and Huey-Kang Sytwu
34.1 Introduction to the adaptive immune system, 490
34.2 Interactions with T lymphocytes, 490
34.3 Interactions with B lymphocytes, 492
References, 492

35 The role of mesenchymal stromal cells in the repair of acute organ injury, 496
A.A. Temnov, A.V. Vagabov, A.N. Sklifas, V.I. Novoselov, and Y.A. Belyi

35.1 Effect of acute organ injury on the proliferative and functional activity of mesenchymal stromal cells, 496
35.1.1 The effect of catecholamines on mesenchymal stromal cells, 496
35.1.2 The impact of hypoxia as a factor of acute injury on mesenchymal stromal cell proliferation, 497
35.1.3 Effect of hypoxia as a factor of acute injury on the paracrine function of mesenchymal stromal cells, 498
35.1.4 Effect of tissue-specific proteins released after acute tissue injury on mesenchymal stromal cells, 501

35.2 Paracrine effect of mesenchymal stromal cells in acute organ injury, 501
35.2.1 Background, 501
35.2.2 Paracrine factors secreted by mesenchymal stromal cells, 502
35.2.3 Immunosuppressive and anti-inflammatory effects of mesenchymal stromal cells, 502
35.2.4 The pro-angiogenic and tissue regenerative effects of mesenchymal stromal cells in acute organ injury, 505
35.2.5 The antiapoptotic activity of mesenchymal stromal cells, 506
35.2.6 Mesenchymal stromal-cell-derived microvesicles: an essential part of the paracrine mechanism, 507

35.3 Mesenchymal stromal cells in the treatment of acute ischemia–reperfusion injury, 508
35.3.1 Ischemia–reperfusion injury pathogenesis, 509
35.3.2 The use of mesenchymal stromal cells in kidney ischemia–reperfusion injury, 509
35.3.3 Mesenchymal stromal cells and myocardial ischemia–perfusion injury, 510
35.3.4 Mesenchymal stromal cells and ischemia–reperfusion injury of other organs, 511
35.3.5 Conclusions, 511

35.4 The use of mesenchymal stromal cells in acute lung and airway injury, 511
35.4.1 Repair of the proximal regions of the airways after acute injury, 512

35.5 Current approaches to controlled transplantation of mesenchymal stromal cells in acute organ injury, 515

35.6 Conclusions, 516
Acknowledgment, 517
References, 517

36 The use of mesenchymal stromal cells in the treatment of diseases of the cornea, 524
Damien G. Harkin, Allison J. Sutherland, Laura J. Bray, Leanne Foyn, Fiona J. Li, and Brendan G. Cronin

36.1 Introduction, 524
36.2 Anatomy and physiology of the human cornea, 529
36.3 Overview of corneal pathology, 530
36.3.1 Ocular surface disease, 531
36.3.2 Diseases of the corneal stroma and endothelium, 531
36.4 Corneal transplantation and cultivated epithelial autografts, 532

36.5 Evidence for mesenchymal stromal cells as modulators of corneal disease, 533
36.5.1 Immunology of the cornea, 533
36.5.2 Immunology of corneal transplantation, 534
36.5.3 Immunomodulatory properties of mesenchymal stromal cells, 535
36.5.4 Mesenchymal stromal cells as modulators of corneal wound healing and tissue regeneration, 535
36.5.5 Mesenchymal stromal cells as modulators of corneal transplantation, 536

36.6 Evidence for mesenchymal stromal cells as a source of new corneal cells, 537
36.6.1 Mesenchymal stromal cell differentiation into corneal epithelium, 537
36.6.2 Mesenchymal stromal cell differentiation into keratocytes, 538
36.6.3 Mesenchymal stromal cell differentiation into corneal endothelium, 538

36.7 The biology of cornea-derived mesenchymal stromal cells, 538
36.8 Conclusions and future directions, 540
Acknowledgments, 540
References, 540

37 The role of paracrine factors secreted by mesenchymal stromal cells in acute tissue injury, 544
Ying Wang, Tania Velletri, Chunxing Zheng, and Yufang Shi

37.1 Introduction, 544
37.2 Cell replacement and cell empowerment, 544
37.3 Paracrine factors produced by mesenchymal stromal cells, 545
37.3.1 Growth factors and mesenchymal-stromal-cell-mediated tissue repair, 546
37.3.2 Soluble immunosuppressive factors and mesenchymal-stromal-cell-mediated tissue repair, 546
37.3.3 Inducible nitric oxide synthase/indoleamine 2,3-dioxygenase, 547
37.3.4 Prostaglandin E2, 548
37.3.5 Tumor-necrosis-factor-inducible gene 6 protein, 548
37.3.6 Chemokine (C–C motif) ligand 2, 548
37.3.7 Interleukin-10, 548
37.3.8 Interleukin-6, 548
37.3.9 Transforming growth factor-β, 549
37.3.10 Human leukocyte antigen G, 549
37.3.11 Galectins, 549
37.3.12 Other soluble immunosuppressive factors secreted by MSCs, 549
37.4 Conclusions, 549
Acknowledgments, 549
References, 549

38 Treatment of lung disease by mesenchymal stromal cell extracellular vesicles, 553
Antoine Monsel, Ying-gang Zhu, Varun Gudapati, and Jae-Woo Lee

38.1 Introduction, 553
38.2 Definitions and characterization of extracellular vesicles, 554
38.3 Nomenclature defined by size and morphology, 555
38.4 Common methods of collection of extracellular vesicles, 556
 38.4.1 Ultracentrifugation, 556
 38.4.2 Size exclusion, 556
 38.4.3 Immunoaffinity isolation, 556
 38.4.4 Polymeric precipitation, 556
38.5 Quantification of extracellular vesicles, 556
 38.5.1 Optical single-particle tracking: nanoparticle tracking analyses, 556
 38.5.2 Flow cytometry, 557
 38.5.3 Electron microscopy, 557
 38.5.4 Protein concentration, 557
 38.5.5 Cell count, 557
38.6 Interaction of extracellular vesicles with targeted cells, 557
38.7 Endogenous extracellular vesicles in lung disease, 558
 38.7.1 Endogenous extracellular vesicles in acute respiratory distress syndrome, 558
 38.7.2 Endogenous extracellular vesicles in chronic obstructive pulmonary disease, 560
 38.7.3 Endogenous extracellular vesicles in asthma, 561
 38.7.4 Endogenous extracellular vesicles as biomarkers in lung disease, 561
38.8 Therapeutic properties of extracellular vesicles derived from mesenchymal stromal cells, 562
 38.8.1 Mesenchymal stromal cell vesicles for kidney injury, 562
 38.8.2 Mesenchymal stromal cell vesicles for cardiac injury, 564
 38.8.3 Mesenchymal stromal cell vesicles for liver injury, 565
 38.8.4 Mesenchymal stromal cell vesicles for neural injury, 565
 38.8.5 Mesenchymal stromal cell vesicles for lung diseases, 565
38.9 Remaining questions on the therapeutic use of mesenchymal stromal cell extracellular vesicles, 566
 38.9.1 Isolation and quantification techniques, 566
 38.9.2 Extracellular vesicle characterization, 566
 38.9.3 Feasibility of large-scale generation of extracellular vesicles, 566
38.10 Regulatory considerations for the clinical use of extracellular vesicles, 566
38.11 Conclusions, 566
References, 567

39 Evaluating mesenchymal stem/stromal cells for treatment of asthma and allergic rhinitis, 573
Tatyana Gavrilova, Saritha Kartan, Lauren S. Sherman, Oleta A. Sandiford, and Pranela Rameshwar

39.1 Summary, 573
39.2 Introduction, 573
39.3 Early and late asthma response, 573
39.4 Airway remodeling, 574
39.5 Innate immunity of the airway, 574
39.6 Adaptive immunity of the respiratory tract, 575
39.7 Toll-like receptors, 575
39.8 Allergic rhinitis and immunology, 575
39.9 Immune modulation by mesenchymal stem/stromal cells, 577
39.10 The future of mesenchymal stem/stromal cells as therapy for allergic diseases, 578
References, 578

40 Stem cell therapies for Huntington’s disease, 581
A.T. Crane, J. Rossignol, and G. L. Dunbar

40.1 Introduction, 581
40.2 Huntington’s disease, 581
 40.2.1 Prevalence and symptomology, 582
 40.2.2 Neuronal pathology, 582
 40.2.3 Mechanisms of neurodegeneration, 583
40.3 Animal models, 584
 40.3.1 Transgenic models, 584
 40.4 In vitro models, 584
Section IV: The role of bioengineering in the therapeutic applications of mesenchymal stromal cells

41 Endometrial mesenchymal stromal cell and tissue engineering for pelvic organ prolapse repair, 601
Shanti Gurung, Jerome A. Werkmeister, and Caroline E. Gargett

41.1 Introduction, 601
41.2 Pelvic floor disorders, 601
41.3 Pelvic organ prolapse, 602
 41.3.1 Surgical treatment for pelvic organ prolapse, 602
 41.3.2 New meshes for treatment of pelvic organ prolapse, 603
41.4 Tissue engineering, 603
 41.4.1 Candidate cells for tissue engineering applications for pelvic organ disorders, 603
41.5 Endometrium is highly regenerative and contains stem/stromal cells, 606
 41.5.1 Human endometrial mesenchymal stem/stromal cells, 606
41.6 Culture expansion of endometrial mesenchymal stem/stromal cells toward current good manufacturing practice conditions, 608
41.7 Tissue engineering for pelvic organ prolapse repair, 609
 41.7.1 A large animal preclinical model for pelvic organ prolapse, 611
41.8 Conclusions, 612
Acknowledgments, 612
References, 612

42 Closed automated large-scale bioreactors for manufacturing mesenchymal stromal cells for clinical use, 616
Kerry Atkinson, Nicholas Timmins, G. Kiel, Celena Heazlewood, Michael Doran, and Gary Brooke

42.1 Introduction, 616
42.2 Design of a semi-automated closed-system bioreactor capable of manufacturing mesenchymal stromal cells for clinical use, 616
42.3 A commercially available closed-system bioreactor for manufacturing mesenchymal stromal cells for clinical use, 617
References, 618

Section V: GMP manufacturing of mesenchymal stromal cells for clinical use

43 Current good manufacturing practice for the isolation and ex vivo expansion of mesenchymal stromal cells derived from term human placenta for use in clinical trials, 621
Kerry Atkinson, Dahlia Khalil, Celena Heazlewood, and Nina Ilic

43.1 Source of mesenchymal stromal cells for use in clinical trials, 621
43.2 Inclusion criteria for mothers wishing to donate their term placenta for isolation and expansion of mesenchymal stromal cells for use in clinical trials approved by a human research ethics committee, 622
43.3 Exclusion criteria for mothers wishing to donate their term placenta for isolation and expansion of mesenchymal stromal cells for use in clinical trials approved by a human research ethics committee, 622
43.4 Mesenchymal stromal cell manufacturing, 623
 43.4.1 The good manufacturing process facility, 623
 43.4.2 Quality control and quality assurance, 623
 43.4.3 Isolating and expanding mesenchymal stromal cells from human term placenta, 623
 43.4.4 Testing performed on mesenchymal stromal cells manufactured for clinical use, 623
43.5 Phase 1 trials using placenta-derived mesenchymal stromal cells, 625
References, 627

44 A comparison of high-tier regulatory documents pertaining to biologic drugs including mesenchymal stromal cells in Australia, Europe, and the USA using a manual documentary analysis, 628
Nina Ilic

44.1 Introduction, 628
44.2 Background, 628
44.3 Definitions used by the Australian Therapeutic Goods Administration, the European Medicine Agency, and the US Food and Drug Administration for "biologicals", 629
44.4 Complexity of the area, 632
44.5 Analysis of documents, 633
44.6 Regulatory science, 639
44.7 Interpretation of the analysis of the documents, 640
44.8 Conclusions, 641
References, 641

Section VI: The therapeutic application of mesenchymal stromal cells

45 The use of mesenchymal stromal cells in acute and chronic heart disease, 647
Ariel Wolf, Wayne Balkan, and Joshua Hare

45.1 Introduction, 647
45.2 The biology of acute and chronic ischemic cardiomyopathy, 647
45.3 Characterization of mesenchymal stromal/stem cells, 648
 45.3.1 Immunomodulatory properties, 649
 45.3.2 Antiﬁbrotic effects, 650
 45.3.3 Cardiomyogenesis in vitro and in vivo, 650
 45.3.4 Neovascularization, 651
 45.3.5 Paracrine effects, 652
 45.3.6 Exosomes, 652
 45.3.7 Mitochondrial transfer, 652
 45.3.8 Preconditioning, 652
 45.3.9 Genetic modiﬁcation, 653
45.4 Cell combination therapy, 653
45.5 Clinical trials utilizing bone-marrow-derived mesenchymal stromal/stem cells, 654
 45.5.1 Acute myocardial infarction, 654
 45.5.2 Chronic myocardial infarction, 655
45.6 Clinical trials utilizing adipose-derived mesenchymal stromal/stem cells, 656
45.7 Preconditioning in the clinical setting, 657
45.8 Conclusions, 657
References, 657

46 The role of mesenchymal stem/stromal cells in the management of critical limb ischemia, 661
P.K. Gupta, Chullikana Anoop, Balasubramanian Sudha, R Mathiazhagan, Raj Swathi Sundar, and Majumdar Anish Sen

46.1 Introduction, 661
46.2 Mesenchymal stem/stromal cells and angiogenesis, 663
46.3 Potency assays for cells to be used in critical limb ischemia, 664
 46.3.1 Ixmyelocel-T, 664
 46.3.2 Stempeucel®, 665
46.4 Preclinical studies, 665
 46.4.1 Preclinical safety studies, 665
 46.4.2 Preclinical efﬁcacy studies, 667
46.5 Clinical trials in critical limb ischemia, 667

46.5.1 Safety of mesenchymal stromal cells in clinical trials, 667
46.5.2 Efficacy of mesenchymal stromal cells in clinical trials of critical limb ischemia, 668
46.5.3 Clinical trials in India, 671
46.5.4 Stempeutics research experience in critical limb ischemia, 671
46.5.5 Phase I/II study in patients with critical limb ischemia, 671
46.5.6 Phase II study in patients with Buerger’s disease, 673
46.6 Conclusions, 673
References, 674

47 The role of mesenchymal stromal cells in the management of musculoskeletal disorders, 677
Stefan Zwingenberger, Ishaq Ojodu, Maik Stiehler, and Stuart B. Goodman

47.1 Summary, 677
47.2 Introduction, 677
47.3 Stem cells for bone regeneration, 679
 47.3.1 Bone defects, 679
 47.3.2 Osteonecrosis, 680
 47.3.3 Wear-particle-related osteolysis, 681
 47.3.4 Systemic bone diseases, 681
47.4 Stem cells for cartilage regeneration, 682
 47.4.1 Osteoarthritis, 683
47.5 Stem cells for tendon regeneration, 683
47.6 Stem cells for skeletal muscle regeneration, 684
47.7 Stem cells for wound repair, 685
47.8 Conclusions, 685
References, 685

48 The potential role of bone marrow mesenchymal stromal cells in the treatment of ischemic stroke, 690
Yujun Pan and Ruohan Sun

48.1 Introduction, 690
 48.1.1 Stroke, 690
 48.1.2 Stem cells, 691
 48.1.3 Mesenchymal stromal cells, 691
48.2 Transplantation route and mechanisms of migration, 693
48.3 Tracking techniques for transplanted mesenchymal stromal cells, 698
48.4 Cytokines and neurotrophic factors, 699
48.5 Angiogenesis, 699
48.6 Neurogenesis, 700
48.7 Axonal sprouting and remyelination, 701
48.8 Antiapoptotic effects, 701
48.9 Immunomodulation, 702
48.10 Pretreatment of mesenchymal stromal cells prior to their administration in animal models of ischemic stroke, 702
48.10.1 Administration of genetically engineered mesenchymal stromal cells, 704
48.10.2 Administration of mesenchymal stromal cells in combination with chemical agents, 704
48.11 Clinical trials involving bone-marrow-derived mesenchymal stromal cells in the treatment of ischemic stroke, 705
48.12 Controversies and safety analysis of bone-marrow-derived mesenchymal stromal cells in the treatment of ischemic stroke, 706
48.12.1 Conflicting results in animal models, 706
48.12.2 Combined transplantation of mesenchymal stromal cells and neural stem/precursor cells, 706
48.13 Conclusions and perspectives, 707
Acknowledgments, 707
References, 707

49 The role of mesenchymal stromal cells in spinal cord injury, 714
P. Jendelova, L. Machova-Urdzikova, and E. Sykova
49.1 The central nervous system, 714
49.2 Spinal cord injury, 714
49.3 Cell therapy, 715
 49.3.1 Mesenchymal stromal cells, 716
49.4 Chronic spinal cord injury, 721
49.5 Cellular transplants for spinal cord injury, 722
 49.5.1 Use of hematopoietic stem/progenitor cells for spinal cord injury, 722
 49.5.2 Use of mesenchymal stromal cells for spinal cord injury, 723
49.6 Conclusions, 723
Acknowledgments, 725
References, 725

50 The role of mesenchymal stromal cells in the treatment of ulcerative colitis and Crohn’s disease, 730
Céline Gregoire, Chantal Lechanteur, Alexandra Briquet, Etienne Baudoux, Olivier Giet, Olivier Delloye, Frédéric Baron, Edouard Louis, and Yves Beguin
50.1 Inflammatory bowel diseases, 730
50.2 Pathogenesis of inflammatory bowel diseases, 731
50.3 Treatment of Crohn’s disease, 734
 50.3.1 Current treatment options for Crohn’s disease, 734
 50.3.2 Potential treatment options, 735
50.4 Treatment of ulcerative colitis, 737
 50.4.1 Current treatment options for ulcerative colitis, 737
 50.4.2 Potential new treatment options, 737
50.5 Properties of mesenchymal stromal cells, 737
 50.5.1 Immunomodulation, 738
 50.5.2 Immune tolerance, 739
50.5.3 Tissue regeneration, 740
50.5.4 Homing, 740
50.5.5 Differentiation and stimulation of tissue repair, 740
50.6 Mesenchymal stromal cell administration in inflammatory bowel diseases, 740
 50.6.1 Mesenchymal stromal cell administration for fistulizing Crohn’s disease, 741
 50.6.2 Autologous mesenchymal stromal cell administration for fistulizing Crohn’s disease, 741
 50.6.3 Allogeneic mesenchymal stromal cell administration for fistulizing Crohn’s disease, 742
50.6.4 Autologous mesenchymal stromal cell administration for luminal inflammatory bowel diseases, 742
50.6.5 Allogeneic mesenchymal stromal cell administration for luminal inflammatory bowel diseases, 742
50.7 The future of mesenchymal stromal cell treatment in inflammatory bowel diseases, 743
 50.7.1 Ongoing protocols, 743
50.8 Issues to be resolved, 744
 50.8.1 Source of mesenchymal stromal cells, 744
 50.8.2 Autologous versus allogeneic mesenchymal stromal cells, 745
 50.8.3 Dosage and modalities of administration, 745
 50.8.4 Concomitant use of other drugs, 745
50.9 Safety, 745
50.10 Conclusions, 745
References, 746

51 Mesenchymal stromal cells targeting kidney disease: benefits of a combined therapeutic approach, 754
Brooke M. Huuskes and Sharon D. Ricardo
51.1 Introduction, 754
51.2 Immune modulation and protective effects of mesenchymal stromal cells, 754
51.3 Mesenchymal stromal cell homing, recruitment, and tracking, 757
51.4 Mechanisms of kidney injury and capacity for repair, 759
51.5 Kidney injury and repair in balance with fibrosis, 759
51.6 Mesenchymal stromal cells as delivery tools for therapies, 760
51.7 Clinical trials with mesenchymal stromal cells, 761
51.8 The antifibrotic functions of relaxin, 763
51.9 Combination therapy using mesenchymal stromal cells and relaxin, 764
51.10 Conclusions, 764
References, 765
The biology and potential clinical applications of mesenchymal stromal cells in diseases of the lung, 770
Yuben P. Moodley, Jesse D. Armitage, and Dino B.A. Tan

52.1 Introduction to lung disease, 770
52.1.1 The global burden of lung disease, 770
52.1.2 The pathogenesis of lung diseases, 770
52.1.3 The range of lung diseases, 771

52.2 What are stem cells?, 771

52.3 What are mesenchymal stromal cells?, 771

52.4 Lung-resident mesenchymal stromal cells, 772

52.5 Tracking mesenchymal stromal cells in the body, 772

52.6 The properties of mesenchymal stromal cells that favor repair, 772
52.6.1 Avoidance of immune recognition, 772
52.6.2 Mechanisms of mesenchymal stromal-cell-mediated immunomodulation, 772
52.6.3 Mesenchymal stromal-cell-mediated repair via trophic factors, 775

52.7 Mesenchymal stromal cells as delivery agents for drugs, 775
52.7.1 Viral transduction, 775
52.7.2 Genetic modulation, 776
52.7.3 Nanoparticle incorporation, 776
52.7.4 Surface modification, 776
52.7.5 Preconditioned mesenchymal stromal cells, 776

52.8 Preclinical and clinical studies of mesenchymal stromal cells in pulmonary diseases, 776
52.8.1 Idiopathic pulmonary fibrosis, 776
52.8.2 Chronic obstructive pulmonary disease, 779
52.8.3 Acute lung injury and acute respiratory distress syndrome, 780

52.9 Challenges in mesenchymal stromal cell administration in lung diseases, 781
52.9.1 Optimal dosage of mesenchymal stromal cells, 781
52.9.2 Timing of mesenchymal stromal cell administration, 782

52.10 Summary and conclusions, 782

References, 782

53 The role of mesenchymal stromal cells in diseases of the lung, 787
Kerry Atkinson

53.1 Introduction, 787

53.2 Pulmonary fibrosis, 787
53.2.1 Animal models, 788
53.2.2 Clinical trials of mesenchymal stromal cells, 788

53.3 Asthma, 788
53.3.1 Preclinical models, 790
53.3.2 Clinical trials of mesenchymal stromal cells, 790

53.4 Obliterative bronchiolitis, 790

53.4.1 Preclinical animal models, 790
53.4.2 Clinical trials of mesenchymal stromal cells, 791

53.5 Chronic obstructive pulmonary disease and emphysema, 791
53.5.1 Preclinical animal models, 792
53.5.2 Clinical trials with mesenchymal stromal cells, 792

53.6 Bronchopulmonary dysplasia, 792
53.6.1 Preclinical animal models, 792
53.6.2 Clinical trials using mesenchymal stromal cells, 792

53.7 Acute respiratory distress syndrome and acute lung injury, 792
53.7.1 Preclinical animal models, 793
53.7.2 Clinical trials with mesenchymal stromal cells, 793

53.8 Conclusions, 793

References, 793

54 Mesenchymal stromal cells for the treatment of autoimmune diseases, 794
Christopher N. Lewis and Jacques Galipeau

54.1 Cell biology of endogenous mesenchymal stromal cells, 794
54.1.1 Mesenchymal stromal cells coordinate hematopoietic stem cell development, 795
54.1.2 Mesenchymal stromal cells and central tolerance in the bone marrow, 795

54.2 Cell biology of mesenchymal stromal cells in culture, 796
54.2.1 Mesenchymal stromal cells and B cell immunosuppression, 797
54.2.2 Mesenchymal stromal cell and T cell co-culture assays, 797

54.3 Immunosuppression: lessons from oncology, 797
54.3.1 Programmed death ligand 1 and immunosuppression by tumors, 798
54.3.2 Programmed death ligand 1 and immunosuppression by mesenchymal stromal cells, 798

54.4 Mesenchymal stromal cell response to inflammatory signals: licensing and integration, 800
54.4.1 Mesenchymal stromal cells and complement, 800
54.4.2 Mesenchymal stromal cells and toll-like receptors, 801
54.4.3 Interferon-γ in the immune response, 802
54.4.4 Mesenchymal stromal cells and interferon-γ, 803
54.4.5 Tumor necrosis factor-α in the immune response, 803
54.4.6 Synergy of interferon-γ and tumor necrosis factor-α in mesenchymal stromal cells, 804
54.5 Strength of signal and integration, 804
54.6 Clinical applications of mesenchymal stromal cells for immune-mediated diseases, 806
54.6.1 How in vitro data inform assessment of clinical efficacy, 806
54.6.2 Random donor, industrial scale, 806
54.6.3 Allogeneic mesenchymal stromal cells, low passage, 807
54.6.4 Autologous mesenchymal stromal cells for autoimmune diseases, 808
54.7 Conclusions and next steps, 809
References, 809

55 The role of mesenchymal stromal cells in bacterial infection, 814
Sailaja Ghanta, Konstantin Tsoyi, and Mark A. Perrella
55.1 Introduction, 814
55.2 Experimental models of bacterial infection and sepsis, 815
55.3 Effects of mesenchymal stromal cells on the innate immune response, 816
55.4 Effects of mesenchymal stromal cells on the adaptive immune response, 819
55.5 Antimicrobial activity of mesenchymal stromal cells, 819
55.6 Mesenchymal stromal cells and endothelial/epithelial dysfunction, 819
55.7 Mesenchymal stromal cells and effect on organ injury in infection, 819
55.8 Mesenchymal stromal cell cytokine and growth factor production, 820
55.9 Toll-like receptors and mesenchymal stromal cells, 821
55.10 Mesenchymal stromal cell homing, 821
55.11 Mesenchymal stromal cell response to oxidative stress, 821
55.12 Paracrine effects of mesenchymal stromal cells, 821
55.13 Transcriptomic analysis of mesenchymal stromal cell therapy in sepsis, 822
55.14 Summary, 822
References, 822

56 The use of mesenchymal stromal cells in solid organ transplantation, 825
Céline Gregoire, Alexandra Briquet, François Jouret, Chantal Lechanteur, Etienne Baudoux, Olivier Giet, Olivier Delloye, Frédéric Baron, Olivier Detry, and Yves Beguin
56.1 Introduction, 825
56.2 Potential effects of mesenchymal stromal cells in solid organ transplantation, 825
56.3 Immunomodulation, 826
56.4 Tissue and organ regeneration, 826
56.5 Prevention of ischemia–reperfusion injury, 826
56.6 Mesenchymal stromal cell administration in solid organ transplantation, 826
56.6.1 Kidney transplantation, 826
56.6.2 Liver transplantation, 829
56.6.3 Heart transplantation, 831
56.6.4 Lung transplantation, 831
56.6.5 Pancreas and islet transplantation, 831
56.6.6 Bowel transplantation, 832
56.7 Conclusions, 832
References, 832

57 The role of mesenchymal stromal cells in allogeneic hematopoietic stem cell transplantation, 836
Kerry Atkinson
57.1 The immunobiology of allogeneic hematopoietic stem cell transplantation, 836
57.1.1 Graft rejection and late marrow failure, 836
57.1.2 Graft-versus-host disease, 836
57.1.3 The graft-versus-leukemia effect, 837
57.1.4 The recipient’s response to infection, 837
57.2 The immunobiology of mesenchymal stromal cells, 837
57.3 The role of mesenchymal stromal cells in the expansion of hematopoietic stem cells, 837
57.4 The role of mesenchymal stromal cells in marrow graft rejection, 837
57.5 The role of mesenchymal stromal cells in the prevention of acute graft-versus-host disease, 838
57.6 The role of mesenchymal cells in the treatment of corticosteroid-refractory acute graft-versus-host disease, 838
57.7 The mesenchymal stromal cell exosome: a substitute for the mesenchymal stromal cell?, 839
References, 839

58 The role of mesenchymal stromal cells in the management of skin wounds, 841
Sung-Whan Kim
58.1 Introduction, 841
58.2 The wound healing process, 841
58.3 The role of mesenchymal stromal cells in the wound healing process, 842
58.3.1 Immune modulation, 842
58.3.2 Antimicrobial activity, 842
58.3.3 Chemotactic and migratory activities, 842
58.3.4 Paracrine activity, 842
58.3.5 Differentiation, 842
58.4 Conclusions and the future, 842
References, 843
59 The role of mesenchymal stromal cells in skin wound healing, 845
Miao Teng and Hengshu Zhang

59.1 Summary, 845
59.2 Introduction, 845
59.3 The role of bone-marrow-derived mesenchymal stromal cells in wound healing, 845
59.4 The role of adipose-tissue-derived mesenchymal stromal cells in wound healing, 849
59.5 The role of mesenchymal stromal cells from placental tissues in wound healing, 851
59.6 The role of mesenchymal stromal cells from dermal tissue in wound healing, 852
59.7 The role of mesenchymal stromal cells from blood in wound healing, 853
59.8 Questions and challenges regarding mesenchymal stromal cell administration in wound healing, 853
59.9 Conclusions, 853
References, 853

Section VII: Mesenchymal stromal cells as delivery vehicles for therapeutic agents

60 The role of mesenchymal stromal cells in human brain tumors, 859
Brittany C. Parker Kerrigan, Tal Shahar, Shinji Yamashita, and Frederick F. Lang

60.1 Introduction, 859
60.2 Mesenchymal stromal cells in the therapy of human gliomas, 860
60.3 Cellular therapy for gliomas, 860
60.4 The advantages of mesenchymal stromal cells in clinical use, 861
60.5 The rationale for using mesenchymal stromal cells in glioma therapy, 861
60.6 Mechanisms underlying mesenchymal stromal cell tropism for gliomas, 863
60.7 Strategies to enhance mesenchymal stromal cell homing to gliomas, 864
60.8 Types of therapeutic cargo, 864
60.8.1 Secreted proteins, 864
60.8.2 Prodrug enzymes, 865
60.8.3 Replication-competent oncolytic viruses, 865
60.8.4 Antibodies, 866
60.8.5 Nanoparticles, 866
60.9 Delivery routes of mesenchymal stromal cells in clinical applications, 866
60.10 Mesenchymal stem cells in the biology of gliomas, 867

60.11 Controversy over tumor-associated mesenchymal stromal cells in solid tumors and gliomas, 867
60.12 A model of mesenchymal stromal cells in glioma biology, 868
60.13 Prospects for clinical use of bone-marrow-derived mesenchymal stromal cells in glioma therapy, 868
References, 869

61 Mesenchymal stromal cells as gene delivery vehicles to treat nonmalignant diseases, 873
Julie R. Beegle, Jan A. Nolta, and Fernando A. Fierro

61.1 Introduction, 873
61.2 What are mesenchymal stromal cells?, 873
61.3 Genetic modification of mesenchymal stromal cells, 874
61.3.1 Safety concerns, 874
61.3.2 Choice of vector system, 874
61.4 Preclinical models of gene-modified mesenchymal stromal cells: mesenchymal stromal cell migration and survival, 875
61.5 Gene-modified mesenchymal stromal cells as immune modulators, 877
61.6 Gene-modified mesenchymal stromal cells in skeletal disorders, 878
61.7 Gene-modified mesenchymal stromal cells in cardiovascular disease, 880
61.8 Gene-modified mesenchymal stromal cells in kidney disease, 881
61.9 Gene-modified mesenchymal stromal cells in neurological disease, 881
61.10 Gene-modified mesenchymal stromal cells in other nonmalignant diseases, 883
61.10.1 Hemophilia, 883
61.10.2 Metachromatic leukodystrophy, 883
61.10.3 Mucopolysaccharidosis type VII, 883
61.10.4 Diabetes mellitus, 883
61.11 Conclusions and future directions, 883
References, 885

62 Gene therapy for cancer using mesenchymal stromal cells, 892
Byosuke Uchibori and Keiya Ozawa

62.1 Introduction, 892
62.1.1 Biological characteristics of mesenchymal stromal cells, 892
62.1.2 Immunomodulatory effects of mesenchymal stromal cells on immune cells, 893
62.1.3 Tumor homing of mesenchymal stromal cells, 893
62.2 Applications of genetically engineered mesenchymal stromal cells for cancer therapy, 893
62.2.1 Interferons, 893
62.2.2 Interleukins, 894
62.2.3 Chemokines, 894
62.2.4 Suicide genes, 894
62.2.5 Other approaches, 894
62.3 Molecular mechanisms of mesenchymal stromal cell accumulation at tumor sites, 894
 62.3.1 Migratory factors, 895
 62.3.2 Interactions between mesenchymal stromal cells and endothelial cells, 895
62.4 Considerations in the use of genetically engineered mesenchymal stromal cells in cancer therapy, 895
62.5 Summary and conclusions, 896
References, 896

Section VIII: The present and the future

63 Breaking news, 901
 Kerry Atkinson
 63.1 In vitro laboratory studies, 901
 63.2 Preclinical in vivo animal studies, 903
 63.3 Clinical trials, 908
 63.4 Regulatory approval for marketing mesenchymal stromal cell products, 909
References, 909

64 Reconciling the stem cell and paracrine paradigms of mesenchymal stem cell function, 912
 Siddaraju V. Boregowda and Donald G. Phinney
 64.1 Summary, 912
 64.2 Introduction, 912
 64.3 The stem cell paradigm revisited, 913
 64.4 The paracrine paradigm, 914
 64.4.1 “Mesenchymal stem cell pharmacology”: cells are not drug-like, 915
 64.4.2 Priming to enhance mesenchymal stem cell paracrine action also impacts cell growth and survival, 916
 64.4.3 Licensing of immunomodulatory activity biases cell differentiation, 916
 64.5 Modeling mesenchymal stem cell function using lessons learned from immunology, 916
 64.6 A stem-cell-centric view of mesenchymal stem cells, 919
 64.7 Closing remarks, 920
References, 920

Glossary, 927
Index, 949