Contents

About the Author xii
Preface xiii
Acknowledgments xv

1 Introduction 1
1.1 Moore’s Law 1
1.2 Technology Process Impact: Power Management IC from 0.5 micro-meter to 28 nano-meter 1
1.2.1 MOSFET Structure 1
1.2.2 Scaling Effects 7
1.2.3 Leakage Power Dissipation 9
1.3 Challenge of Power Management IC in Advanced Technological Products 14
1.3.1 Multi-V_{th} Technology 14
1.3.2 Performance Boosters 15
1.3.3 Layout-Dependent Proximity Effects 19
1.3.4 Impacts on Circuit Design 20
1.4 Basic Definition Principles in Power Management Module 22
1.4.1 Load Regulation 22
1.4.2 Transient Voltage Variations 23
1.4.3 Conduction Loss and Switching Loss 24
1.4.4 Power Conversion Efficiency 25
References 25

2 Design of Low Dropout (LDO) Regulators 28
2.1 Basic LDO Architecture 29
2.1.1 Types of Pass Device 31
2.2 Compensation Skills 34
2.2.1 Pole Distribution 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 Zero Distribution and Right-Half-Plane (RHP) Zero</td>
<td>40</td>
</tr>
<tr>
<td>2.3 Design Consideration for LDO Regulators</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1 Dropout Voltage</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2 Efficiency</td>
<td>44</td>
</tr>
<tr>
<td>2.3.3 Line/Load Regulation</td>
<td>45</td>
</tr>
<tr>
<td>2.3.4 Transient Output Voltage Variation Caused by Sudden Load Current Change</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Analog-LDO Regulators</td>
<td>50</td>
</tr>
<tr>
<td>2.4.1 Characteristics of Dominant-Pole Compensation</td>
<td>50</td>
</tr>
<tr>
<td>2.4.2 Characteristics of C-free Structure</td>
<td>56</td>
</tr>
<tr>
<td>2.4.3 Design of Low-Voltage C-free LDO Regulator</td>
<td>62</td>
</tr>
<tr>
<td>2.4.4 Alleviating Minimum Load Current Constraint through the Current Feedback Compensation (CFC) Technique in the Multi-stage C-free LDO Regulator</td>
<td>66</td>
</tr>
<tr>
<td>2.4.5 Multi-stage LDO Regulator with Feedforward Path and Dynamic Gain Adjustment (DGA)</td>
<td>75</td>
</tr>
<tr>
<td>2.5 Design Guidelines for LDO Regulators</td>
<td>79</td>
</tr>
<tr>
<td>2.5.1 Simulation Tips and Analyses</td>
<td>81</td>
</tr>
<tr>
<td>2.5.2 Technique for Breaking the Loop in AC Analysis Simulation</td>
<td>82</td>
</tr>
<tr>
<td>2.5.3 Example of the Simulation Results of the LDO Regulator with Dominant-Pole Compensation</td>
<td>85</td>
</tr>
<tr>
<td>2.6 Digital-LDO (D-LDO) Design</td>
<td>93</td>
</tr>
<tr>
<td>2.6.1 Basic D-LDO</td>
<td>94</td>
</tr>
<tr>
<td>2.6.2 D-LDO with Lattice Asynchronous Self-Timed Control</td>
<td>96</td>
</tr>
<tr>
<td>2.6.3 Dynamic Voltage Scaling (DVS)</td>
<td>100</td>
</tr>
<tr>
<td>2.7 Switchable Digital/Analog-LDO (D/A-LDO) Regulator with Analog DVS Technique</td>
<td>110</td>
</tr>
<tr>
<td>2.7.1 ADVS Technique</td>
<td>110</td>
</tr>
<tr>
<td>2.7.2 Switchable D/A-LDO Regulator</td>
<td>113</td>
</tr>
<tr>
<td>References</td>
<td>120</td>
</tr>
</tbody>
</table>

3 Design of Switching Power Regulators 122

3.1 Basic Concept 122
3.2 Overview of the Control Method and Operation Principle 125
3.3 Small Signal Modeling and Compensation Techniques in SWR 131
 3.3.1 Small Signal Modeling of Voltage-Mode SWR 131
 3.3.2 Small Signal Modeling of the Closed-Loop Voltage-Mode SWR 135
 3.3.3 Small Signal Modeling of Current-Mode SWR 150
References 169

4 Ripple-Based Control Technique Part I 170

4.1 Basic Topology of Ripple-Based Control 171
 4.1.1 Hysteretic Control 173
 4.1.2 On-Time Control 176
4.1 Off-Time Control
- 4.1.3 Off-Time Control
- 4.1.4 Constant Frequency with Peak Voltage Control and Constant Frequency with Valley Voltage Control
- 4.1.5 Summary of Topology of Ripple-Based Control

4.2 Stability Criterion of On-Time Controlled Buck Converter
- 4.2.1 Derivation of the Stability Criterion
- 4.2.2 Selection of Output Capacitor

4.3 Design Techniques When Using MLCC with a Small Value of R_{ESR}
- 4.3.1 Use of Additional Ramp Signal
- 4.3.2 Use of Additional Current Feedback Path
- 4.3.3 Comparison of On-Time Control with an Additional Current Feedback Path
- 4.3.4 Ripple-Reshaping Technique to Compensate a Small Value of R_{ESR}
- 4.3.5 Experimental Result of Ripple-Reshaped Function

4.4 References

5 Ripple-Based Control Technique Part II
- 5.1 Design Techniques for Enhancing Voltage Regulation Performance
 - 5.1.1 Accuracy in DC Voltage Regulation
 - 5.1.2 V^2 Structure for Ripple-Based Control
 - 5.1.3 V^2 On-Time Control with an Additional Ramp or Current Feedback Path
 - 5.1.4 Compensator for V^2 Structure with Small R_{ESR}
 - 5.1.5 Ripple-Based Control with Quadratic Differential and Integration Technique if Small R_{ESR} is Used
 - 5.1.6 Robust Ripple Regulator (R3)

5.2 Analysis of Switching Frequency Variation to Reduce Electromagnetic Interference
- 5.2.1 Improvement of Noise Immunity of Feedback Signal
- 5.2.2 Bypassing Path to Filter the High-Frequency Noise of the Feedback Signal
- 5.2.3 Technique of PLL Modulator
- 5.2.4 Full Analysis of Frequency Variation under Different V_{IN}, V_{OUT}, and i_{Load}
- 5.2.5 Adaptive On-Time Controller for Pseudo-Constant f_{SW}

5.3 Optimum On-Time Controller for Pseudo-Constant f_{SW}
- 5.3.1 Algorithm for Optimum On-Time Control
- 5.3.2 Type-I Optimum On-Time Controller with Equivalent V_{IN} and V_{OUT_eq}
- 5.3.3 Type-II Optimum On-Time Controller with Equivalent V_{DUTY}
- 5.3.4 Frequency Clamper
- 5.3.5 Comparison of Different On-Time Controllers
- 5.3.6 Simulation Result of Optimum On-Time Controller
- 5.3.7 Experimental Result of Optimum On-Time Controller

References
6 Single-Inductor Multiple-Output (SIMO) Converter

6.1 Basic Topology of SIMO Converters 345
 6.1.1 Architecture 345
 6.1.2 Cross Regulation 347

6.2 Applications of SIMO Converters 348
 6.2.1 System-on-Chip 348
 6.2.2 Portable Electronics Systems 350

6.3 Design Guidelines of SIMO Converters 351
 6.3.1 Energy Delivery Paths 351
 6.3.2 Classifications of Control Methods 359
 6.3.3 Design Goals 363

6.4 SIMO Converter Techniques for Soc 364
 6.4.1 Superposition Theorem in Inductor Current Control 364
 6.4.2 Dual-Mode Energy Delivery Methodology 366
 6.4.3 Energy-Mode Transition 367
 6.4.4 Automatic Energy Bypass 371
 6.4.5 Elimination of Transient Cross Regulation 372
 6.4.6 Circuit Implementations 376
 6.4.7 Experimental Results 387

6.5 SIMO Converter Techniques for Tablets 397
 6.5.1 Output Independent Gate Drive Control in SIMO Converter 397
 6.5.2 CCM/GM Relative Skip Energy Control in SIMO Converter 405
 6.5.3 Bidirectional Dynamic Slope Compensation in SIMO Converter 415
 6.5.4 Circuit Implementations 420
 6.5.5 Experimental Results 427

References 441

7 Switching-Based Battery Charger

7.1 Introduction 443
 7.1.1 Pure Charge State 447
 7.1.2 Direct Supply State 448
 7.1.3 Plug Off State 448
 7.1.4 CAS State 448

7.2 Small Signal Analysis of Switching-Based Battery Charger 449

7.3 Closed-Loop Equivalent Model 454

7.4 Simulation with PSIM 461

7.5 Turbo-boost Charger 465

7.6 Influence of Built-In Resistance in the Charger System 470

7.7 Design Example: Continuous Built-In Resistance Detection 472
 7.7.1 CBIRD Operation 473
 7.7.2 CBIRD Circuit Implementation 476
 7.7.3 Experimental Results 480

References 482
8 Energy-Harvesting Systems

8.1 Introduction to Energy-Harvesting Systems 483

8.2 Energy-Harvesting Sources 486
 8.2.1 Vibration Electromagnetic Transducers 487
 8.2.2 Piezoelectric Generator 490
 8.2.3 Electrostatic Energy Generator 491
 8.2.4 Wind-Powered Energy Generator 492
 8.2.5 Thermoelectric Generator 494
 8.2.6 Solar Cells 496
 8.2.7 Magnetic Coil 498
 8.2.8 RF/Wireless 501

8.3 Energy-Harvesting Circuits 502
 8.3.1 Basic Concept of Energy-Harvesting Circuits 502
 8.3.2 AC Source Energy-Harvesting Circuits 505
 8.3.3 DC-Source Energy-Harvesting Circuits 511

8.4 Maximum Power Point Tracking 514
 8.4.1 Basic Concept of Maximum Power Point Tracking 514
 8.4.2 Impedance Matching 515
 8.4.3 Resistor Emulation 516
 8.4.4 MPPT Method 518

References 523

Index 527