Contents

About the Editors xiii
Contributors xv
Series Editor’s Preface xvii
Preface xix
Acknowledgements xxi

Part I OVERVIEW

1 Introduction 3
1.1 Durability in Vehicle Engineering 4
1.2 Reliability, Variation and Robustness 6
1.3 Load Description for Trucks 7
1.4 Why Is Load Analysis Important? 9
1.5 The Structure of the Book 10

2 Loads for Durability 15
2.1 Fatigue and Load Analysis 15
2.1.1 Constant Amplitude Load 15
2.1.2 Block Load 16
2.1.3 Variable Amplitude Loading and Rainflow Cycles 16
2.1.4 Rainflow Matrix, Level Crossings and Load Spectrum 18
2.1.5 Other Kinds of Fatigue 20
2.2 Loads in View of Fatigue Design 23
2.2.1 Fatigue Life: Cumulative Damage 23
2.2.2 Fatigue Limit: Maximum Load 23
2.2.3 Sudden Failures: Maximum Load 24
2.2.4 Safety Critical Components 24
2.2.5 Design Concepts in Aerospace Applications 24
2.3 Loads in View of System Response 25
2.4 Loads in View of Variability 27
 2.4.1 Different Types of Variability 27
 2.4.2 Loads in Different Environments 28
2.5 Summary 29

Part II METHODS FOR LOAD ANALYSIS

3 Basics of Load Analysis 33
 3.1 Amplitude-based Methods 35
 3.1.1 From Outer Loads to Local Loads 36
 3.1.2 Pre-processing of Load Signals 37
 3.1.3 Rainflow Cycle Counting 40
 3.1.4 Range-pair Counting 49
 3.1.5 Markov Counting 51
 3.1.6 Range Counting 53
 3.1.7 Level Crossing Counting 55
 3.1.8 Interval Crossing Counting 56
 3.1.9 Irregularity Factor 56
 3.1.10 Peak Value Counting 56
 3.1.11 Examples Comparing Counting Methods 56
 3.1.12 Pseudo Damage and Equivalent Loads 60
 3.1.13 Methods for Rotating Components 67
 3.1.14 Recommendations and Work-flow 70
 3.2 Frequency-based Methods 72
 3.2.1 The PSD Function and the Periodogram 73
 3.2.2 Estimating the Spectrum Based on the Periodogram 74
 3.2.3 Spectrogram or Waterfall Diagram 79
 3.2.4 Frequency-based System Analysis 79
 3.2.5 Extreme Response and Fatigue Damage Spectrum 85
 3.2.6 Wavelet Analysis 86
 3.2.7 Relation Between Amplitude and Frequency-based Methods 87
 3.2.8 More Examples and Summary 87
 3.3 Multi-input Loads 91
 3.3.1 From Outer Loads to Local Loads 92
 3.3.2 The RP Method 94
 3.3.3 Plotting Pseudo Damage and Examples 95
 3.3.4 Equivalent Multi-input Loads 99
 3.3.5 Phase Plots and Correlation Matrices for Multi-input Loads 101
 3.3.6 Multi-input Time at Level Counting 104
 3.3.7 Biaxiality Plots 104
 3.3.8 The Wang-Brown Multi-axial Cycle Counting Method 105
 3.4 Summary 105
4 Load Editing and Generation of Time Signals

4.1 Introduction

4.1.1 Essential Load Properties
4.1.2 Criteria for Equivalence

4.2 Data Inspections and Corrections

4.2.1 Examples and Inspection of Data
4.2.2 Detection and Correction

4.3 Load Editing in the Time Domain

4.3.1 Amplitude-based Editing of Time Signals
4.3.2 Frequency-based Editing of Time Signals
4.3.3 Amplitude-based Editing with Frequency Constraints
4.3.4 Editing of Time Signals: Summary

4.4 Load Editing in the Rainflow Domain

4.4.1 Re-scaling
4.4.2 Superposition
4.4.3 Extrapolation on Length or Test Duration
4.4.4 Extrapolation to Extreme Usage
4.4.5 Load Editing for 1D Counting Results
4.4.6 Summary, Hints and Recommendations

4.5 Generation of Time Signals

4.5.1 Amplitude- or Cycle-based Generation of Time Signals
4.5.2 Frequency-based Generation of Time Signals

4.6 Summary

5 Response of Mechanical Systems

5.1 General Description of Mechanical Systems

5.1.1 Multibody Models
5.1.2 Finite Element Models

5.2 Multibody Simulation (MBS) for Durability Applications or: from System Loads to Component Loads

5.2.1 An Illustrative Example
5.2.2 Some General Modelling Aspects
5.2.3 Flexible Bodies in Multibody Simulation
5.2.4 Simulating the Suspension Model

5.3 Finite Element Models (FEM) for Durability Applications or: from Component Loads to Local Stress-strain Histories

5.3.1 Linear Static Load Cases and Quasi-static Superposition
5.3.2 Linear Dynamic Problems and Modal Superposition
5.3.3 From the Displacement Solution to Local Stresses and Strains
5.3.4 Summary of Local Stress-strain History Calculation

5.4 Invariant System Loads

5.4.1 Digital Road and Tyre Models
5.4.2 Back Calculation of Invariant Substitute Loads
5.4.3 An Example

5.5 Summary
6 Models for Random Loads

6.1 Introduction 203
6.2 Basics on Random Processes
 6.2.1 Some Average Properties of Random Processes* 207
6.3 Statistical Approach to Estimate Load Severity
 6.3.1 The Extrapolation Method 210
 6.3.2 Fitting Range-pairs Distribution 210
 6.3.3 Semi-parametric Approach 213
6.4 The Monte Carlo Method 215
6.5 Expected Damage for Gaussian Loads
 6.5.1 Stationary Gaussian Loads 219
 6.5.2 Non-stationary Gaussian Loads with Constant Mean* 223
6.6 Non-Gaussian Loads: the Role of Upcrossing Intensity
 6.6.1 Bendat’s Narrow Band Approximation 224
 6.6.2 Generalization of Bendat’s Approach* 225
 6.6.3 Laplace Processes 228
6.7 The Coefficient of Variation for Damage
 6.7.1 Splitting the Measured Signal into Parts 230
 6.7.2 Short Signals 231
 6.7.3 Gaussian Loads 232
 6.7.4 Compound Poisson Processes: Roads with Pot Holes 233
6.8 Markov Loads
 6.8.1 Markov Chains* 240
 6.8.2 Discrete Markov Loads – Definition 242
 6.8.3 Markov Chains of Turning Points 243
 6.8.4 Switching Markov Chain Loads 244
 6.8.5 Approximation of Expected Damage for Gaussian Loads 247
 6.8.6 Intensity of Interval Upcrossings for Markov Loads* 248
6.9 Summary 249

7 Load Variation and Reliability

7.1 Modelling of Variability in Loads
 7.1.1 The Sources of Load Variability: Statistical Populations 254
 7.1.2 Controlled or Uncontrolled Variation 255
 7.1.3 Model Errors 255
7.2 Reliability Assessment
 7.2.1 The Statistical Model Complexity 256
 7.2.2 The Physical Model Complexity 257
7.3 The Full Probabilistic Model
 7.3.1 Monte Carlo Simulations 259
 7.3.2 Accuracy of the Full Probabilistic Approach 263
7.4 The First-Moment Method 263
7.5 The Second-Moment Method 264
 7.5.1 The Gauss Approximation Formula 264
7.6 The Fatigue Load-Strength Model
 7.6.1 The Fatigue Load and Strength Variables 265
Contents

- **7.6.2 Reliability Indices**
 266
- **7.6.3 The Equivalent Load and Strength Variables**
 267
- **7.6.4 Determining Uncertainty Measures**
 271
- **7.6.5 The Uncertainty due to the Estimated Damage Exponent**
 273
- **7.6.6 The Uncertainty Measure of Strength**
 275
- **7.6.7 The Uncertainty Measure of Load**
 277
- **7.6.8 Use of the Reliability Index**
 279
- **7.6.9 Including an Extra Safety Factor**
 281
- **7.6.10 Reducing Uncertainties**
 283
- **7.7 Summary**
 284

Part III LOAD ANALYSIS IN VIEW OF THE VEHICLE DESIGN PROCESS

- **8 Evaluation of Customer Loads**
 287
 - **8.1 Introduction**
 287
 - **8.2 Survey Sampling**
 288
 - **8.2.1 Why Use Random Samples?**
 288
 - **8.2.2 Simple Random Sample**
 289
 - **8.2.3 Stratified Random Sample**
 290
 - **8.2.4 Cluster Sample**
 290
 - **8.2.5 Sampling with Unequal Probabilities**
 291
 - **8.2.6 An Application**
 292
 - **8.2.7 Simple Random Sampling in More Detail**
 293
 - **8.2.8 Conclusion**
 294
 - **8.3 Load Measurement Uncertainty**
 295
 - **8.3.1 Precision in Load Severity**
 295
 - **8.3.2 Pair-wise Analysis of Load Severity**
 301
 - **8.3.3 Joint Analysis of Load Severity**
 301
 - **8.4 Random Sampling of Customers**
 303
 - **8.4.1 Customer Survey**
 303
 - **8.4.2 Characterization of a Market**
 304
 - **8.4.3 Simplified Model for a New Market**
 306
 - **8.4.4 Comparison of Markets**
 308
 - **8.5 Customer Usage and Load Environment**
 308
 - **8.5.1 Model for Customer Usage**
 310
 - **8.5.2 Load Environment Uncertainty**
 312
 - **8.6 Vehicle-Independent Load Descriptions**
 314
 - **8.7 Discussion and Summary**
 318

- **9 Derivation of Design Loads**
 321
 - **9.1 Introduction**
 321
 - **9.1.1 Scalar Load Representations**
 321
 - **9.1.2 Other Load Representations**
 322
 - **9.1.3 Statistical Aspects**
 322
9.1.4 Structure of the Chapter 323
9.2 From Customer Usage Profiles to Design Targets 324
 9.2.1 Customer Load Distribution and Design Load 324
 9.2.2 Strength Distribution and Strength Requirement 324
 9.2.3 Defining the Reliability Target 326
 9.2.4 Partial Safety Factor for Load-Strength Modelling 328
 9.2.5 Safety Factors for Design Loads 329
 9.2.6 Summary and Remarks 331
9.3 Synthetic Load Models 333
9.4 Random Load Descriptions 335
 9.4.1 Models for External Load Environment 335
 9.4.2 Load Descriptions in Design 336
 9.4.3 Load Description for Testing 336
9.5 Applying Reconstruction Methods 336
 9.5.1 Rainflow Reconstruction 336
 9.5.2 ID and Markov Reconstruction 339
 9.5.3 Spectral Reconstruction 339
 9.5.4 Multi-input Loads 340
9.6 Standardized Load Spectra 341
9.7 Proving Ground Loads 342
9.8 Optimized Combination of Test Track Events 342
 9.8.1 Optimizing with Respect to Damage per Channel 343
 9.8.2 An Instructive Example 346
 9.8.3 Extensions* 351
 9.8.4 Hints and Practical Aspects 353
9.9 Discussion and Summary 354
10 Verification of Systems and Components 357
10.1 Introduction 357
 10.1.1 Principles of Verification 357
 10.1.2 Test for Continuous Improvements vs. Tests for Release 358
 10.1.3 Specific Problems in Verification of Durability 359
 10.1.4 Characterizing or Verification Tests 360
 10.1.5 Verification on Different Levels 361
 10.1.6 Physical vs. Numerical Evaluation 363
 10.1.7 Summary 363
10.2 Generating Loads for Testing 363
 10.2.1 Reliability Targets and Verification Loads 364
 10.2.2 Generation of Time Signals based on Load Specifications 364
 10.2.3 Acceleration of Tests 365
10.3 Planning and Evaluation of Tests 365
 10.3.1 Choice of Strength Distribution and Variance 366
 10.3.2 Parameter Estimation and Censored Data 368
 10.3.3 Verification of Safety Factors 371
 10.3.4 Statistical Tests for Quantiles 373
10.4 Discussion and Summary 379
A Fatigue Models and Life Prediction 383
A.1 Short, Long or Infinite Life 383
A.1.1 Low Cycle Fatigue 383
A.1.2 High Cycle Fatigue 383
A.1.3 Fatigue Limit 384
A.2 Cumulative Fatigue 384
A.2.1 Arguments for the Palmgren-Miner Rule 384
A.2.2 When is the Palmgren-Miner Rule Useful? 386
B Statistics and Probability 387
B.1 Further Reading 387
B.2 Some Common Distributions 387
B.2.1 Normal Distribution 387
B.2.2 Log-Normal Distribution 388
B.2.3 Weibull Distribution 388
B.2.4 Rayleigh Distribution 388
B.2.5 Exponential Distribution 388
B.2.6 Generalized Pareto Distribution 388
B.3 Extreme Value Distributions 389
B.3.1 Peak over Threshold Analysis 389
C Fourier Analysis 391
C.1 Fourier Transformation 391
C.2 Fourier Series 392
C.3 Sampling and the Nyquist-Shannon Theorem 393
C.4 DFT/FFT (Discrete Fourier Transformation) 394
D Finite Element Analysis 395
D.1 Kinematics of Flexible Bodies 395
D.2 Equations of Equilibrium 396
D.3 Linear Elastic Material Behaviour 397
D.4 Some Basics on Discretization Methods 397
D.5 Dynamic Equations 399
E Multibody System Simulation 401
E.1 Linear Models 401
E.2 Mathematical Description of Multibody Systems 402
E.2.1 The Equations of Motion 403
E.2.2 Computational Issues 404
F Software for Load Analysis 407
F.1 Some Dedicated Software Packages 407
F.2 Some Software Packages for Fatigue Analysis 408
F.3 WAFO – a Toolbox for Matlab 408

Bibliography 411

Index 423