CONTENTS

PREFACE xxi
ACKNOWLEDGMENTS xxiii
CONTRIBUTORS xxv

1 Introduction to Biomedical Telemetry 1

Konstantina S. Nikita

1.1 What is Biomedical Telemetry? 1
1.2 Significance of Area, 3
1.3 Typical Biomedical Telemetry System, 4
1.4 Challenges in Biomedical Telemetry, 5
 1.4.1 Spectrum Regulations, 5
 1.4.2 Sensing Technologies, 7
 1.4.3 Advanced Materials, 8
 1.4.4 Data and Power Circuits, 9
 1.4.5 Biocompatibility Issues, 10
 1.4.6 Standardization and Interoperability, 11
 1.4.7 Privacy and Security, 12
 1.4.8 Biomedical Telemetry Toward Telemedicine, 12
 1.4.9 Patient Safety, 13
1.5 Commercial Medical Telemetry Devices, 14
 1.5.1 Wearable Devices, 14
 1.5.2 Implantable Devices, 15
 1.5.3 Ingestible Devices, 18
1.6 Overview of Book, 19
References, 23
PART I BIOMEDICAL TELEMETRY DEVICES 27

2 Design Considerations of Biomedical Telemetry Devices 29
 Dominik Cirmirakis and Andreas Demosthenous
 2.1 Introduction, 29
 2.2 Energy Transfer Types, 30
 2.3 Architecture of Inductively Coupled Biomedical Telemetry
 Devices, 31
 2.3.1 Inductive Link Fundamentals, 32
 2.3.2 Coupling Compensation, 36
 2.3.3 Rectification and Voltage Regulation, 37
 2.3.4 Transmitter Power Amplifier, 38
 2.4 Data Transmission Methods, 39
 2.4.1 Downlink, 39
 2.4.2 Uplink, 42
 2.5 Safety Issues, 44
 2.5.1 Implant Heating, 45
 2.5.2 Transmission to Human Body, 46
 2.5.3 Transmission from Human Body, 46
 2.6 Conclusion, 51
 References, 51

3 Sensing Principles for Biomedical Telemetry 56
 Athanasios Lioumpas, Georgia Ntouni, and Konstantina S. Nikita
 3.1 Introduction, 56
 3.2 Biosensor Structure, 57
 3.2.1 Design Constraints, 57
 3.3 Electrochemical Biosensors, 59
 3.3.1 Amperometric Electrochemical Biosensors, 60
 3.3.2 Potentiometric Electrochemical Biosensors, 61
 3.3.3 Impedimetric Electrochemical Biosensors, 62
 3.4 Optical Biosensors, 63
 3.4.1 Integrated Optical Biosensors, 64
 3.4.2 Interferometric Architectures, 64
 3.4.3 Biosensors Based on Antiresonant Reflecting Optical
 Waveguides, 66
 3.4.4 Biosensors Based on Surface Plasmon Resonance, 66
 3.5 Thermal/Calorimetric Biosensors, 67
 3.6 Piezoelectric Biosensors, 69
 3.7 Other Types of Biosensors, 71
 3.7.1 Magnetic Biosensors, 71
 3.7.2 Pyroelectric Biosensors, 71
 3.7.3 Ion Channel Biosensors, 72
4 Sensing Technologies for Biomedical Telemetry
Toshiyo Tamura

4.1 Introduction, 76
4.2 Noninvasive Sensors and Interfaces, 77
 4.2.1 Sensors Using Electrophysiological Signals, 77
 4.2.2 Photoplethysmogram Sensor, 79
 4.2.3 Pulse Oximeter, 81
 4.2.4 Wireless Pressure Monitor, 83
 4.2.5 Motion Sensors, 86
 4.2.6 Temperature Sensor, 88
 4.2.7 Wireless and Wearable Chemical Sensor, 88
 4.2.8 Capsule Sensor and Endoscopic Camera, 89

4.3 Invasive and Implantable Sensors, 92
 4.3.1 Pressure Sensors, 93
 4.3.2 Chemical Sensor, 95
 4.3.3 Electroencephalography Sensor, 96
 4.3.4 Magnetoelastic Sensor, 97
 4.3.5 Surface Acoustic Wave Sensors, 97
 4.3.6 Energy- and Power-Harvesting Piezoelectric MEMS Device, 99
 4.3.7 Microfluidic Sensors, 99
 4.3.8 In-Stick Electrode Sensor, 100

4.4 Conclusion, 101

References, 101

5 Power Issues in Biomedical Telemetry
Manos M. Tentzeris, Rushi Vyas, Wei Wei, Yoshihiro Kawahara, Li Yang, Stavros Georgakopoulos, Vasileios Lakafosis, Sangkil Kim, Hoseon Lee, Taoran Le, Sagar Mukala, and Anya Traille

5.1 Introduction and Powering Mechanisms, 108
5.2 Motion-Powered Radio Frequency Identification (RFID) Wireless Sensors, 109

5.3 Noninvasive Wireless Methods for Powering on Sensors, 112
 5.3.1 Inductive Coupling, 115
 5.3.2 Conformal Strongly Coupled Wireless Powering of Biomedical Devices, 118
 5.3.3 Far-Field Wireless Power Harvesting, 125

5.4 Conclusion, 129

References, 129
PART II PROPAGATION AND COMMUNICATION ISSUES FOR
BIOMEDICAL TELEMETRY

6 Numerical and Experimental Techniques for Body Area
Electromagnetics

Asimina Kiourti and Konstantina S. Nikita

6.1 Introduction, 133
6.2 Electrical Properties of Human Body Tissues, 135
6.3 Numerical Modeling, 139
 6.3.1 Numerical Phantoms, 139
 6.3.2 Computational Methods, 145
6.4 Physical Modeling, 154
 6.4.1 Physical Phantoms, 154
 6.4.2 Experimental Equipment and Measurements, 158
6.5 Safety Issues, 164
6.6 Conclusion, 167
References, 168

7 Inductive Coupling

Maysam Ghovanloo and Mehdi Kiani

7.1 Introduction, 174
7.2 Induction Principles, 175
 7.2.1 Magnetic Fields, 175
 7.2.2 Inductance and Inductive Coupling, 176
 7.2.3 Mutually Coupled Coils, 176
 7.2.4 Equivalent Network Models, 177
7.3 Wireless Power Transmission, 178
 7.3.1 Resonant versus Nonresonant Inductive Links, 178
 7.3.2 Power Transfer Efficiency, 180
 7.3.3 Multicoil Inductive Coupling, 182
 7.3.4 Power Amplifiers, 185
7.4 Inductive Coupling for Biomedical Telemetry, 186
 7.4.1 Design Challenges and Possible Solutions, 186
 7.4.2 Optimization of Coil Geometries, 189
 7.4.3 Power Absorption in Tissue, 191
 7.4.4 Safety Issues, 192
7.5 Inductive Data Transmission, 192
 7.5.1 Forward Telemetry, 192
 7.5.2 Backward Telemetry, 196
 7.5.3 Single Carrier versus Multicarrier, 198
 7.5.4 Pulse-Based Data Transmission, 200
7.6 Broader Applications, 201
7.7 Future Research Directions, 202
8 Antennas and RF Communication

Asimina Kiourtí and Konstantina S. Nikita

8.1 Introduction, 209
8.2 Background Information, 211
8.3 On-Body Antennas, 212
 8.3.1 Antenna Design, 212
 8.3.2 Channel Modeling, 219
8.4 Implantable Antennas, 223
 8.4.1 Antenna Design, 223
 8.4.2 Channel Modeling, 230
8.5 Ingestible Antennas, 235
 8.5.1 Antenna Design, 235
 8.5.2 Channel Modeling, 241
8.6 Conclusion and Future Research Directions, 245

References, 246

9 Intrabody Communication

Laura M. Roa, Javier Reina-Toxina, Amparo Callejón-Leblic, David Naranjo, and Miguel Á. Estudillo-Valderrama

9.1 Introduction, 252
9.2 Intrabody Communication Transmission Methods, 256
 9.2.1 Galvanic Coupling, 256
 9.2.2 Capacitive Coupling, 258
9.3 Dielectric Properties of Human Body, 259
 9.3.1 Electrophysiological Properties of Skin, 263
9.4 Experimental Characterization of IBC Channel, 265
 9.4.1 Experimental Setup for Galvanic Coupling, 266
 9.4.2 Experimental Setup for Capacitive Coupling, 268
 9.4.3 Experimental Results for Galvanic Coupling, 268
 9.4.4 Experimental Results for Capacitive Coupling, 271
9.5 Introduction to IBC Models, 273
 9.5.1 Circuit-Level Approaches, 273
 9.5.2 Electromagnetic Models, 279
 9.5.3 Computational Models, 280
 9.5.4 Theoretical Models of EM Propagation, 281
9.6 IBC Propagation Channel, 282
 9.6.1 Path Loss, 282
 9.6.2 Dispersion, 286
 9.6.3 Modulation Schemes, 289
9.7 Conclusion, 292
10 Optical Biotelemetry

Koichi Shimizu

10.1 Introduction, 301
10.2 Optical Technology for Optical Biotelemetry, 303
 10.2.1 Selection of Wavelength, 303
 10.2.2 Light Source, 304
 10.2.3 Light-Detecting Elements, 305
 10.2.4 Measures for Optical Noises, 305
10.3 Communication Technology for Optical Telemetry, 306
 10.3.1 Analog/Digital Transmission, 306
 10.3.2 Modulation Method, 307
 10.3.3 Toward Intelligent Transmission, 307
 10.3.4 Multiplexing Method, 308
10.4 Propagation of Optical Signal, 309
 10.4.1 Optical Characteristics of Body Surface Tissue, 309
 10.4.2 Distribution of Indirect Light in a Room, 310
 10.4.3 Optical Signal Propagation in Open Space, 313
10.5 Multiplexing in Optical Telemetry, 313
 10.5.1 Pulse-Burst Method, 314
 10.5.2 Spread-Spectrum Method, 314
10.6 Applications of Optical Telemetry, 316
 10.6.1 Transcutaneous Biotelemetry, 316
 10.6.2 Optical Body Area Network, 317
 10.6.3 Noncontact Measurement of Body Surface Displacement, 319
 10.6.4 Ambulatory Telemetry, 321
 10.6.5 Multichannel Biotelemetry, 322
 10.6.6 Data Transmission between Medical Equipment, 326
10.7 Conclusion, 327
References, 328

11 Biosensor Communication Technology and Standards

Lars Schmitt, Javier Espina, Thomas Falck, and Dong Wang

11.1 Introduction, 330
11.2 Biosensor Application Scenarios, 332
 11.2.1 Reference Use Case, 332
 11.2.2 System Overview, 334
11.3 Biosensor Communication Technologies, 335
 11.3.1 Frequency Spectrum Regulations, 335
12 Context-Aware Sensing and Multisensor Fusion

Stefan Hey

12.1 Introduction, 368
12.2 Context-Aware Sensing, 368
 12.2.1 Classification of Context-Sensitive Systems, 370
 12.2.2 Sensor Technologies, 371
 12.2.3 Preprocessing, 371
12.3 Multisensor Fusion, 373
 12.3.1 Fusion Architecture and Different Levels of Sensor Data Fusion, 375
 12.3.2 Decision-Level Fusion, 378
12.4 Example Application: Stress Measurement, 378
12.5 Conclusion and Future Research Directions, 379
References, 379

13 Security and Privacy in Biomedical Telemetry: Mobile Health Platform for Secure Information Exchange

Nikolaos Bourbakis, Alexandros Pantelopoulos, and Raghudeep Kannavara

13.1 Introduction, 382
13.2 Digital Security, 383
 13.2.1 Host Computer Security, 384
 13.2.2 Information Security, 385
 13.2.3 Network Security, 387
 13.2.4 Biometrics, 388
13.3 Wearable Health Monitoring Systems (WHMS) Platform, 390
 13.3.1 System Setup, 390
 13.3.2 Voice Interaction, 392
 13.3.3 Remote Monitoring Application, 393
13.4 Processing of Physiological Data, 394
 13.4.1 DWT and Wavelet Packets, 395
 13.4.2 Detecting Unusable ECG Data Portions, 396
 13.4.3 Approach on ECG Denoising, 399
13.5 Secure Information Exchange, 400
 13.5.1 CEH Scheme, 401
 13.5.2 Authentication–Authorization Scheme, 403
13.6 Conclusion and Future Research Directions, 414
Acknowledgment, 415
References, 415
14 Connection Between Biomedical Telemetry and Telemedicine 419

Emmanouil G. Spanakis, Vangelis Sakkalis, Kostas Marias, and Manolis Tsiknakis

14.1 Introduction, 419
14.2 Biomedical Instrumentation, 420
14.3 Biomedical Telemetry and Telemedicine: Related Work, 421
14.4 Theory and Applications of Biomedical Telemetry, 423
14.5 Integration of Biomedical Telemetry with Telemedicine, 423
14.6 Wireless Communication Protocols and Standards, 425
14.7 Cross-Layer Design of Wireless Biomedical Telemetry and Telemedicine Health Networks, 425
 14.7.1 Electromagnetic Spectrum, 425
 14.7.2 Interference Management for Biomedical Telemetry Communication Networks, 427
14.8 Telecommunication Networks in Health Care for Biomedical Telemetry, 428
 14.8.1 Body Area and Personal Area Networks, 429
 14.8.2 Medical Device Connectivity, 430
 14.8.3 Biomedical Telemetry Monitoring Devices for Telemedicine, 433
14.9 Future Research Directions and Challenges, 437
 14.9.1 Biotelemetry Systems for High-Rate Biomedical Signals, 437
 14.9.2 EEG Portable Monitoring and Electrode Design, 438
 14.9.3 Bioinspired Approaches, 440
14.10 Conclusion, 440
References, 442

15 Safety Issues in Biomedical Telemetry 445

Konstantinos A. Psathas, Asimina Kiourti, and Konstantina S. Nikita

15.1 Introduction, 445
15.2 Operational Safety, 446
 15.2.1 Electrical Hazards, 446
 15.2.2 Heat-Related Risks, 448
 15.2.3 Failure/Malfunction of Devices, 449
15.3 Product and Device Hazards, 450
 15.3.1 Adverse Tissue Reaction and Immune System Rejection Risks, 450
 15.3.2 Migration, 451
 15.3.3 Security Risks, 451
 15.3.4 Development of Cancer, 452
 15.3.5 Magnetic Resonance Imaging Incompatibility, 453
15.4 Patient and Clinical Safety, 454
 15.4.1 Patient Safety, 454
CONTENTS

15.4.2 Clinical Safety, 456
15.4.3 Establishing Clinical Safety, 458
15.5 Human Factor and Use Issues, 458
15.5.1 Use-Related Hazards, 459
15.6 Electromagnetic Compatibility and Interference Issues, 461
15.7 Applicable Guidelines, 464
15.7.1 Development of IEEE C95.1-1991 Standard, 465
15.7.2 International Commission on Non-Ionizing Radiation Protection and Its Role, 466
15.7.3 Issues on Developing Safety Standards, 467
15.7.4 Evolution and Comparison of Guidelines, 468
15.8 Occupational Safety, 471
15.9 Future Research Directions, 472
15.10 Conclusion, 473
References, 474

PART III EXAMPLE APPLICATIONS OF BIOMEDICAL TELEMETRY

16 Clinical Applications of Body Sensor Networks
Richard M. Kwasnicki and Guang-Zhong Yang

16.1 Introduction, 481
16.2 Healthcare Paradigm Shift for Pervasive Sensing, 483
16.3 Usage Scenarios, 484
16.3.1 In the Community, 486
16.3.2 Diagnostics, 487
16.3.3 Perioperative, 490
16.3.4 Extreme Environments, 492
16.4 Opportunities and Future Challenges, 494
16.4.1 User Preferences, 494
16.4.2 Clinical Translation, 495
16.4.3 Practical Considerations, 496
16.4.4 Personalization, 500
16.4.5 Future, 500
16.5 Conclusion, 501
Acknowledgment, 502
References, 502

17 Wearable Health Care System Paradigm
Yang Hao and Robert Foster

17.1 Introduction, 505
17.2 Wireless Wearable Technology in Health Care, 506
17.3 Methods and Design Approach for Wireless Wearable Systems, 509
CONTENTS

17.3.1 Design Goal and Considerations, 509
17.3.2 Wireless Technologies Available for Wearable Systems, 510

17.4 Example Wireless Body Area Network (WBAN) Applications in Health Care, 516
17.4.1 Wearable Artificial Pancreas, 516
17.4.2 Functional Electrical Stimulation, 518
17.4.3 Multiparameter Monitoring, 519

17.5 Conclusion, 521
References, 521

18 Epidermal Sensor Paradigm: Inner Layer Tissue Monitoring 525
Dimitris Psychoudakis, Chi-Chih Chen, Gil-Young Lee, and John L. Volakis

18.1 Introduction, 525
18.2 Review of Electromagnetic Properties of Human Body, 526
18.2.1 Numerical Expression of Dielectric Properties for Human Tissues, 526
18.2.2 Human Tissue Dielectric Properties, 527

18.3 Propagation Modes for Body-Centric Wireless Communications, 531
18.3.1 Space Wave Analysis for Off-Body Communication, 535

18.4 Human Torso Model for Body-Centric Wireless Communication, 537
18.4.1 Human Torso Model for In-Body Communication, 538
18.4.2 Human Torso Model for On-Body Communication, 539
18.4.3 Human Torso Model for Off-Body Communication, 541

18.5 Two-Layer Model for Internal Organ Monitoring, 542
18.6 Epidermal RF Sensor for Inner Layer Tissue Monitoring, 542
18.7 Extraction of Dielectric Constant, 544
18.8 Conclusion, 546
References, 547

19 Implantable Health Care System Paradigm 549
Masaharu Takahashi and Koichi Ito

19.1 Introduction, 549
19.2 Multilayered Model Simulating Human Body, 550
19.3 Cardiac Pacemaker Embedded in Multilayered Models, 554
19.3.1 Modeling and Analytical Method, 554
19.3.2 Link Budget, 557
19.3.3 Antenna Characteristics, 557
19.3.4 Verification by Human Body Model, 558

19.4 Implantable Health Care System Paradigm, 562
19.4.1 Link Budget for Wireless Communication, 563
19.4.2 Calculation of Helical Dipole Antenna, 563
19.4.3 Experiment of Helical Dipole Antenna, 564
19.4.4 Analysis Using High-Resolution Model, 566
CONTENTS

19.5 Conclusion and Future Research Directions, 568
References, 570

20 **Ingestible Health Care System Paradigm for Wireless Capsule Endoscopy** 572
Nikolaos Bourbakis and Alexandros Karargyris

20.1 Introduction, 572
20.1.1 Wireless Capsule Endoscopy and Other Technologies, 573
20.1.2 Need for Computer-Aided Diagnostic System, 573
20.1.3 Results from Recent WCE Methods, 575
20.2 WCE and Endoscopic Imaging, 576
20.2.1 Methods Classification, 576
20.3 Diagnostic Methods and Challenges, 585
20.4 Future Directions: Design New Generation of WCE, 586
20.4.1 Design of New Robotic WCE, 587
20.4.2 Alternative Design, 590
20.5 Conclusion and WCE Global Health Care, 591
References, 591

21 **Stimulator Paradigm: Artificial Retina** 593
Carlos J. Cela, Keyoor C. Gosalia, Anil Kumar RamRakhiani, Gianluca Lazzi, Shruthi Soora, Gerard J. Hayes, and Michael D. Dickey

21.1 Introduction, 593
21.2 Telemetry for Artificial Retina, 594
21.3 Intraocular Telemetry Antennas, 595
21.3.1 Fractal Antennas, 598
21.3.2 Meander Antennas, 599
21.3.3 Prototypes and Experimental Results, 603
21.3.4 Biocompatibility and Safety Considerations, 608
21.4 Multicoil Telemetry, 611
21.4.1 Power Transfer Efficiency, 613
21.4.2 Voltage Gain, 614
21.4.3 Frequency Bandwidth, 616
21.5 Future Research Directions: Flexible and Liquid Antennas, 618
21.6 Conclusion, 620
References, 620

22 **mHealth-Integrated System Paradigm: Diabetes Management** 623
Alessio Fioravanti, Giuseppe Fico, Alejandro González Patón, Jan-Paul Leuteritz, Alejandra Guillén Arredondo, and María Teresa Arredondo Waldmeyer

22.1 Clinical Treatment, 623
22.1.1 Blood Glycemic Variability, 624
22.2 Diabetes Treatment through Telemetry, 624
22.3 Problems Related to Current Treatments, 625
22.4 Assessment: State of the Art, 625
22.5 Technological Solution, 626
 22.5.1 Sensors for Medicine and Science, 626
 22.5.2 Philips IntelliVue MX40 Patient Monitoring, 626
 22.5.3 GlucoBand, 627
22.6 METABO System, 627
 22.6.1 METABO Challenges, 627
 22.6.2 METABO Medical and Technological Vision, 628
 22.6.3 System Overview, 628
22.7 Evaluation Methodology: Data Collection and System Testing, 629
22.8 Results, 631
22.9 Conclusion, 631
Acknowledgments, 632
References, 632

23 Advanced Material-Based Sensing Structures 633
Manos M. Tentzeris, Sangkil Kim, Vasileios Lakafosis, Hoseon Lee, Taoran Le, Rushi Vyas, Sagar Mukala, and Anya Traille

23.1 Introduction, 633
23.2 Human-Body-Wearable Antennas, 634
 23.2.1 Challenges of Wearable Wireless Device, 634
 23.2.2 Role of Antenna in Wireless Body Area Networks (WBANs), 636
 23.2.3 Inkjet Printing on Paper Substrate, 637
 23.2.4 Antenna on Electromagnetic Band Gap Structure for Wearable Applications, 638
 23.2.5 Liquid Ionic Antenna for Biosignal Monitoring Applications, 650
 23.2.6 Inkjet-Printed Substrate-Integrated Waveguide, 655
23.3 Carbon-Nanotube-Based Ammonia Detection for Medical Diagnosis, 656
 23.3.1 Introduction, 656
 23.3.2 Functionalized CNTs, 659
 23.3.3 Material Properties and Characterization, 660
 23.3.4 Sensor Design, 664
 23.3.5 Controlled Sensor Measurement, 667
23.4 Graphene-Based Ammonia Detection for Medical Diagnosis, 670
 23.4.1 Introduction, 670
 23.4.2 Principle of Operation, 671
 23.4.3 Design Example, 671
 23.4.4 Inkjet Printing of Graphene Sensor Prototype, 672
 23.4.5 Optimization of RGO Thin Film, 676
CONTENTS

23.4.6 Gas Sensor Experimentation, 676
23.5 Integrated Wireless Modules, 679
 23.5.1 Wireless EKG System Utilizing Low-Power ZigBee Standard, 679
 23.5.2 Smart Wireless Integrated Module, 681
 23.5.3 Wireless Transmission of CNT-based Sensed Information, 683
23.6 Conclusion, 685

INDEX

References, 686

691