INDEX

α dispersion, 260
Accelerometer
  advantages, 77
  motion sensor, 86–87, 87f
ActiveMiles, 487, 488f
Amperometric biosensor, 60–61, 60f
Amplitude shift keying (ASK), 40–41, 41f, 193–195, 193f
Anatomical model
  child head model, 144–145, 145f
  CT scan, 142–144
  cubic cell, 142
  head-implantable dipole antenna, 144–146, 146f
  Japanese model, 143–144, 143f
  MRI scan, 142–144
  Norman model, 143–144, 143f
  VHP, 143–144, 143f
Antiresonant reflecting optical waveguides (ARROW), 66, 66f
Aperture-coupled patch antenna (ACPA), 213–214, 214f
Argus II retinal implant, 15–16, 15f
Artificial neural networks (ANNs), 377
Artificial pancreas
  body sensor networks, 483
  wearable, 516–518
Artificial retina
  flexible antenna, 618
  fluidic antenna, 619
  hybrid configuration, 594
  intraocular antenna (See Intraocular telemetry antenna)
  low-bandwidth configuration, 594
  multicoil telemetry (See Multicoil telemetry system)
β dispersion, 260
BANs. See Body area networks (BANs)
Binary amplitude shift keying (BASK), 39–40
Binary phase shift keying (BPSK)
  demodulator, 40–41, 41f
  modulation, 289, 290f, 291f, 292
Biomedical instrumentation, 420
Biomedical telemetry
  average data rates, 5–6, 6t
  biocompatibility, 10–11
  bioinspired approach, 440
  biomedical instrumentation, 420
  blood glucose meters, 433–434
  blood pressure meter, 434
  Bluetooth, 430

Biomedical telemetry (Continued)

Bluetooth low energy (BLE), 431
body area network, 429
brain and cardiac biopotential signals, 437–438
central receiving device, 4–5, 5f
continua-compliant devices, 436, 437r
continuous and remote monitoring, 3–4, 4r
data and power circuits, 9–10, 10f
decision-making process, 4
diagnostic biomedical telemetry systems, 424
digital weighing scales, 434
disease management program, 3
EBG design, 8
EEG electrode technology, 438–440, 439f
electrocardiography, 434, 435f
electromagnetic spectrum, 425–427, 426f, 427r
goals, 1–2
health care issues, 3
implantable devices (See Commercial implantable devices)
implanted sensors, 423
infrared data association, 431
inkjet printing, 8
interference management, 427–428
ISO/IEEE 11073, 421, 422
LiFi, 433
liquid ionic antennas, 8–9
MDKeeper, 435–436
medical devices, 2, 2f, 430
mobile application, 423
near-field communication, 433
oximeter pulse meters, 435
patient safety, 13–14
personal area network, 429
POTS, 5
preventive medical care, 421
privacy and security, 12
radio frequency identification, 431
rehabilitative biotelemetry, 424
sensing electrodes, 423
sensors, 7–8
SIW, 9
spectrum regulation, 5–7
standardization and interoperability, 11–12
structure, 19–22, 20f
telemedicine, 12–13, 13f, 423–424
therapeutic applications, 424
universal serial bus, 431
wearable devices, 14–15, 14f
wireless communication protocols and standards, 425f, 426r
wireless fidelity network, 432–433
wireless technology, 2–3
wireless universal serial bus, 431
ZigBee (IEEE 802.15.4), 431
ZWave, 431
Biosensor components, 57–58, 58f, 58r
design constraints, 57–59
electrochemical (See Electrochemical biosensor)
ion channel biosensor, 72
magnetic biosensor, 71, 71f
optical biosensor (See Optical biosensor)
piezoelectric biosensor, 69–71, 70f
pyroelectric biosensor, 71–72
thermal/calorimetric biosensor, 67–69, 69f
Biosensor communication frequency spectrum regulations, 335–337, 338f
IEEE 802.15.4, 339–340, 340f
IEEE 802.15.6 (See IEEE 802.15.6)
IEEE 802.15.4j, 347–348, 347f
interoperability, 348
ISO/IEEE 11073 PHD (See ISO/IEEE 11073 PHD)
remote patient management (See Remote patient management system)
Biotronik, 15, 15f
Blood glycemic variation, 624, 624f
Bluetooth low energy (BLE), 510–511
Body area networks (BANs), 253, 317–319, 318f, 319f, 429
Body sensor networks (BSN)
ActiveMiles, 488f, 487
architecture, 481–482
artificial pancreas, 483
clinical applications, 485f
clinical consideration, 499f
communication, 482
CSII device, 486–487
data transmission, 497
external loop recorder, 489
extreme environment, 492–494
future apparatus, 500–501
GEDEM, 492
Holter monitor, 488–489
LOBIN platform, 491
MCOT, 489
MercuryLive, 490
Parkinson’s disease, 489–490
personalization, 500
pervasive sensing, 482–484
quality-adjusted life years, 495–496
technical consideration, 498f
UbiFit wellness system, 487
user preference, 494–495
WDAD, 491
Body-centric wireless communications
infinitely planar layered model, 531, 533f.,
534–535
space wave analysis, 535–537
types, 531
voltage standing-wave ratio, 531, 534–535
Brain–machine interface (BMI), 78
Canonical model
adult model, 141
children model, 141
coupling mechanism, 140, 140f.
head model, 141, 141f.
inaccuracy, 139
thigh model, 141–142, 141f.
upper arm geometry, 141–142, 141f.
wireless and wireless hands-free kit, 140–141,
140f.
CAP. See Contention access period (CAP)
Capacitive coupling
measurement setup, 268, 269f.
path loss, 284, 285f., 286
transmission method, 258–259, 258f.
Capsule endoscopy. See Wireless capsule
endoscopy (WCE)
Capsule sensor
clinical application, 89
Medtronic Bravo pH system, 90, 90f.
silicon diode, 89–90, 92
small-bowel endoscopy, 90, 90f.
SmartPill, 90–91, 91f.
Carbon-nanotube-based ammonia detection
colorization, 662–664, 662f.–664f.
chemical functionalization, 659–660, 661f.
chemical gas sensors, 658
controlled sensor measurement, 667–670,
667f.–670f., 669t
coplanar waveguide (CPW), 659
material properties, 660–662, 662f.
MWNTs, 657, 658
portable sensors, 656
sensor design, 664–667, 665f.–667f.
single-wall nanotubes (SWNTs), 657, 658
uses, 657
wireless gas sensors, 657
Cardiac arrhythmias (CAs)
external loop recorder, 489
Holter monitor, 488–489
CDSS. See Clinical decision support system
(CDSS)
CEH. See Compression, encryption, and hiding
(CEH) scheme
Centers for Medicare and Medicaid Services
(CMS), 330
Central level fusion, 375
Chemical sensor, 95–96
Circuit-level models
advantage, 279
characteristic impedance, 276
Cole–Cole model, 274
disadvantages, 279
distributed circuit modeling, 274
galvanic and capacitive coupling techniques,
277–279, 278f.
lumped-parameter models, 273, 274
SC, 275
signal pathway, 273
skin propagation model (See Skin propagation
model)
skin transverse admittance, 274–275
Clinical decision support system (CDSS), 627
CMS. See Centers for Medicare and Medicaid
Services (CMS)
Code division multiplexing (CDM), 309
Cole–Cole model, 274
Commercial implantable devices
Argus II retinal implant, 15–16, 15f.
Biotronik, 15, 15f.
futre challenges, 16–18, 17f.
glucose monitoring system, 16–17, 17f.
ingestible devices, 18–19, 18f.
Medtronic Adapta, 16
Medtronic SynchroMed pump, 16
nucleus freedom cochlear implant, 15–16, 15f.
Complementary fusion, 375
Compression, encryption, and hiding (CEH)
scheme
image encryption and decryption, 402–403
information hiding, 403
lossless image compression algorithm, 402
protection scheme, 403, 403f., 404f.
SCAN methodology, 401–402, 402f.
Computed tomography (CT) scan, 142–144
Concurrent fusion, 375
Conformal SCMR (CSCMR)
vs. SCMR, 120, 121f., 122
bifilar spiral geometry, 122–123, 123f.
dimensions, volume, and height, 125–126, 126f.
efficiency, 118–119, 119f.
human phantom, 123–125, 124f.
measurement setup, 120, 120f.
model, 122–123, 122f.
output power, 125, 125f.
power requirements, 124–125
TX and RX system, 119–120, 119f.
Contention access period (CAP), 339
Context-aware sensing advantage, 368
context-sensitive system, 369–371, 369
preprocessing techniques, 371–373, 372
sensor technologies, 371
treatment and health status, 369, 369
Continuous subcutaneous insulin infusion (CSII), 486–487
Continuous wavelet transform, 395
Continuous-phase binary frequency shift keying (CP-2FSK), 344
Cooperative fusion, 375
C-reactive proteins (CRPs), 96
CSCMR. See Conformal SCMR (CSCMR)
Data transmission
backward telemetry, 196–198, 197
forward telemetry (See Forward telemetry)
pulse-based data transmission, 200–201, 200–201
single carrier vs. multicarrier, 198–200, 199
Debye expression, 261
Decision support systems (DSSs), 625
Diabetes management
clinical treatment, 623–624
DSSs, 625
EMR, 625
GlucoBand, 627
ICT, 625–626
inaccurate record information, 625
METABO system (See METABO system)
MX40 patient monitoring system, 626–627
PMD, 625
S4MS, 626
Dielectric properties
Cole–Cole model, 261, 262r
conductivity, 259
Debye expression, 261
electric current, biological tissue, 261 263f
electrophysiological properties of skin, 263–265
permittivity and dispersions, 259–260, 260f
Digital security
biometrics authentication, 388–389, 389f
information security, 385–387
network security, 387–388
secure computing model, 384–385, 385f
security threats, 384
Dimatix Materials Printer (DMP-2800), 673
Discrete domain, 373
Discrete wavelet transform (DWT)
ECG (See Electrocardiogram (ECG))
wavelet packets, 395–396
Domain information model, 360–362, 360f
Downlink communication
ASK demodulator, 40–41, 41f
BASK, 39–40
BPSK demodulator, 40–41, 41f
FSK demodulator, 41–42, 42f
Drug delivery device, 99–100, 100f
DSSs. See Decision support systems (DSSs)
EBG. See Electromagnetic band gap (EBG) structure
Eddy and circular current heating, 46
EDU. See Encryption–decryption unit (EDU)
Electrical properties, human tissue
age-dependent changes, 139
attenuation constant, 137
Cole–Cole analysis, 137–138
complex relative permittivity, 135–137, 136f
conductivity, 136–137, 137f
high-water and low-water content, 138
variability, 138
in vivo and ex vivo liver tissue, 138
Electrically small antenna, 596–597, 596f
Electrocardiogram (ECG)
approximation coefficients, 396, 397f
denoising, 399–401, 401f
energy estimation, 398–399
noise-corrupted segment, 396, 396f
variable-length Hamming window, 397
Electrochemical biosensor
amperometric biosensor, 60–61, 60f
impedimetric biosensor, 62–63
native enzyme, 59
operation, 59
potentiometric biosensor, 61–62, 62f
Electrodes types, 267–268, 268f
Electrode–skin interface, 257
Electroencephalography (EEG) sensor
invasive and implantable sensor, 96–97
noninvasive, 78, 78f
Electromagnetic band gap (EBG) structure, 8, 215, 215f
AMC ground plane, antenna, 641–645, 641f, 643f–645f
communication range on human body, 648–650, 649f–650f
Impinj Speedway Reader, 647
indoor read-range analysis, 647, 648f
inkjet printing, 646, 646f, 647
phase of reflection coefficient, 645, 646f
reflection phase method, 639, 640f
RFIDs, 638, 646, 647
split-ring resonator (SRR), 642
structure, 638–639, 641
unit cell, 644, 646
Electromagnetic compatibility (EMC), 462–464, 463f
Electromagnetic heating, 45–46
Electromagnetic models, 279–280
Electromagnetic properties
dielectric constant (See Lung’s dielectric constant)
internal organs, 530f
tissues, 529f, 532r
Electromagnetic tracking system, 88
Electromagnetic, human tissue
adverse health effects, 134–135
electrical properties (See Electrical properties, human tissue)
numerical modeling (See Numerical modeling, human tissue)
performance requirements, 133–134
physical modeling (See Physical modeling, human tissue)
safety issues (See Safety issues)
Electromyography (EMG), 78–79
Electronic medical record (EMR), 625
Electronics heating, 45–46
ELR. See External loop recorder (ELR)
EMC. See Electromagnetic compatibility (EMC)
EMR. See Electronic medical record (EMR)
Encryption–decryption unit (EDU), 385–386, 386f
Enumeration class, 352
Epidermal sensor
body-centric wireless communications (See Body-centric wireless communications)
electromagnetic properties, human body (See Electromagnetic properties)
human torso model (See Human torso model)
two-layer model, 542
water content monitoring, 542–544, 543f
Experimental eye phantom apparatus, 603, 606, 607f
External loop recorder (ELR), 489
Far-field wireless power harvesting
ambient wireless spectrum, 126, 126f
application, 125–126
peak gain, 127–128, 128f
prototype, 126–127, 127f
Schottky diodes and capacitor, 127–128, 128f
FES. See Functional electrical stimulation (FES)
Fingerprint biometric authentication
Gait Evaluation Differential Entropy Method (GEDEM), 492
Galvanic coupling
experimental outcomes, 268–271, 269f–271f
measurement setup, 266–268, 267f, 267t
path loss, 284, 285f
transmission method, 256–257, 256f
Gastrointestinal (GI) endoscopy, 18–19, 18f
Gaussian minimum shift keying (GMSK), 342
Giant magnetoresistance material (GMR), 71, 71f
GlucoBand, 627
Glucose signature, 627
Goniometer, 87
Graphene-based ammonia detection
design, 671–672
fabrication via inkjet printing, 673, 673f, 674f
gas sensor experimentation, 676–677, 677f
graphene oxide reduction, 673–675, 675f
inkjet-printable graphene-based inks, 672–673
principle of operation, 671
RGO thin film optimization, 676–679, 676t, 679f
Graphical user interface (GUI), 393
computational domain, 150
energy absorption, 151
helical antenna, 151
instability, 151
stability, 150–151
Yee cell, 149–150, 150f
Finite-element method (FEM), 148–149
Flow injection analysis (FIA), 70–71, 70f
FM/IM. See Frequency modulation/intensity modulation (FM/IM)
Force sensor, 88
Forward telemetry
advantages, 192–193
ASK, 193–195, 193f
FSK modulation, 193f, 194–195
PSK, 193f, 195–196
Fractal antenna system, 598
Free-space measurement apparatus, 606f, 607–608
Frequency division multiplexing (FDM), 309
Frequency domain, 372
Frequency modulation/intensity modulation (FM/IM), 307
Frequency shift keying (FSK)
demodulator, 41–42, 42f
modulation, 193f, 194–195
Functional electrical stimulation (FES), 518–519
γ dispersion, 260
Gastrointestinal (GI) endoscopy, 18–19, 18f
Gaussian minimum shift keying (GMSK), 342
Giant magnetoresistance material (GMR), 71, 71f
GlucoBand, 627
Glucose signature, 627
Goniometer, 87
Graphene-based ammonia detection
design, 671–672
fabrication via inkjet printing, 673, 673f, 674f
gas sensor experimentation, 676–677, 677f
graphene oxide reduction, 673–675, 675f
inkjet-printable graphene-based inks, 672–673
principle of operation, 671
RGO thin film optimization, 676–679, 676f, 679f
Graphical user interface (GUI), 393
INDEX

Guaranteed time slots (GTSs), 339
Gyrosensor, 87
Health data analysis, 383
Heart rate variability (HRV), 372
Helical dipole antenna calculation, 563–564
configuration, 565
input impedance, 565, 566
link budget, 563, 564
radiation pattern, 565, 567
High-resolution whole-body model helical dipole antenna, 566–568, 567
Japanese model, 552–553, 553
pacemaker antenna verification, 558–562, 561
Human body communication (HBC) PHY, 344, 344
Human torso model four-layer vs. two-layer, 545
in-body communication, 538–539
off-body communication, 541–542
on-body communication, 539–541
Human-body-wearable antennas EBG (See Electromagnetic band gap (EBG) structure)
inkjet printing, 637–638, 638
liquid ionic antenna (See Liquid ionic antenna)
SIW, 655–656, 655, 656
WBANs, 636, 637
wearable wireless device, 634–636, 635
Human-computer interface (HCI), 79
Hybrid fusion, 375
IBC. See Intrabody communication (IBC)
ICNIRP. See International Commission on Non-Ionizing Radiation Protection (ICNIRP)
IEEE 802.15.4, 339–340, 340
Full-Function Device, 513
MAC layer, 513
network topologies, 513
physical layer, 511, 512
Reduced-Function Device, 513
IEEE 802.15.6
HBC PHY PSDU, 344, 344
human body communication layer, 515–516
MAC (See Medium-access control (MAC) layer)
narrow band layer, 514, 514
NB PHY PSDU, 341–344, 342, 343
PPDU format, 341, 341
ultrawide band layer, 515, 515
UWB PHY, 342, 342, 344
IEEE 11073–10406 Basic ECG domain information model, 360–362, 360
MDER-encoded data message, 364, 364
message sequence, 363, 363
standard configuration, 362–363, 362
IEEE C95.1–1991 standard development, 465–466
vs. IEEE C95.1–2005, 471
MPE limits, 466
SAR calculation, 468–470, 469, 470
IEEE 802.15.4j, 347–348, 347
Impedimetric biosensor, 62–63
Implantable antenna animal bodies, 569–570
biocompatibility issues, 223–224, 224
pacemaker antenna (See Pacemaker antenna) helical dipole antenna (See Helical dipole antenna)
high-resolution whole-body model (See High-resolution whole-body model) human phantoms, 551–552, 552
inside-the-body channel modeling, 233–235, 234
link budget, 563, 564
miniaturization technique, 224–225, 225–226
multi-band operation, 227–228, 227
operation frequency, 223
out-of-body channel modeling, 231–233, 233
patient safety, 225–227
prototype fabrication, 228–230, 229
resonance frequency, 228
transmission coefficient, 230–231, 231
Implantable medical devices (IMDs) adverse tissue reaction, 450–451
antenna design (See Implantable antenna) application, 115–116
architecture, 29–30, 30
cancer development, 452–453, 453
clinical risk management, 456–458, 457
conventional operation, 116
cryptography, 452
diagnosis and treatment, 115
double-spiral resonator, 116–118, 117
downlink communication (See Downlink communication) efficiency, 117–118, 118
electrical hazards, 446–448, 447
electromagnetic compatibility, 462–464, 463
electromagnetic resonance, 116–117, 117
electronics heating, 45–46
energy transfer, 30–31
failure/malfunction, 449–450
ICNIRP guidelines, 466–467
Ion channel biosensor, 72
Ion-sensitive field effect transistors (ISFETs), 61–62, 62f/
Iris biometric authentication, 404–405, 405f, 406f/
ISO/IEEE 11073 PHD
agent state machine, 353, 354f/
architecture, 349
association procedure, 353–354
communication series, 349, 350f/
DIM, 349–352
fixed-format style, 358f, 359
grouped-format style, 358f, 359
IEEE 11073-10406 Basic ECG (See IEEE 11073-10406 Basic ECG)
operating procedure, 356–358
service model, 352–353
variable format, 358–359, 358f/
Laser diode (LD), 304
LBNP. See Lower body negative pressure (LBNP)
LG graph method. See Local-global (LG) graph method
Light addressable potentiometric sensor (LAPS), 62, 62f/
Light-emitting diode (LED), 304
Line-of-sight (LOS) data, 220–221
Link budget
helical dipole antenna, 563, 564f/
pacemaker antenna, 557, 558f/
Liquid ionic antenna
bracelet-type liquid antenna, 652, 653f/
dielectric properties, 650
electrical properties of water solutions, 651–652, 651f, 652f/
radiation patterns, 653, 654
Load shift keying (LSK), 42–43, 42f, 196–198, 197f/
Local-global (LG) graph method
authentication–authorization scheme, 413, 413f/
biometric authentication, 410–412, 411f, 412f, 413f/
iris biometric authentication, 404–405, 405f, 406f/
maxima–minima detection, 408, 408f/
signal representation, 408–410, 409f/
voice biometric authentication, 406–408, 407f/
Low interference potential devices (LIPDs), 337
Lower body negative pressure (LBNP), 493–494
Lung’s dielectric constant
body-worn antenna application, 527
4-Cole–Cole expression, 526
extraction, 544–546
parameters, 528
tissue properties, 527
MAC layer. See Medium-access control (MAC) layer
Mach–Zehnder interferometer (MZI), 64–66, 65f/
Magnetic biosensor, 71, 71f/
Magnetic resonance imaging (MRI), 142–144, 454
Magnetoelastic sensor, 97
Magneto resistive sensor, 87
MARS. See Multivariate regression spline model (MARS)
MCOT. See Mobile Cardiac Outpatient Telemetry (MCOT)
MDS-dynamic-data-update-var service, 358
Meander antennas, 599, 600f–603f/
Medical body area networks (MBANs), 337, 347, 348
Medical device system (MDS) class, 351
Medical Implant Communications Service (MICS), 6, 336, 337, 461–462
Medium-access control (MAC) layer
access types, 345–346
beacon mode with superframes, 345, 345f/
features, 346
IEEE 802.15.4, 339
non–beacon mode, 345, 345f/
PTK, 346, 347
security hierarchy, 346, 346f/
Medtronic Adapta, 16
Medtronic Bravo pH system, 90, 90f/
Medtronic SynchroMed pump, 16
MercuryLive, 490
METABO system
CDSS, 267
challenges, 627–628
data collection and system testing, 629, 631
medical and technological vision, 628–630
pilot tests, 631
platform elements architecture, 629, 630f/
Metric class, 351
Microchip-induced cancer, 453f/
Microelectromechanical system (MEMS), 7–8
Microfluidic sensor, 99–100, 100f/
Microstrip patch antenna, 297
Mobile Cardiac Outpatient Telemetry (MCOT), 489
Monofilar helix antenna, 239–241, 240f/
Motion sensor
accelerometer, 86–87, 87f/
electromagnetic tracking system, 88
force sensor, 88
goniometer, 87
gyrosensor, 87
magnetoresistive sensor, 87
textile sensor, 88

Multicoil inductive coupling
four-coil inductive link, 184–185, 184f
loaded and unloaded quality factor, 182
optimal PTE, 183–184, 184f
parasitic series resistance, 182–183
PTE vs. PDL, 185–186, 186f
reflected load, 182
three-coil inductive link, 183, 183f
two-coil inductive link, 179f, 182–183

Multicoil telemetry system
frequency bandwidth, 616–618
power transfer efficiency, 613–614
two-coil inductive link, 612, 612f
voltage gain, 614, 614f, 615f, 616f

Multisensor fusion
advantages and disadvantages, 373–374, 374f
classification, 375
data fusion, 375
decision-level fusion, 378
extraction feature, 376
fusion feature, 375–376
levels, 375, 376f
requirements, 373
selection feature, 376–377
signal synchronization and desynchronization, 374
stress model, 378–379, 378f

Multivariate regression spline model (MARS), 377

Narrow-band (NB) PHY, 341–344, 342f, 343f
Nike logo antenna
with body effect, 111, 114f
structure, 111, 112f
without body effect, 111, 113f

Noninvasive sensor
capsule sensor (See Capsule sensor)
EEG, 78, 78f
electrocardiography, 77
electromyography, 78–79
endoscopic camera, 92, 92f
motion sensor (See Motion sensor)
PPG sensor, 79–81, 80f
pulse oximetry, 81–83, 81f–83f
temperature sensor, 88
wireless and wearable chemical sensor, 88–89, 89f
wireless pressure monitor (See Wireless pressure monitor)

Noninvasive wireless power transfer
CSCMR (See Conformal SCMR (CSCMR))
far-field wireless power harvesting (See
Far-field wireless power harvesting)
inductive coupling (See Implantable medical devices (IMDs))
primary mechanism, 112, 115
Non-line-of-sight (NLOS) data, 221
Norman model, 143–144, 143f
Nucleus freedom cochlear implant, 15–16, 15f
Numerical modeling, human tissue
analytical method, 145–147
anatomical model (See Anatomical model)
boundary condition, 153–154
canonical model (See Canonical model)
FDTD (See Finite-difference time-domain method (FDTD))
finite-element method, 148–149
hybrid method, 153
method of moments, 147–148
multiple-multipole method, 152–153
transmission line matrix method, 152

On and off-body propagation channel
2.45 GHz, 220–221, 220f
channel characteristics, 219
UWB channel, 221–223

On-body antenna
antenna diversity, 217–219, 217f, 218f
components, 215–217, 216f, 217f
microstrip and loop design, 212–214, 213f–214f
multi-band operation, 215–216, 216f
on and off-body propagation channel (See On and off-body propagation channel)
operation frequency, 212
resonance frequency shift, 214–215, 215f

Optical biosensor
advantages, 63
ARROW, 66, 66f
biomedical application, 63
detection of, 63
integrated optical biosensor, 64
interferometric architecture, 64–66, 65f
photonic biosensor, 63–64
SPR, 66–67, 67f

Optical biotelemetry
advantages and disadvantages, 302–303
ambulatory telemetry, 321–322, 322f, 324f
analog/digital transmission, 306–307
BAN, 317–319, 318f, 319f
characteristics, 321, 323f
data transmission, SS technique, 326–327, 327f
FM/IM, 307
Optical biotelemetry (Continued)
- intelligent communication, 307–308
- light-detecting elements, 305
- light-emitting elements, 304–305, 304f
- modulation method, 307
- multichannel data transmission, 322, 324–326, 325f, 326f
- multiplexing method, 308–309
- optical elements, 305–306, 306f
- optical signal propagation (See Optical signal propagation)
- PPM/IM, 307
- principle, 302, 302f
- pulse-burst multiplexing technique, 314, 315f
- signal transmission, 306, 307f
- spread spectrum (SS) method, 314–316, 315f
- surface displacement measurement, 319–321, 320f
- transcutaneous, 316–317, 316f, 317f
- wavelength selection, 303, 304f

Optical signal propagation
- indirect light transmission, 310–313, 311f, 312f
- light attenuation, 309–310, 310f
- in open space, 313–314, 314f
- scattering characteristics, skin, 310, 311f

Pacemaker antenna
- characteristics, 557–558
- FDTD method, 557
- finite-difference time-domain method, 557
- human body model, 558–562, 560f
- link budget, 557, 558f
- structure, 554–555, 555f
- tissue-equivalent phantom, 555, 556f
- pairwise temporal key (PTK), 346, 347
- Passive phase shift keying (PPSK) modulation, 43–44, 44f

Patient monitoring device (PMD), 625
- Patient safety
  - definition, 455
  - risk assessment, 455–456
  - WHO Patient Safety Program, 456
- Persistent metric (PM)
  - segment class, 352
  - store class, 352

Personal area networks (PAN), 252, 429
- Personal digital assistant (PDA), 382
- Phase shift keying (PSK), 193f, 195–196
- Philips IntelliVue MX40 patient monitoring system, 626–627
- Photoplethysmogram (PPG) sensor, 79–81, 80f
- Physical layer protocol data unit (PPDU), 341
- Physical layer service data unit (PSDU), 341

Physical modeling, human tissue
- anatomical model, 157–158, 157f
- antenna resonance measurement, 160–161, 161f
- canonical model, 156–157, 156f
- channel measurement, 162–165, 163f, 165f
- electrical properties, measurement, 158–160, 159f
- gel phantoms, 154–155
- liquid phantoms, 154–155
- SAR measurement, 161–162, 162f
- solid phantoms, 154–156
- Piezoelectric biosensor, 69–71, 70f
- PillCam capsule, 572, 573f
- Plain Old Telephone Service (POTS), 5
- Planar inverted cone antenna (PICA), 212–213, 213f, 222

PMD. See Patient monitoring device (PMD)

Poly(m-aminobenzene sulfonic acid) (PABS), 659–660

Position-sensitive device (PSD), 319

Potentiometric biosensor, 61–62, 62f

Power
- noninvasive wireless method (See Noninvasive wireless power transfer)
- power density, 109, 109f
- RFID (See Radio frequency identification (RFID))
- Power transfer efficiency (PTE), 179f, 180–182, 181f, 612–614

PPM/IM. See Pulse position modulation/intensity modulation (PPM/IM)

Pressure sensor, 93–95, 94f–95f

Printed spiral coils (PSCs), 189–191, 189f–190f

PTK. See Pairwise temporal key (PTK)

Pulse harmonic modulation (PHM), 200–201, 200f–201f

Pulse oximetry, 81–83, 81f–83f

Pulse position modulation/intensity modulation (PPM/IM), 307

Pulse position modulation/intensity modulation (PPM/IM)
- Pulse transit time (PTT), 84–85, 84f
- Pulse width modulation (PWM), 77, 314
- Pulse-burst method, 314, 315f
- Pyroelectric biosensor, 71–72

QPSK and 8PSK modulation, 289–290, 290f, 291f, 292

Quality-adjusted life years (QALYs), 495–496

Radio frequency identification (RFID), 187–188, 188f

amorphous-core device, 110
- energy link budget, 112, 115f
- energy-harvesting device, 109–110, 110f
INDEX

Nike logo antenna, 111–114, 112f–114f
piezoelectric element, 109–110
Tektronics RSA30408A spectrum analyzer, 111–112, 115f
totalwaveform, 110–111, 110f
RAPID Reader software, 574, 574f
Ray tracing (RT) technique, 223
Remote patient management system architecture, 334–335, 334f
definition, 331
Philips telehealth solution, 332–334, 333f
vs. traditional care model, 331–332, 331f
RF communication
definition, 211
implantable antenna (See Implantable antenna)
ingestible antenna (See Ingestible antenna)
on-body antenna (See On-body antenna)
parameters, 211
RT-SA class, 352
Safety issues
athermal effect, 164
dosimetric efforts, 166
non-thermal effect, 164
thermal effect, 164–165
threshold current, 166–167, 167f
uncontrolled exposure, 166–167, 167f
SAR. See Specific absorption rate (SAR)
SAX. See Symbolic aggregate approximation (SAX)
SC. See Stratum corneum (SC)
SCAN encryption, 386–387
Scanner class, 352
Schilit’s taxonomy, 370f
Segment-Data-Event messages, 357–358
Sensors for Medicine and Science Company (S4MS), 626
Silicon diode, 89–90, 92
Skin propagation model
characteristic impedance, 276–277, 276f
distributed-parameter circuit, 275, 275f
SmartPill, 90–91, 91f
Space division multiplexing (SDM), 308
Specific absorption rate (SAR), 47–46, 116, 161–162, 162f, 610
heat-related risk, 449
IEEE C.95.1–2005, 468–470, 469f, 470r
implantable antenna, 225–227
infectious disease, 237–239, 238f
Spread spectrum (SS) method, 314–316, 315f
Stratum corneum (SC), 263, 275
Substrate-integrated waveguide (SIW), 9, 655–656, 655f, 656f
Support vector machines (SVMs), 377
Support vector regression (SVR), 377
Surface acoustic wave (SAW) sensor, 97–98, 98f
Surface plasmon resonance (SPR), 66–67, 67f
Symbolic aggregate approximation (SAX), 373
Tapered slot antennas (TSA), 212–213, 213f
TCB. See Trusted computing base (TCB)
Textile sensor, 88
Thermal/calorimetric biosensor, 67–69, 69f
time division multiplexing (TDM), 309
Time domain, 371–372
Tonometer, 85–86, 85f
Transcutaneous optical biotelemetry, 316–317, 316f, 317f
Transmission line matrix (TLM) method, 152
Trusted computing base (TCB), 385, See Two-pole Debye model, 264
Ultrahigh-frequency (UHF), 335–336
Ultrawide band (UWB)
channel, 7, 221–223
PHY, 342, 342f, 344
Verichip, 550
Voice biometric authentication, 406–408, 407f
Wavelength division multiplexing (WDM), 309
WBAN. See Wireless body area network (WBAN)
WBSN. See Wireless body sensor network (WBSN)
WCE. See Wireless capsule endoscopy (WCE)
Wearable data acquisition device (WDAD), 491
Wearable goggles, 79
Wearable health monitoring systems (WHMS)
12ME software architecture, 392, 392f
mobile health architectural, 390, 390f
prototype, 390, 391f
remote monitoring application, 393, 394f
symptoms, 390, 391f
voice interaction, 392–393
Wessel diagram, 264–265, 265f
WHMS. See Wearable health monitoring systems (WHMS)
WHO Patient Safety Program, 456
Wire antennas, 597–598
Wireless body area network (WBAN), 11–12, 636
artificial pancreas, 516–518
FES system, 518–519
multiparameter monitoring system, 519–521
Wireless body sensor network (WBSN), 508
BLE technology, 510, 511f
IEEE 802.15.6, 514–516
IEEE 802.15.4, 511–514
Wireless body sensor network (WBSN) (Continued)
mesh networks, 508–509
ZigBee, 513
Wireless capsule endoscopy (WCE) accelerometers and magnetometers, 587
artificial intelligence category, 577
automatic classification, digestive organs, 579
bleeding detection, 584–585
bleeding, polyps, and ulcers detection, 575, 575f/
blood detection, 579–580
capsule designs, 586–587, 586f/
colonoscopy, 576
color and image processing category, 576
colorectal lesions, 583–584
computer-aided diagnostic system, 573–575
computer-aided tumor detection, 582–583
deepth cameras, 587
diagnostic capsule, 588
diagnostic methods, 585–586
discriminate tissues, 580
endoscopic images, 584
external data processing (EDP) device, 590, 591f/
intestinal lumen, 577
intraoperative endoscopy, 573
malicious tissue detection, 576
model of deformable rings (MDR), 578–579
narrow-band light filters can, 587
neural-network-based approach, 577–578
neuronal networks, 581
offline and online training neural networks, 581–582
PillCam capsule, 572, 573f/
power consumption, 587–588
push endoscopy, 573
robotic device, 589, 589f/
signal processing category, 576
Sonde enteroscopy, 573
tissue discrimination, 576
topographic segmentation and transit time estimation, 580–581
Wireless inductive telemetry system active transmission, 31, 31f/
coupling coefficient, 34–36, 36f/ coupling compensation, 36–37
datalink, 32
description, 32, 32f/
downlink, 32
Laplace domain, 34
link gain, 33, 35, 36f/
passive transmission, 31–32, 31f/
primary circuit, 33–35, 33f/
quality factors and mutual inductance, 32–33
rectification and voltage regulation, 37–38, 37f/–38f/
secondary circuit, 33–35, 33f/
transmitter power amplifier, 38–39
Wireless integrated sensing platform-gas sensor (WISP-GS), 684
Wireless medical telemetry service (WMTS), 6–7, 337
Wireless personal area network (WPAN), 11
Wireless physiological measurement systems (WPMS). See also Wireless body area network (WBAN); Wireless body sensor network (WBSN)
advantages, 506
applications, 508f/
design goals, 509–510
medical emergency system, 507
military applications, 507
patient alert system, 506–507
real-time biosignal processing, 507
Wireless power transmission multicoil inductive coupling (See Multicoil inductive coupling)
power amplifier, 185–186
PTE, 179f, 180–182, 181f/
resonant vs. nonresonant inductive link, 178–180, 178f/–180f/
Wireless pressure monitor blood pressure monitoring, 83–84
Cumbersome glaucoma test, 86
pressure measurement, 85, 85f/
PTT, 84–85, 84f/
Sensimed’s system, 85–86, 85f/
WMTS. See Wireless Medical Telemetry Service (WMTS)
WPMS. See Wireless physiological measurement systems (WPMS)