Index

A
A beta protein precursor, 88
AB192, 318
ABriPP, 88
ABTS, radical-scavenging property of peptides and colorimetric binding assays for, 35
ACC phosphorylation, satiety, high-protein diets and, 143
ACE blood pressure regulation and, 207, 228, 256–257
first competitive inhibitors to, 170
forms of, 211
inhibition by peptides
\textit{in vitro}, derived from fish proteins, 208, 211
\textit{in vivo}, derived from fish proteins, 212–214
structure-activity correlations among different peptide inhibitors of, 212
wheat peptide, prevention of hypertension and inhibition of, 298–299
ACE homologue (ACEH), 211
ACE inhibition mechanism, 211–212
ACE inhibitors, 6
blood pressure regulation and, 169–170
prototypes of, 207
soy proteins as, 80
synthetic, side effects with, 208
ACE inhibitory activity, bitterness and, 348–349
ACE inhibitory peptides
blood pressure regulation and, 174, 175
design of, 44–46
in egg white albumin, 256
evaluating antihypertensive activity of, in spontaneously hypertensive rats, 173
from fish proteins, 207–215, 208
inhibition of renin-angiotensin system by, 46–47
from natural sources, potency of, 208
preparation of, 171–173
enzymatic hydrolysis, 171
fermentation products, 171–173
Acesulfame K, 351
Acid hydrolysis, fish gelatin and, 205
Actin, in myofibrillar tissue proteins, 204
\textit{Actinobacillus actinomycetemcomitans}, lactoferrin and, 186
\textit{Actinomucor elegans} peptidases, nonbitter protein hydrolysates and, 350
Activated carbon, debittering protein hydrolysates and, 349
Activator protein-I, 19
Acute hyperammonemina, GABA and prevention of, 125
Acyl-CoA oxidase, soy protein feeding in rats and, 73
ADanPP, 88
Adenovirus lactoferrin’s effects against, 185, 186
Lfcin’s antiviral activity against, 192
Adibi, S. A., 265
Adipocytes, inflammatory responses and, 71
Adipokines, 70
Adiponecin, 70, 71, 76
Adipose tissue, metabolic syndrome and, 70
Adiposity, soy protein action on, proposed molecular mechanism, 73
Adiposity reduction, soy protein’s effect on, 71, 72t, 73–74, 77–78t
Advanced glycation end products, 227
Aerobic organisms, biochemical antioxidants and, 16
Affinity peptidomics, 308, 308–309
AGEs. \textit{See} Advanced glycation end products
Aggregation, protein and peptide drug inactivation with, 365
Aggregation profiles, of Humulin, Regular Iletin I, and Regular Iletin II, 365
Aging process
antioxidant-prooxidant balance and, 30
protein carbonyl compounds and, 29, 30
Agouti related peptide, 143
Akahane, Y., 213
Akpaifong, M. J., 49
Alamethicin, liquid crystalline phases and, 363
Alanine, sweet taste of, 343
Alaska pollack
ACE inhibitory peptides derived from, 208, 210
antioxidant peptides from, 217
antioxidative activity in gelatin extracted from, 218
branched amino acids present in antioxidant peptides from, 216
products of proteolytic digestion of gelatin extracts from, 211
Albumin, 247, 250
water-soluble, 290
wheat, 291
Alcalase, 154
Alcalase hydrolysates, 275
Alcalase-hydrolyzed zein, antioxidant activity of, 216
Alcohol consumption, reactive oxygen species and, 16
Aldehyde interactions between amino acids, flavor ingredients and, 354
orthonasal perception of aroma intensity and, 354
Aleurone layer bran, 233
rice kernel, 234
Alkali extraction, of rice bran proteins, 236
Alkaline hydrolysis, fish gelatin and, 205
Allergen epitope identification, 106–107
B-cell epitope mapping, 107
T-cell epitope mapping, 106–107
Allergens, hidden, 107
Allergic response clinical symptoms related to, 102
to food antigens: two-phase mechanism, 103
intestine mucosal barrier and, 102–103
T cells and, 105
Allergies. See also Food allergy; Wheat allergy defined, 295
lactoferrin’s anti-inflammatory properties and, 187
wheat, 295–298
Almeida, M. S., 282, 283
Alpha-amyrase inhibitors, families of, in wheat, 298
Alpha blockers, 169
Alpha-chymotrypsin, nonbitter protein hydrolysates and, 350
Alpha-cyclodextrin, bitterness masked with, 350
Alpha-helical class of proteins and peptides, 361
Alpha-lactalbumin in bovine colostrum and milk, 153
putative biological functions of, 151
whey proteins and, 156–157
Alpha-synuclein, 92, 93
ALPMHIR, 162
Aluko, R. E., 62, 275, 280
Alzheimer’s disease, 89, 90
advanced glycation end products and, 227
amyloid beta peptide and, 32
amyloid beta protein and, 91
amyloid deposits and, 89, 95
amyloidosis and, 7
excessive levels of calmodulin and, 55
free radical attacks and, 29
nitric oxide levels and, 56
peptidomics and, 319
Amarowicz, R., 217
Ameal S, 163
Amino acids. See also Free amino acids antioxidant, endogenous, 29
antioxidant behavior of peptides and, 216
in eggs, 248, 249
in fish gelatins, 206
in fish protein, 204
flavor ingredients interacting with, 352
plasma, as central satiety signals, 142–143
plethora of research on, 354
potent antioxidant activity with, 17
residues of antioxidant peptides and, 35 aromatic, 45
design of ACE inhibitory peptides and, 44–45
flaxseed protein-derived peptides and, 58
as metal-ion binders, 37
in rice bran proteins, 240
serum essential amino acid levels in peripheral blood vessel after ingestion of test beverages, 266
sulfur-containing, in cereal grain proteins, 234
taste-active, development of, 355
taste-active properties of, 343–344
primary taste characteristics of, 343–344
synergetic interactions affecting taste and flavor, 344
umami taste and, 342
Aminopeptidases, reducing bitterness of protein hydrolysates and, 350
AMP-Activated Protein Kinase (AMPK), 143
Amylase, rice bran protein extraction and, 236
Amylin, 91
Amyloid beta peptide, 32
Amyloid beta protein, 88–89, 91, 93
Amyloid formation
diseases associated with, 7
inhibitors, 95
preventing, 92, 94–95
Amyloidogenic proteins and
peptides, 7, 87–95, 93r
amyloidogenicity of small
peptides, 92
natural occurrences of, 90–92
alpha-synuclein, 92
amylin, 91
amyloid beta protein, 91
beta2-microglobulin, 90
cystatin C, 90–91
huntingtin protein, 92
prion, 90
strategies for preventing amyloid
formation, 92, 94–95
peptidic compounds, 94–95
phenolic compounds, 92, 94
treharose, 95
Amyloidosis, 88, 95
cutaneous, 87
defined, 89–90
diseases associated with, 7
localized, 90
systemic, 87, 90
understanding molecular basis of, 89
Amyloids
defined, 89–90
precursor and names of, 88r
Anaphylaxis, allergic response and, 102
Anderson, G. H., 138., 141
Anderson, J. W., 74, 77r
Ando, Y., 88r
Angelova, A., 363
Angiogenesis, bLf and hLf’s
opposite effects on, 189–190
Angiotensin I, 207, 257
Angiotensin I-converting enzyme,
inhibitory effects of, 280–281
Angiotensin II, 207, 257
Ang I, 44
Ang II, 44
Ang II-stimulation, effect of small
peptides on, 47, 48
Aniline-Benzoic Acid Labeling
(AniBAL), 316
Animal feeds
lactoperoxidase in, 160
rice bran proteins in, 239
Animal muscle-based bioactive
peptides, 225–229
biological activity and therapeutic
applications, 226–228
antiaging effects, 228
antiglycation effects, 227
antihypertensive and
cardiovascular effects, 227–228
anti-inflammatory and
immune-modulating activity, 227
antioxidative activity, 226
neurological effects, 228
wound healing, 228
description of, 225–226
future studies on, 228–229
Animal proteins, bioactive proteins
released from, 332
Animals, role of GABA in,
124–125
Animal sources of foods, 105
ANS (8-anilino-1-naphthalene
sulfonic acid), defined, pea
protein-derived peptides and,
63
Anserine, 225
in animal muscle, 225
antioxidative activity of, 30, 31r,
226
in chicken meat, 226
dose-dependent ACE-inhibitory
activities of, 228
neurological effects of, 228
Anterior piriform cortex, detection
of high-protein meals and, 145
Antiaging effects, of muscle-based
bioactive peptides, 228
Antiamyloid agents, development
of, 7
Anticancer peptides, in egg protein,
255
Antidepressant agents, GABA
receptors and, 124
Antigen-presenting cells, 103
Antihypertensive effects, foods with
specified health use and, 170–171
Antihypertensive food products,
development of, 6
Antihypertensive peptides, 8, 43–52,
169
antihypertensive mechanisms of
small peptides, 46–51
inhibition of renin-angiotensin
system by ACE inhibitory
peptides, 46–47
regulation of vascular events
by dipeptides, 47–48
relaxation of vascular
constrictive events by
dipeptides, 48–51
derivation of, from caseins by
proteolytic action, 172r
design of ACE inhibitory
peptides, 44–46
docking of, into ACE C-terminal
and validation of
computational modeling with
experimental inhibition of
peptides, 47
in egg protein, 256–258
in FOSHU products, 44t, 171t
future prospects, 51–52
hypertension and
renin-angiotensin system, 44
mode of action
ACE inhibitory effects, 174
peptide absorption, 174
reported, from natural proteins in
spontaneously hypertensive
rats, 46t
screening of vasorelaxant
peptides of 50 mmol/L
KCl-constricted aortic ring,
50r
\textit{in vivo} effect, 173–174
clinical trials, 173–174
effects on an animal model, 173
Antihypertensive pharmaceutical
products, categories of, 169
Anti-inflammatory proteins and peptides, 19, 20r, 21–23
egg proteins
 lysozyme, 19, 20r
 ovotransferrin, 19, 20r
milk peptides, 19, 20r, 21–22
 bovine casein, 19, 20r, 21
 glycomacropeptide-κ-
 caseinoglycopeptides, 20r, 21
 lactoferrin, 20r, 21–22
 pro tease peptone-3, 20r, 22
plant proteins/herbal medicine, 23
 soy, 22–23
Antimicrobial proteins and peptides, 169
 alpha-helical motifs for, 184
 from chickpea (Cicer arietinum), 283
 from cowpea (Vigna unguiculata), 282–283
 in eggs, 249r
 from garden pea (Pisum sativum), 281–282
 from lysozyme, 251–252
 from ovalbumin, 252–253
 from pea, commercial utilization potential of, 283–284
Antioxidant proteins and peptides, 16–17, 29–39
 action mechanisms of, 35–38
 chemical reactions, 35–37
 physical reactions, 37–38
 activity of, in food systems, 34–35
 antioxidant activity of in vitro protein digests, 32–34
 chemical and physical mechanisms of: metal chelation, radical scavenging, and physical hindrance, 35
 dietary, identifying fate of, 6
 in eggs, 255–256
 endogenous, 30–32
 enzymatic oxidation, 214–215
 from fish proteins, 214–215, 217r
 human health promoted with, 30
 mechanism of lipid oxidation, 214
 preparation of, 38–39
 chemical synthesis, 39
 enzymatic production, 38
 microbial fermentation, 38–39
 structure-function relationship of, 35–36
Antioxidants
 natural, 215
 synthetic, 215
Antioxidant supplements, expanding market for, 30
Antioxidative peptides, with less bitterness, 349
Antioxidative stress food factors, 16
Antioxidative stress mechanisms, endogenous, 16
Antioxidative stress proteins and peptides, 16, 17–18, 17r
 egg yolk peptides, 17–18
 milk protein, 18
 plant proteins/herbal medicines, 18
Antitumor activities, lactoferrin and, 189–191
Aoyama, T., 268
AP-1. See Activator protein-1
APCs. See Antigen-presenting cells
Apolipo-protein AI, 88r, 93r
Apolipo-protein AII, 88r
A polipo-protein AIV, 88r
Apo serum AA, 88r
Aptamers, 313
Aqueous alcohol-soluble prolamin, 290
Aqueous channel size, drug release rate and, 373
Arachidonic acid production, soy protein and, 76
Arcan, I., 274
Ardo, Y., 349
Area postrema, detection of high-protein meals and, 145
Arginine
 ACE inhibitory activity, bitterness and, 349
 blood pressure and, 80
 hypcholesterolemic effects of pea proteins and levels of, 277
Arietin, 283
Ariyoshi, Y., 209r
Aroma perception, research on chemosensory stimuli and, 354
Aromatic amino acids, 274
Arthritis
 colostrum-based products with growth factors and, 161
 lactoferrin’s anti-inflammatory properties and, 187
Artificial sweeteners, 342, 351
Ascorbic acid, 215
Ash, in bran, 233
Ashar, M. N., 162
Asia, rice production in, 233
Asparagines, in rice bran proteins, 238
Aspartame, 351, 355
Aspartic acid, 37
Aspergillus niger, pea protease inhibitors expressed with, 279
Astawan, M., 209r, 210r, 213r
Atherosclerosis
 advanced glycation end products and, 227
 free radical attacks and, 29
 reactive oxygen metabolites and, 226
Atlantic cod, serine collagenases isolated from, 205
Atlantic salmon, ACE inhibitory peptides derived from, 210r
Atrial natriuretic factor, 88r
Atwater factor, for protein, 142
Autistic spectrum disorders, carnosine supplementation and, 228
Avian eggs, 247
Avian eggshell, unique mechanical properties of, 249
Avidin
 anticancer properties of, 255
 antimicrobial properties of, 254
Azadbakht, L., 68
Azeotropic extraction, debittering protein hydrolysates and, 349
Aziz, A., 141
Azzout-Marniche, D., 142
B
Baby foods, rice bran proteins in, 239

Bacillus cereus, ovotransferrin’s effect against, 252

Bacillus stearothermophilus lactoferrin’s antimicrobial activities and, 185
lysozyme effective against, 250

Bacillus subtilis, lactoferrin’s antimicrobial activities and, 185

Bacteria, LfcinB and LfcinH actions against, 191

Bacterial adhesions, lactoferrin binding to, 186

Bacterial GAD, 122

Bacterial infections, lactoferrin and, 187

Bacteriocins, applications for, 240

Bacteriorhodopsin, 361
Badii, F., 206

Baker’s asthma, 295, 296, 299

Bakery products, rice bran proteins in, 239

Balenine, antioxidant activity and, 30, 31
Balog, C. I., 318

Barley, rice protein net protein utilization compared to, 240

Baron, F., 249t
Bar-Or, D., 37t
Basmati rice, 237
Bassil, M. S., 143

BAT. See Brown adipose tissue

Baumann, M., 88t
Bay K 8644-stimulation, effect of small peptides on, 48, 48

BBIs. See Bowman-Birk protease inhibitors

B-cell epitope-based immunotherapy (IgG-binding), food allergy and, 110

B-cell epitopes antigen, representation of, 106
food allergen, 105–106
mapping, 107

Beard, rice kernel, 234

Beef allergy model, 114

Beef gelatin, producing gelatin from fish to match gelling properties of, 219

Beer production, lysozyme used in, 251

Behavior, peptides and regulation of, 320
Bellamy, W., 183

Bender, J., 376
Benditt, E. P., 88t

Beni-koji making, GABA content and, 126

Bensaid, A., 144
Benson, M. D., 88t
Bergstrom, J., 88t
Bertenshaw, E. J., 136
Berthoud, H. R., 144
Beta blockers, 169
Beta-carotene, 215

Beta-cellulin, in bovine mammary secretions, 152, 160–161
Beta-conglycinin, 17
Beta-glucans, 233
Beta-hydroxyacyl-CoA dehydrogenase, soy protein feeding in rats and, 73

Beta-immunoglobulin peptide, health benefits with, 162

Beta-lactoglobulin antioxidant activity and, 34
in bovine colostrum and milk, 153t
putative biological functions of, 151
whey proteins and, 157

Beta-lactorphin, health benefits with, 162

Beta-lactosin B peptide, antihypertensive activity with, 162

Beta-sheet class of proteins and peptides, 361

Beta2-microglobulin, 88t, 90, 93t
BHA. See Butylated hydroxyanisole
BHT. See Butylated hydroxytoluene
Bicontinuous cubic phase medium, 363
Bicuculline, 125

Bigeye snapper skin, autolysis of, by indigenous serine proteinases, 205

Binding unit, 347

Bioactive fragments, release of, in silico by trypsin from milk proteins, 334, 336

Bioactive peptides classification of, 307
defined, 154
enzymatic release of, from precursor proteins in silico, 335–336t
examples of commercial dairy products and ingredients based on, 163t
future research areas about, 163
in health: overview, 5–11
health benefits with, 162
in silico analysis of, 10, 326–328, 331
milk proteins and, 8, 152
novel applications of, 161–162
plant proteins and, 332, 334
production of, 154–155
release of, from selected precursor proteins, 154
by enzymes–proteolysis in silico, 331–332, 334
strategy for research on, 327, 327 for therapeutic purposes, 326

Bioactive peptides and proteins, from lactoferrin, 8

Bioactive properties, potential correlation between bitterness of peptides and, 348–349

Bioactive whey proteins, occurrence and isolation of, 152–154

Biochemical enhancers, skin permeability for transdermal drug delivery and, 373

Biochemistry, bioinformatics methods applied in, 10

Biofilm development of bacteria, blocking, lactoferrin and, 158

Bioinformatics methods applications of, 10
increasing popularity of, 339
Biomarkers definiend, 317
peptides as, 317–318
BIOPEP database of proteins and bioactive peptides
comprehensive analysis of proteins as source of bioactive peptides by, 331
development of, 10
proteolysis simulation example in, 333
proteolytic enzymes of gastrointestinal system in, 332
structure and function of, 326
Biopeptides, identification of selected, released by trypsin from milk proteins, 334, 336
Biochemistry, clinical methods applied in, 10
BioPURE-GMP, 163
Bioseparation techniques, immune milk preparations and, 156
Biotechnology, bioinformatics methods applied in, 10
BioZate, 163
Bitterness of peptides
potential correlation between bioactive properties and, 348–349
predicting, 347–348
of protein hydrolysates and peptides, physico-chemical properties related to, 345, 347
Bitter peptides, of proteins and protein hydrolysates, isolated by different researchers, 346–347
Bitter substances, 342–343
Bitter taste
human response to, 342
protein hydrolysis and, 345
Blackeyed peas (Vigna unguiculata), Bowman-Birk protease inhibitors and, 279
Black tea, GABA content in, 125
Blake, C., 89
B. See Bovine-milk derived lactoferrin
Blom, W. A., 136
Blood glucose levels, insulin study in nonagitated and agitated cubic phase and effect on, 366
Blood pressure. See also Antihypertensive peptides; Hypertension
antihypertensive peptides and, 8
regulation of ACE inhibitors and, 169–170, 174, 175, 207, 256–257
renin-angiotensin system and, 298
soy protein and, 79–80
Bloom gelatin, 205
Bloom value, hydrophobic amino acids and, 206
Blue whiting, ACE inhibitory peptides derived from, 210
Blundell, J. E., 143
BMI. See Body mass index
Body composition, sustained high-protein diet and, 136
Body mass index, soy consumption and, 71
Body weight, gamma-aminobutyric acid and, 125
Boldyreva, A., 31
Bolton, D. C., 88
Bonito
ACE inhibitory peptides derived from, 208, 210
hypotensive effects of, in spontaneously hypertensive rats, 213
Bonito bowels, ACE inhibitory peptides derived from, 209
Borderline hypertension, most beneficial improvement for, 43
Bothrops jararaca, bioactive peptides isolated from, 170
Bougatefa, A., 217
Bovine B-casein, anti-inflammatory properties of, 19, 20, 21
Bovine caseins calmodulin-binding peptides isolated from peptic hydrolysate of, and potency against phosphodiesterase I, 57
functional peptides in, 171
Bovine CGP, anti-inflammatory properties of, 21
Bovine colostrum major bioactive whey proteins in, 153, 153
natural antibodies in, 156
Bovine lactalbumin alpha chromatograms of, 336, 338
mass spectrum of trypptic hydrolysate of, 338
profile of potential biological activity of, 337
Bovine lactoferrin, apoptosis-related gene expression changes and, 190
Bovine Lfcin (LfcinB) structure of, 184
structure of: LfcinB domain and LfcinB peptide, 184
Bovine mammary secretions, growth factors in, 152–153
Bovine milk derived lactoferrin angiogenesis and, 189–190
anti-inflammatory activity associated with, 22
antimetastatic effects with, 189
sequences of Lfcin and Lfampin peptides from, 184
systemic host immunity promoted with, 189
Bovine spongiform encephalopathies, 89, 90
amyloid deposits and, 95
amyloidosis and, 7
demand for fish gelatin and, 205
Bowen, J., 140, 141
Bowm, A. W., 123
Bowman-Birk protease inhibitors anticancer effects due to, 278–280
inhibitory mechanism of, 229
Bowman-Birk trypsin inhibitor, 20, 22, 23
BP. See Blood pressure
Bradykinin, blood pressure regulation and, 207
Brain senescence, GABA and prevention of, 124–125
Bram, rice kernel, 234
Bran, components of, 233
Bray, T. M., 31
Brazzein, 351
Bread
antioxidant caseinophosphopeptides in, 35
GABA used in, 129
Brockmann, A., 320
Brown adipose tissue, soy peptides and, 267–268
BTC. See Beta cellulin
Buccal delivery, oleic acid and membrane permeation in, 370
Buee, L., 88t
Buforin II, 192
Bull, rice kernel, 234
Burton-Freeman, B. M., 160
Butter fat, inhibiting oxidation of, 216
Butylated hydroxyanisole, 36, 215
Butylated hydroxytoluene, 214, 215
Butylhydroquinone, 215
Byun, H. G., 210t

C
Cabral, K. M. S., 283
Caffeine, 342
Caffrey, M., 361, 372, 373
Calbet, J. A., 141
Calcitonin, 93, 319
Calcium binding, calmodulin activation and, 55
Calcium channel antagonists, 169
Calkins, E., 89
Calmodulin (CaM)
effect of flaxseed protein-derived peptides on intrinsic fluorescence of, 61t
effect of flaxseed protein-derived peptides on secondary structure fractions of, 61t
functions of, 55
role of, 6
Calmodulin inhibitors
flaxseed protein-derived peptides, 58–62
food protein-derived peptides, 55–64
milk protein-derived peptides, 56–58
pea protein-derived peptides, 62–64
Caloric intake, soy protein and reduction in, 73, 74
Calpis, 162, 163t
CaM. See Calmodulin
CaM-dependent peptides, current stage of knowledge about, 64
CAM-dependent protein kinase II (CAMKII), 56
cAMP. See Cyclic adenosine monophosphate
Campbell, B., 156
CaM-PDE
inhibition of, 56
milk protein-derived peptides and, 56–58
Cancer
chronic inflammation and, 227
excessive levels of calmodulin and, 55
free radical attacks and, 29
lactoferrin’s anti-inflammatory properties and, 187
lactoferrin’s biological roles in, 189–191
peptidomics and, 319
prevalence of and mortality rates with, 255
rice bran proteins and prevention/control of, 241
Candida albicans
immune milk preparations and, 156
lactoferrin’s antimicrobial activity and, 158
lactoferrin’s effects against, 185, 193
LfambinB peptide’s activity against, 193
Lfcin and inhibiting growth of, 192
Candida glabrata, lactoferrin’s efficiency against, 193
Candida spp., lactoferrin’s effect on, 187
Capelin
antioxidant peptides from, 217t
antioxiative activity of protein hydrolysates from, 218
Captopril, 47, 174
antihypertensive effects of, in spontaneously hypertensive rat, 173
zinc deficiency effects of, 208
Carbohydrates, 105, 342
Carboxypeptidases, reducing bitterness of protein hydrolysates and, 350
Carcinoembryonic antigen, 319
Cardiac hypertrophy, excessive levels of calmodulin and, 55
Cardiovascular disease
fat dysfunction and, 71
hypertension and, 169, 207
Carloric sweeteners, 351
Carnitine palmitoyltransferase, soy protein feeding in rats and, 73
Carnosine
in animal meat, 225, 226
antiauxing effects of, 228
antiglycation effects of, 227
anti-inflammatory and immune-modulating activity of, 227
antioxidant activity and, 30–31, 31t, 226
chemical structure of, 31
dose-dependent ACE-inhibitory activities of, 228
hypotensive effect of, 227–228
neurological effects of, 228
wound healing effects of, 228
Carnosine relaxation effect, in Sprague-Dawley (SD) rat aorta rings, 49
Caryopsis, 233
Casein hydrolysates
ACE-inhibitory activity with, 154
bioactive peptides and, 162
Casein peptides, importance of helix structure configuration of, and effective binding to CaM, 58

Caseins
- antihypertensive peptides derived from, by proteolytic action, 172
- antioxidant activity of peptides in, 34
- functional properties of rice bran proteins and, 237
- increase in GLP-1 concentrations in whey proteins vs., 141
- structure and effective binding to CaM, 58

Caseins antihypertensive peptides derived from, by proteolytic action, 172
- antioxidant activity of peptides in, 34
- functional properties of rice bran proteins and, 237
- increase in GLP-1 concentrations in whey proteins vs., 141

Caspase-3, lactoferrin and, 190

Catalase (CAT), aerobic organisms and, 16

Cataracts, advanced glycation end products and, 227

Cathepsin G, 23

CCK. See Cholecystokinin

CCK1 receptor, 140

CD4 antigen, lactoferrin and, 188

CD4+ T cells, food allergy and, 103

CD spectra. See Circular dichroism spectra

CEA. See Carcinoembryonic antigen

Cefaclor, 140

Celiac disease, 10, 114, 295, 297, 299

Cell migration, lactoferrin and, 188

Cell-permeable peptides, 192

Cell proliferation, lactoferrin’s biological roles in, 189–191

Cell signaling mechanisms, inflammation and, 19

Cellular homeostasis, histidyl dipeptides and, 225

Cellulose, 233

Central nervous system, mammalian, GABA and, 121

Central neuronal pathways, protein-induced satiety and, 143–144

Centripetal obesity, metabolic syndrome and, 67

Cereals
- antioxidant caseinophosphopeptides in, 35
- natural antioxidants in, 215
- proteins in, 234
- world wheat production and, 9
- worldwide production of, 233

Cerebral ischemia, oxidative stress and, 31–32

Ceruloplasmin, lactoferrin and, 183

Cetylmethylammonium bromide, hydrophobicity of insoluble glutelins and, 235

Chand, R., 162

Chao trophic solutes, properties of liquid crystalline phases and, 362, 363

Chapatti (flat bread), rice bran proteins in, 239

Charter, E. A., 249

Chatterton, D. E. W., 157

Cheese, bioactive peptides and, 161

Cheese ripening, GABA levels in, 126

Cheese starter bacteria, bioactive peptide production and, 155

Cheese whey beta cellulin in, 152

large-scale preparation of bLf from, 193

Cheison, S. C., 38

Chelikani, P. K., 140

Chemically Linked Peptides on Scaffolds, 107

Chen, H. M., 36, 37

Chen, K. M., 216

Chewing gum, bLf added to, 193

Chickpea (Cicer arietinum), 9, 273, 274

antimicrobial peptides/proteins and, 283

antioxidant effects of, 274–275

effects of proteolytic treatments on physicochemical and bitterness properties of, 275

future prospects for biological activities related to, 284

hypcholesterolemic effects and, 276

Chickpea protein hydrolysates effect of, on serum antioxidant activity of aged mice, 275

fractions from (Fra. I, Fra. II, Fra. III, Fra. IV), 274

China, wheat production and consumption in, 9, 289

Chocolate
- antioxidant caseinophosphopeptides in, 35
- GABA in, 129

Cholecystokinin
- dose-dependence of, in protein-induced satiety, 140
- food intake regulation and, 139, 140
- protein and, 74
- protein-induced satiety and, 138, 145
- putative satiety mechanisms diagram, 139
- soy protein and, 76

Cholesterol-rich diets, hyper-hypo-response phenomenon and, 277

Chondroitin sulphate, 186

Chromatograms, of bovine lactalbumin alpha, 336, 338

Chromatographic separation technique
debittering protein hydrolysates and, 349

for fractionation and isolation of bioactive milk proteins, 153

Chronic disease
- bioactive peptides and proteins and, 5
- CaM-dependent peptides and, 64
- oxidative stress and inflammation and, 23

Chu, K. T., 283

Chuang, W. L., 217

Chum salmon, antioxidant peptides from, 217

Chun, H., 266

Chymase, 23

Chymotrypsin, 21, 154, 171

in BIOPEP database, 332

Bowman-Birk inhibitors and, 278

Chow salmon, antioxidant peptides from, 217

Cicerarian, 283

Cicerin, 283

CIR. See Cosmetic Ingredient Review

Circadian rhythm regulation, N-acetyl-5-methoxytryptamine and, 31
Circular dichroic (CD) spectroscopy, of insulin in liquid crystalline system, 366, 367
Circular dichroism spectra, 361
CLA. See Conjugated linoleic acid
Clark, A., 88
Class intervals, 328
Clemente, A., 279
CLIPS. See Chemically Linked Peptides on Scaffolds
Clogston, J., 372, 373
Closed-interface domains, phenolic compounds and, 92–93, 93
Clostridium difficile enterotoxins, immune milk preparations and, 156
Clostridium perfringens, lactoferrin’s antimicrobial activity and, 158
Clostridium thermosaccharolyticum, lysozyme effective against, 250
Clostridium tyrobutyricum, lysozyme effective against, 250, 251
Clostripaine, 332
Codex Alimentarius Committee, 159
Coenzyme Q10, in animal muscle, 225
Cohen, A. S., 89
Cohen, D. H., 88
Coho salmon, ACE inhibitory peptides derived from, 210
Cola, GABA used in, 129
Colitis, anti-inflammatory effect of GMP and TNBS models of, in rats, 21
Collagen, in connective tissue proteins, 204 hydroxyproline in, 204
Collagenase, 205, 332
Collagen triple helix structure, fish gelatin and, 205, 206
Colon carcinomas, Lfcin’s antitumor effects against, 192–193
Colostral immunoglobulins, biological function of, 156
Colostrum, beta cellulin in, 152 growth factors in, 160–161 health-promoting proteins and peptides in, 7–8 immunoglobulins in, 152 natural antibodies in, 156 Combinatorial peptidomics, 308, 309 Conditioned taste aversion, 144 Conjugated linoleic acid, in animal muscle, 225 Connective tissue proteins, in fish proteins, 204 Controlled release of biologically active proteins and peptides, molecular and transport characteristics in bulk aqueous medium of additive molecules, 373r Convulsions, nitric oxide levels and, 56 COOH-terminal dipeptide residue, substrate specificity of ACE and, 212 Cookies, rice bran proteins in, 239 Cope, W. B., 74 Copper, 215 Coprinus comatus, sativin’s antifungal activity against, 283 Corn, rice protein net protein utilization compared to, 240 Corn oil, inhibiting oxidation of, 216 Corn protein, antioxidant activity of peptides in, 34 Cos, M. L., 74 Cosmetic Ingredient Review, 242 Cosmetics, bLf added to, 193 Costa, P. P., 88r Cota, D., 143 Cowpea (Vigna unguiculata), 9, 273, 274 antimicrobial peptides/proteins and, 282–283 future prospects for biological activities related to, 284 hypcholesterolemic effects and, 276 Cow’s milk allergy model, 112–113 COX-2. See Cyclo-oxygenase-2 CPK levels. See Creatine phosphokinase levels Cp-thionin II, bactericidal activity of, 283 Craft, I. L., 265 Creatine, in animal muscle, 225 Creatine phosphokinase changes in, after beverage ingestion: comparison of placebo, soy protein, and soy peptide on GH and CPK level, 268 soy peptides in sports and levels of, 267 Creutzfeldt-Jakob disease, 90 Crohn’s disease colostrum-based products with growth factors and, 161 fecal lactoferrin and, 194 “Cross-beta” conformation, 89 Cryptosporidium parvum, immune milk preparations and, 156 CS. See Chondroitin sulphate CTA. See Conditioned taste aversion C-terminal glutamate residue, for some inhibitory peptides, 212 CTLs. See Cytotoxic T lymphocytes Cubic phase delivery of proteins and peptides in, 360, 363 drug release rate and, 372 GMO, two-photon fluorescence images showing lateral distribution of sulphorhadamine B, after 24 hours of passive diffusion in skin and, 377, 377, 379 gramicidin D’s destinations within, 361 insulin and optical density of, 366 microfissures, SRB fluorescence and, 379 time course of in vitro skin penetration and percutaneous delivery of cyclosporin A incorporated in, 369–370, 370
Cubic phase (continued)

in vivo skin penetration of CysA incorporated into, compared to olive oil formulation, 371, 371

Cubic phase domains, drug release rate and, 373

Cubosome particles, 363

Cui, M., 351

curculin. See Neoculin

Curcumin, 16, 92

CVD. See Cardiovascular disease

Cyclamate, 351

Cyclic adenosine monophosphate, 56

Cyclo (His-Pro), antioxidant activity and, 31

Cyclo-oxygenase-2, 18

Cyclosporin A (CysA) penetration experiments with liposomes with ethanol and, 371
time course of in vitro skin penetration and percutaneous delivery of, incorporated in cubic and hexagonal liquid crystalline phases, with olive oil control, 369–370, 370

in vitro penetration of, in stratum corneum and [E + D] at 6 and 12 hours following its topical application using hexagonal phase nanodispersion or olive oil control, 372

in vivo skin penetration of, incorporated in cubic and hexagonal liquid crystalline phases, compared to olive oil control formulation, 371, 371

Cystatin
anticaner property of, 255
in egg, antimicrobial properties of, 254
as serine protease inhibitor, 258
Cystatin C, 88, 90–91, 92, 93
Cysteine, 29, 274, 343
in cereal grain proteins, 234
radical quenching activity of peptides and, 35
Cystine, in cereal grain proteins, 234
Cytochrome C, liquid crystalline phases and, 363
Cytokine environment, food allergy and, 103
Cytokines, 307
Cytomegalovirus, 192
lactoferrin’s antimicrobial activity and, 158
lactoferrin’s effects against, 185
Cytotoxic T lymphocytes, food allergy and, 103
D
Daddaoua, A., 20
Dahi, bioactive peptides and, 161, 162
Dairy products, novel applications of bioactive peptides and, 161–162
DC-SIGN receptor, lactoferrin binding and, 186
Debittering, 350
Debeitering approaches, for protein hydrolysates, 349–351
Decker, E. M., 216
Defatted (DF) bran, protein extraction from, 236
De Freitas, S. M., 229
Degree of milling, 233, 234
Dehydrin proteins, functional properties of, 237
Deibert, P., 77z
Delacourte, A., 88
Delivery technology for biologically active proteins and peptides, 359–379
barriers and mechanism of bioavailability of proteins and peptides, 366–370
entrainment and stability of proteins and peptides by liquid crystalline systems, 360–366
overview of difficulties related to, 359–360
prerequisites for success in, 360
Denatonium, 342
Denaturation, protein and peptide drug inactivation with, 365
Deng, S. G., 350
Dental health care products, lactoperoxidase in, 160
Dermatophytes, Lfcin and inhibiting growth of, 192
“Desensitization” induction, food allergy and, 108
Dextran sodium sulfate, 18
DF. See Diafiltration
Dia, V. P., 20
Diabetes
advanced glycation end products and, 227
chronic inflammation and, 227
cyclo (His-Pro) and amelioration of, 31
flavor-active components and novel therapeutic approaches to, 355
metabolic syndrome and, 67
overconsumption of salty and sweet foods and, 342
reactive oxygen metabolites and, 226
sodium substitutes and, 345
sweet proteins and, 351
wheat albumin and prevention of, 298
Diabetes mellitus, defined, 298
Diafiltration, manufacture of whey powder and whey protein concentrates and, 153–154
Dialysis-related amyloidosis, beta2-microglobulin and, 90
Diepvens, K., 139
Diet
high-protein, satiety and food intake inhibition in, 137–138
high-protein meals, satiety and, 136–137
improvement in hypertension and, 43
therapeutic, metabolic syndrome and, 67, 68
Dietary antioxidant supplements, expanding market for, 30
Dietary Approaches to Stop Hypertension (DASH) diet, 68
Diet-disease associations, peptides and, 319–320
Digestion process, antioxidant peptides and, 32–34
Di-glycerine peptides, absorption of, 265
Dilute acid- or alkali-soluble glutelin, 290
Dimeric domain-swapped L68Q human cystatin C, open-interface and closed-interface, 92, 94
Dioleoyl phosphatidylcholine vesicles, 361
Dipeptide ACE inhibitors, 212
Dipeptides
development of, from soy, 266
intestinal adsorption of, 174
relaxation of vascular constrictive events by, 48–51
release of, from milk proteins, 332
salty taste and, 345
Disaccharides, polyglutamine aggregate formation and, 95
Disease
lipid oxidation and, 214
oxidation and, 29
peptide biomarkers in, 319
Diuretic agents, 169
Doan, F. J., 30
DOM. See Degree of milling
Domains of cubic structures, bicontinuous cubic phase medium and, 363
DOPC vesicles. See Dioleoyl phosphatidylcholine vesicles
Douchi, antioxidant peptides in, 38
Dipeptide
routes across the stratum corneum, 368
Drug release rate, properties of liquid crystalline structures and, 372, 379
Dry extrusion, rice bran stabilization and, 235
DSS. See Dextran sodium sulfate
D3 protease antihypertensive effect of, 350–351
less bitter protein hydrolysates and, 350
Dunshea, F. R., 74
Dyslipidemia, 67, 71
Dziuba, J., 332, 339
E
EAI. See Emulsion activity index
Edible films, lactoferrin and, 194
“Edible vaccines,” 115
EDTA. See Ethylene di-amine tetraacetic acid
EGF. See Epidermal growth factor
Egg allergy model, 113–114
Egg proteins, 215
antioxidant activity of peptides in, 34
bioactive, recent advances in, 9
digestibility of, 248
Eggs
anticancer proteins and peptides in, 255
antimicrobial proteins and peptides from, 249–254
avidin, 254
cystatin, 254
lysozyme, 250–252
ovalbumin, 252–253
ovomacroglobulin, 253
ovomucin, 253
ovotransferrin, 252
phosvitin, 253–254
antimicrobial proteins in, 249t
antioxidant proteins and peptides and, 255
phosphopeptides, 17–18, 17
Eimeria stiedai lactoferrin’s effects against, 186
Lfcin’s effects on, 192
Elastase, 23, 332
Electron spin resonance microscopy, radicals detected with, 35
Elicitation phase, in allergic response to food antigens, 103
Elimination diets, food allergy and, limits with, 107–108
Embryo, 233
Emulsion activity index, 236
Emulsion stability index, 236
Enalapril, 208
Enari, H., 210
Endocytosis, 102
Endogenous antioxidant peptides, 30–32
anserine, 30, 31t
balenine, 30, 31t
carnosine, 30–31, 31t
cyclo (His-Pro), 31
glutathione, 30, 31t
melatonin, 31, 31t
SS31 peptide, 31, 31t
Endogenous antioxidative stress mechanisms, 16
Endopeptidases, 317
Endosperm, 233
Endothelial isozyme, of NOS (eNOS), 56
Endothelial NOS protein molecule, CaM-dependent, effect of flaxseed protein-derived peptides on, 59–60
Endothelin antagonist, 169
Energy balance, proposed model for role of mTOR signaling in hypothalamic regulation of, 144
Energy expenditure, as metabolic signal in protein-induced satiety, 142
Energy intake, regulation of, 7, 135
Enrichment
bioactive milk proteins and, 153
immune milk preparations and, 156
Entamoeba histolytica, lactoferrin’s effects against, 185
Enterococcus spp., lactoferrin’s antimicrobial activities and, 185
Environmental factors, antioxidant-prooxidant balance and, 30
Enzymatic digestion, antioxidant peptides and, 38
Enzymatic extraction, of rice bran proteins, 236
Enzymatic hydrolysis, 171
Enzymatic oxidation, 214–215
Enzymatic treatment, for reducing bitterness of protein hydrolysates, 350
Enzymes, in bran, 233
Epidermal growth factor, in bovine mammary secretions, 152, 161
Epidermis, penetration of fluorescein into, as imaged by multiphoton microscopy, 375
Epitalon, 31
Epithalamin, 31
Ericsson, B., 366
Escherichia coli
GABA biosynthesis with, 126
immune milk preparations and, 156
lactoferrin’s antimicrobial activities and, 158, 185, 186
lysozyme and, 250
Escherichia coli K-12, ovotransferrin’s effect against, 252
ESI. See Emulsion stability index
ESR microscopy. See Electron spin resonance microscopy
ESR spectrum, gel filtration of whey protein and, for OH signals of samples containing different peptide fractions, 36
Essential hypertension, most beneficial improvement for, 43
Ethanol-phosphate buffer saline solution, skin permeability study and, 374
Ethoxyquin, 214
Ethylene di-amine tetra acetic acid, 250
EU. See European Union
Eulitz, M., 88t
European Union, wheat production and consumption in countries of, 9, 289
Evolut, 162, 163t
Exercise. See also Wheat-dependent exercise-induced anaphylaxis efficacy of soy peptides in, vs. with soy protein, 267
improvement in hypertension and, 43
overexertion during, reactive oxygen species and, 16
Exogeneous protein/peptide antioxidants, purpose of, 16
Exopeptidases
debittering and, 354
reducing bitterness of protein hydrolysates and, 350
Expander cooker, rice bran stabilization and, 235
Extended class of proteins and peptides, 361
Extendin-4, 141
F
Fahmi, A., 210r, 211, 213t
Fahr, A., 371
Faipoux, R., 144
Familial amyloidosis, 90
Farina, 289
Farm animals, colostral Ig preparations for, 156
FAS. See Fatty acid synthase
Fatal familial insomnia, 90
Fat dysfunction, 71
Fat replacers, rice bran as, 239–240
Fats, removing from bran, advantages with, 235–236
Fat substitutes, rice-based, 243
Fatty acids, unsaturated, oxidation of, 214
Fatty acid synthase, 71
FDA. See U.S. Food and Drug Administration
FDEIA. See Food-dependent exercise-induced anaphylaxis
FD-RBPs. See Freeze-dried rice bran proteins
Fecal lactoferrin, use of, as diagnostic tool, 194
Feline calcivirus, Lfcin’s antiviral activity against, 192
Fermentation products, 171–173
Fermented dairy products, novel applications of bioactive peptides and, 161–162
Fermented food, bioactive peptides and, 326
Fermented milks, bLf added to, 193
Ferreira, S. H., 170
Ferritin, 37
Ferulic acid, 92, 126
FFAs. See Free fatty acids
FGF1, in bovine mammary secretions, 152, 161
FGF2, in bovine mammary secretions, 152, 161
Fibrinogen alpha-chain, 88t
Fibroblast growth factor, in bovine mammary secretions, 152, 161
Fibrosarcomas, Lfcin’s antitumor effects against, 192
Fickian diffusion model, drug release measured by, 372
Filamentous fungi, Lfcin and inhibiting growth of, 192
Findeis, M. A., 94
Fish collagen, sensitivity of, 204
Fish gelatin, 204–207
Bloom value and, 206–207
chemical composition of, 205
Fish proteins, 215

ACE inhibitory peptides derived from, 207–214, 209–210

ACE and blood pressure, 207

ACE inhibition mechanism, 211–212

ACE inhibitors, 207–208

ACE inhibitory peptides isolated from fish proteins, 208

in vitro ACE inhibition by peptides derived from fish proteins, 208, 211

in vivo ACE inhibition by peptides derived from fish proteins, 212–214

antioxidant peptides derived from, 214–215, 217

enzymatic oxidation, 214–215

mechanism of lipid oxidation, 214

overview, 214

food antioxidants and, 215–218

antioxidant fish peptides, 215–218

natural antioxidants, 215

synthetic antioxidants, 215

health benefits of, 204

hypotensive effects of fish-derived peptides in spontaneously hypertensive rats, 213

Fish sauce

ACE inhibitory peptides isolated from, 208

inhibitory activities in, 172

Fish skin, as source of gelatin, 205

Fish supplies, threats to, 203

Flavonoids, 16, 215

Flavor, synergistic interactions with effect on, 344

Flavor-active components consumer acceptance and, 341

novel therapeutic approaches to chronic diseases and, 355

Flavor enhancers, rice bran proteins as, 238–239

Flavor ingredients amino acids interacting with, 352

peptides and protein hydrolysates interacting with, 352–353

proteins interacting with, 353–354

Flavourzyme, 238, 350

Flavourzyme hydrolysate, 275, 280

Flaxseed, omega-3 fatty acids in, 58

Flaxseed protein-derived cationic peptide fractions effect of, on intrinsic fluorescence of Ca**2+**/CaM-dependent nitric oxide synthases, 59–60, 60

kinetics of inhibition of neuronal nitric oxide synthase by, 59

Flaxseed protein-derived peptides as calmodulin inhibitors, 58–62

effect of on intrinsic fluorescence of calmodulin, 61, 61

on secondary structure fractions of calmodulin, 61, 61

Fluorescein

crystal chemical structure of, 374

penetration of, into human epidermis after treatment with magainin + NLS, 375

Fluorescein delivery, transdermal, enhancement of as function of pH, 374, 374

Fluorophores, two-photon microscopy and imaging of, 376

Folic acid, from animal muscle, 225

Foltz, M., 140

FONDAFARINX, 318

Food allergens

B- and T-cell epitopes, 105–106

“big eight,” 111, 114

molecular properties of, 105

Food allergy, 112–113

B-cell epitope mapping and, 107

current management of, 107–108

defined, 7, 101–102

egg allergy model, 113–114

IgE-mediated, potential immunotherapeutic approaches for, 109

novel immunotherapeutic strategies for, 108

peanut allergy model, 113

PIT investigations and murine models of, 116

sequence of events leading to type 1 hypersensitivity, 104

T-cell epitope mapping and, 106–107

T lymphocytes and role in, 103–105

wheat and beef allergy model, 114

Food antigens, allergic response to: two-phase mechanism, 103

Food antioxidants, 215–217

antioxidant fish peptides, 215–218

natural antioxidants, 215

synthetic antioxidants, 215

Food-based hydrolysates, food allergy and, 109–110

Food choices, improvement in hypertension and, 43

Food-color carriers, rice bran proteins as, 239

Food-dependent exercise-induced anaphylaxis, 296

Food industry, lysozyme used in, 251

Food intake inhibition high-protein preload and, 136–137

satiety and, in high-protein diets, 137–138

Food intake in humans, physiological and psychological factors related to, 135

Food preservation and safety, lactoferrin and, 194

Food products, lipid oxidation in, 214
Food protein-derived calmodulin-binding peptides, typical protocol during production of, 57, 57
Food protein-derived peptides as calmodulin inhibitors, 55–64
flaxseed protein-derived peptides, 58–62
milk protein-derived peptides, 56–58
pea protein-derived peptides, 62–64
Foods for specified health use, 6, 8
antihypertensive peptides in, 171
antihypertensive products, 44
design of ACE inhibitory peptides and, 45
in Japan, 43
in the market, 170–171
Food systems, antioxidant activity of peptides in, 34–35
FOSHU. See Foods for specified health use
Fourier transform-ion cyclotron resonance, 310
Fourier transform-Raman spectroscopy, predicting bitterness of peptides and, 348
FOXp3 molecules, food allergy and, 116
Fractionation of bioactive milk proteins and peptides, 153, 162
immune milk preparations and, 156
Franco, O. L., 283
Free amino acids
benefits related to protein hydrolysates consisting of, 344
reducing bitterness of protein hydrolysates and, 350
taste of foods and, 344
Free fatty acids, 70
Free radical attacks, disease, pathogenesis and, 29
Free radical oxidative reactions, termination of, 214
Free radicals, defined, 15
Freeze-dried rice bran proteins, 237
Fricker, L. D., 316
Friend virus complex, lactoferrin’s effects against, 185
Froetschel, M. A., 142
Fruits, natural antioxidants in, 215
FT-ICR. See Fourier transform-ion cyclotron resonance
Fujita, H., 209t, 210t, 213t
Full-fat-stabilized (FFS) bran, protein extraction from, 236
Full-fat-unstabilized (FFU) bran, protein extraction from, 236
Fumio, T., 123
Funa-sushi, GABA synthesis and, 126
Functional foods. See also Soy peptides as functional food system
with antihypertensive effects, 169–175
global interest in promotion of, 162
in the market, 170–171
mode of action
ACE inhibitory effects, 174
peptide absorption, 174
preparation of ACE inhibitory peptides, 171–173
enzymatic hydrolysis, 171
fermentation products, 171–173
in vivo effect, 173–174
clinical trials, 173–174
effects on an animal model, 173
worldwide interest in, 326
Functional proteins, within nutraceutical food sector, 5
Fungi
filamentous, Lfcin and inhibiting growth of, 192
lactoferrin and, 187
Fusarium oxysporum, sativin’s antifungal activity against, 282
Fuzeon, 115
G
GABA. See Gamma-aminobutyric acid
GABA-A receptors, mood regulation in animals and, 124
GABA-B receptors, mood regulation in animals and, 124
GABA shunt, 127
GABA-T, 127, 128, 129
GABA tea, 125, 129
GAD. See L-glutamic acid decarboxylase
GAD65 molecule, 128
GAD67 molecule, 128
GAGs. See Glycoamino-glycans
Gamma-aminobutyric acid, 121–130
animals and roles of, 124–125
curing neurological disease, 124
hypotensive effects, 125
inhibiting acute hyperammonemia, 125
mood regulation, 124
preventing brain senescence, 124–125
sleep regulation, 125
weight loss, 125
biological functions of, 121
biosynthesis of, 127t
biosynthetic pathway and metabolism, 130
conversion of intermediate to, 128
discovery of, 7, 121
formation of Schiff-base by substrate and PLP, 128
functions of, 122–125
human application of, 129–130
metabolic pathway of, 127–129
neutral and zwitterionic structures, 122
physical properties of, 122
preparation of, 125–127
other foodstuffs, 125–126
synthesis by microbes, 126–127
in tea, 125
properties of, from lactic acid bacteria, 123t
proposed transformation of L-Glu to, by GAD, 129
reaction mechanism of, 127
roles of synthesis, in plants, 122–124
nitrogen storage, 123
pH regulation, 123
plant defense, 123
plant development, 123–124
potential modulator of ion transport, 124
Garden/green pea (Pisum sativum), 9, 273, 274
anticancer effects due to Bowman-Birk inhibitors and, 278
antimicrobial peptides from, 281–282
antioxidant effects of, 274–275
future prospects for biological activities related to, 284
hypocholesterolemic effects and, 276
Gardenia jasminoides Ellis, 18
Gastric inhibitory peptide, 76
Gauthier, S. F., 161
GBR. See Germinated brown rice
Gejyo, F., 88
t
Gelatin
antioxidant activity of peptides in, 34
antioxidant proteins/peptides in, 17
bitterness masked with, 350
fish, 204–207
Gel filtration, whey protein isolates and, 154
Gelsolin, 88t
“Generally Recognized as Safe” designation, 159
Genistein, 92
Gerber, S. A., 315
Germ, 233
rice kernel, 234
German-Straussler-Scheinker syndrome, 90
Germinated brown rice, GABA used in, 126, 129
GH. See Growth hormone
Ghrelin
food intake and, 141–142
protein and, 74
GHRH. See Gonadotrophic-hormone-releasing hormone
Giant squid, antioxidant peptides from, 217t
Giardia lamblia, Lfcin’s effects on, 192
GI enzymes, antioxidant peptides and, 32
Giménez, B., 217t
GIP. See Gastric inhibitory peptide
Giroux, I., 276
GJE. See Gardenia jasminoides Ellis
Glenner, G. G., 88t
Gliadin, 10, 290, 291–293, 295
Globulin, 247
Glucagon-like peptide-1 (GLP-1), 139
anorexigenic actions of, 141
effect of 3-hour intravenous infusions of, on cumulative food intake in rats, 141
protein and, 74
protein-induced satiety and, 138 short-term, 145
Glucagon secretion, dietary proteins and, 76
Glucofructans, 233
Gluconeogenesis, protein-induced satiety and, 145
Glucose, as metabolic signal in protein-induced satiety, 142
Glucose 6-phosphatase (G6Pase), protein-induced satiety and, 142
GLUT-2, protein and, 75
Glutamate, taste of, 344
Glutamate decarboxylase, 122
Glutamic acid, 37, 238
Glutamines, in rice bran proteins, 238
Glutathione
aerobic organisms and, 16
in animal muscle, 225
antioxidant activity and, 30, 31t
chemical structure of, 31
redox homeostasis and, 16
Glutathione peroxidase, aerobic organisms and, 16
Glutathione reductase, aerobic organisms and, 16
Glutathione synthetase, 16
Glutelin, 290, 293, 295
Gluten, 295
viscoelastic property of, 9–10, 295, 299
Glutenin, 290, 293, 295
Glutenin subunits, repeat motifs in structure of, 293, 295
Gly, in gelatin, 205
Glycemic control, soy protein and, 74–76
Glycerol monooleate, 361
Glycine
bitterness masked with, 350
sweet taste of, 343
Glycinin, 17
Glycoamino-glycans, lactoferrin binding to, 186
Glycomacropeptide, 19, 20t
anti-inflammatory properties of, 20t, 21
health benefits with, 160
purification of, from bovine colostrum or cheese whey, 154
whey proteins and, 160
Glycosylated peptides, enrichment of, 314
Gly-Thr-Trp, 155
anti-inflammatory properties of, 20t, 21
health benefits with, 160
purification of, from bovine colostrum or cheese whey, 154
whey proteins and, 160
GMO. See Glycerol monooleate
GMO cubic phase, PT cubic phase vs., in hydrophilic fluorescent model drugs investigation, 379
GMO/water cubic phase, insulin protected from agitation-induced aggregation and, 365
GMO/water systems
diffraction patterns of, with incorporated insulin, 364
small-angle x-ray scattering patterns and lattice constants of lamellar and cubic phases of, loaded with 4% insulin, 364
GMP. See Glycomacropeptide
Gonadotrophic-hormone-releasing hormone, angiotensin II and, 207
G protein-coupled receptors (GPCRs), 342
GPR93 receptor, 140
GPx. See Glutathione peroxidase
GR. See Glutathione reductase
Gramicidin, liquid crystalline phases and, 363
Gramicidin A, space-filing model of channel form of, 362
Gramicidin D, 361
Gram positive/gram negative bacteria
LfambinB peptide’s activity against, 193
LfcinB and LfcinH actions against, 191, 192
lysozyme and, 250, 251
Gram positive/negative pathogens, lactoferrin and, 185, 186
Granisetron, chemical structure of, 374
Granulocyte-macrophage colony stimulating factor, lactoferrin and production of, 189
Grape seed extracts, 30
GRAS. See “Generally Recognized as Safe” designation
Grass carp, antioxidant peptides from, 217t
Green tea extracts, 30
GABA content in, 125
Grosman, M. V., 236
Growth factors, 7–8, 151, 307
in bovine colostrum and milk, 153t
in mammary secretions, 152–153, 160–161
Growth hormone, changes in, after beverage ingestion: comparison of placebo, soy protein, and soy peptide on GH and CPK level, 268
GS. See Glutathione synthetase
GSH. See Glutathione
GSSG, 16
Guérin-Dubiard, C., 249t
H
Habener, J. F., 140
Haemophilus influenzae, lactoferrin’s antimicrobial activities and, 158, 185, 186
Haggqvist, B., 88t
Hall, W. L., 138, 141
Halorhodopsin, 361
Hardenal, R., 31t
Hartog, A., 20t
Hata, I., 20t
Haversen, L., 22
Hayashida, K., 20t
Health promotion, bioactive peptides and proteins and, 5
Heart disease, chronic inflammation and, 227
Heat stabilized rice bran, 242
HEL. See Hen egg lysozyme
Helicobacter pylori
immune milk preparations and, 156
lactoferrin’s antimicrobial activity and, 158
lactoperoxidase system and, 160
Helix-loop-helix pattern, lysozyme and, 251
Hemicelluloses, 233
Hemodialysis-associated disease, 89, 90
amyloid deposits and, 95
amyloidosis and, 7
Hen egg lysozyme, anti-inflammatory activity with, 19
Hen eggs as important food worldwide, 258
lysozyme in, 250
Hen egg yolk phosphitin, 17, 18
Heparan sulphate, 186
Hepatic lipogenesis, soy protein feeding in rats and, 71
Hepatitis B, lactoferrin’s effects against, 185
Hepatitis C
bLf, IFN therapy and eradication of, 189
lactoferrin’s effects against, 185, 186
Hepatitis viruses, lactoferrin’s antimicrobial activity and, 158, 159
Herbal medicine anti-inflammatory mechanisms and, 23
antioxidative stress proteins and peptides in, 18
Herbs, natural antioxidants in, 215
Hernandez-Ledesma, B., 37t
Herpes simplex virus lactoferrin’s antimicrobial activity and, 158
lactoferrin’s effects against, 185
Herring, antioxidant peptides from, 217t
Herring fish protein hydrolysate, antioxidative activity of, 218
Herr in processing wastes, enhancing gelatin from, 205
Hexagonal phase time course of in vitro skin penetration and percutaneous delivery of cyclosporin A incorporated in, 369–370, 370
in vivo skin penetration of CysA incorporated into, compared to olive oil formulation, 371, 371
Hexane, 214
“Hidden allergens,” 107
High blood pressure, cardiovascular disease and, 207
High-density lipoprotein cholesterol, metabolic syndrome and, 67, 68t
High-density lipoproteins in egg yolk, 248
soy protein and, 76
High fructose corn syrup, 351
High-molecular-weight glutenin, 293
High-protein diet, defined, 137
High-protein meal, high-protein diet vs., 137
High-protein preload, high-protein meal-induced satiety and food intake inhibition and, 136–137
Himeno, K., 126
HINUTE-AM launching of, 266
typical analysis of, 267
Hipkiss, A. R., 227
His amino acid, potent antioxidant activity with, 17
Histadyl dipeptides carnosine and anserine, 225, 226
health benefits with, 226
Histidine, 29
antioxidant activity of peptide derived from hoki skin, 218
antioxidant behavior in peptides, 216
food intake and, 142–143
radical quenching activity of peptides and, 35
HIV-1, lactoferrin's antimicrobial activity and, 158
HLA. See Human leukocyte antigen
HLA-DQ2, celiac disease and, 297
HLA-DQ8, celiac disease and, 297
HLA-DR, expression of seven alleles of, in Caucasian population, 115
hLf effect of, on angiogenesis, 189–190
sequences of Lfcin and Lfampin peptides from, 184t
Hockerman, G. H., 50
Hoie, L. H., 77t
Hoki, antioxidant peptides from, 217t
Hoki skin branched amino acids present in antioxidant peptides from, 216
histidine and antioxidant behavior of peptide derived from, 218
Holst, J. J., 141
Holton, J. L., 88t
Hormone replacement therapy, transdermal route of administration and, 360
Host cells, adsorption of lactoferrin in, 187
Howell, N. K., 206
HS. See Heparan sulphate
HSRB. See Heat stabilized rice bran
HSV, Lfcin's antiviral activity against, 192
Human immunodeficiency virus lactoferrin binding to co-receptors of, 186–187
lactoferrin's effects against, 185, 186
Lfcin's antiviral activity against, 192
Human leukocyte antigen, 115
Human Lfcin (LfcinH), structure of, 185
Humiski, L. M., 275, 280
Humulin, aggregation profiles of, 365, 365
Huntington protein, 92
Huntington's disease, 90, 92
amyloid deposits and, 89
treharose and, 95
HVP. See Hydrolyzed vegetable protein
Hydrolysis of proteins, desirable sensory attributes with, 344–345
Hydrolyzed vegetable protein, 352
Hydrophilic fluorescence model drugs, distribution of, in full-thickness human skin, 376–377, 378r, 379
Hydrophilic pathways, of drug penetration, 368, 369
Hydrophobicity, bitterness and, 345, 347
Hydroxyl radicals, 29
Hydroxyproline in collagen, 204
in fish gelatins, 206
Hyperammonemia, acute, GABA and prevention of, 125
Hyper-hypo-response phenomenon, cholesterol-rich diets and, 277
Hyperinsulinemia metabolic syndrome and, 67
soy protein consumption and, 75, 76
Hypertension, 71. See also Antihypertensive peptides cardiovascular disease and, 169, 207
improving treatment of, 6
metabolic syndrome and, 67, 68t
morbidity and mortality related to, 256
overconsumption of salty and sweet foods and, 342
renin-angiotensin system and, 44
sodium substitutes and, 345
soy protein and, 79–80
wheat peptide and prevention of, 298–299
Hypoallergenicity, tolerogenicity vs., 112–113
Hypotension, gamma-aminobutyric acid and, 125
Hypothalamus food intake, energy homeostasis and, 144, 144
food intake regulation and, 145
I IAPP. See Islet amyloid polypeptide
Ibrahim, H. R., 249t
ICAT. See Isotope-Coded Affinity Tag
IC50 value, potency of ACE inhibitory peptide and, 208
IgE. See Immunoglobulin E
IgE-mediated food allergy etiology of: two-phase phenomenon, 103
potential immunotherapeutic approaches for, 109t
IGF-I in bovine colostrum vs. in human colostrum, 153
in bovine mammary secretions, 152, 161
IGF-II in bovine colostrum and milk, 153
in bovine mammary secretions, 152, 161
Ikemoto, F.
IL-6. See Interleukin-6
IL-8. See Interleukin-8
IL-10. See Interleukin-10
IL-beta. See Interleukin-beta
Ile-Ala-Pro, hypertension prevention and, 299
Ile-Pro-Pro, 162, 172
absorption of, 174
antihypertensive effect of milk tested in hypertensive patients and, 173
casein hydrolyzate with, 170
hypotensive capacity of, 155
Ile-Tyr, vascular relaxation effect of, in 18-week-old SHR thoracic aorta rings constricted by 30 mmol/L KCl, 49
Ile-Val-Tyr, hypertension prevention and, 299
Immobilized metal affinity capture (IMAC), 314
Immune-enhancing nutraceuticals, bLf added to, 193
Immune milk, history behind concept of, 156
Immunoglobulin E, common form of food allergy mediated by, 102
Immunoglobulin heavy chain, 88
Immunoglobulin light chain, 88
Immunoglobulins (Igs), 7, 105–106, 151
in bovine colostrum and milk, 153
in colostrum, 152
whey proteins and, 156
Immunomodulating proteins and peptides, 254–255, 326
Immunostimulating peptides, 169
Incretins, 76
India, wheat production and consumption in, 9, 289
Indonesian dried-salted skipjack tuna, ACE inhibitory activity exhibited by, 211
Inducible isozyme, of NOS (iNOS), 56
Inducible Tregs, food allergy and, 104
Infant formulas, bLf and, 193
Infections, lactoferrin’s efficiency against, 193
Inflammation
cell signaling mechanisms associated with, 19
chronic disease and, 6, 23
reactive oxygen metabolites and, 226
reactive oxygen molecules and, 18
reactive oxygen species and, 16
at root of chronic diseases, 227
Inflammatory bowel disease
fecal lactoferrin and, 194
free radical attacks and, 29
lactoferrin’s anti-inflammatory role in, 187
Inflammatory diseases
lactoferrin as clinical marker of, 194
lactoferrin’s efficiency against, 193
Inhalant allergens, PIT investigations carried out with, 114
in meso crystallization process, description of, 361
Inoue, K., 125
In silico analysis, of proteins and bioactive peptides, 326–328, 331
Insulin, 88
changes in circular dichroic spectra of, in solution and cubic liquid crystal compared with control insulin, 366, 367
GMO/water system loaded with, 363–365, 364
monomer as biologically active form of, 363
protection of, from agitaton-induced aggregation and GMO/water cubic phase, 365, 366
Insulin A chain, 93
Insulin B chain, 93
Insulin/glucagon (I/G) ratio, soy protein consumption and, 76
Insulin-like growth factor, in bovine mammary secretions, 152, 161
Insulin molecule, dimeric, schematic representation of, 363
Insulin resistance
metabolic syndrome and, 67, 69
soy protein and, 74–76, 75
Intracellular route of administration, across stratum corneum, 368, 369
Interleukin-6, 18
Interleukin-8, 18, 19
Interleukin-10
food allergy and, 104, 116
lactoferrin and, 187, 188
Interleukin-beta, 18–19
Intestinal inflammation, fecal lactoferrin and, 194
Intestine mucosal barrier, allergic response and, 102–103
Intramuscular route of administration, for biopharmaceuticals, 360
Intravenous injections, of biopharmaceuticals, difficulties related to, 360
In vitro protein digests, antioxidant activity of, 32–34
Ion transport, gamma-aminobutyric acid and modulation of, 124
IR. See Insulin resistance
Iron, from animal muscle, 225
Iron-binding properties, of lactoferrin, 181–182
Ishikado, A., 20
Islam, fish gelatin acceptable for, 205
Islet amyloid polypeptide, 88, 91, 93
Isoflavones, 30
Isoleucine
ACE inhibitory activity, bitterness and, 348, 349
bitterness associated with, 343
Isotope-Coded Affinity Tag, 316
Isotope Tags for Relative and Absolute Quantification, 316
Itou, K., 213
iTRAQ. See Isotope Tags for Relative and Absolute Quantification

J
Jao, C. L., 217
Japan
fish consumption in, 171
foods for specified health use in, 43
number of hypertensives and high-normal hypertensives in, 43
wheat production and consumption in, 289
Japanese fermented foods, ACEI peptides analysis in, 172–173
Japanese Minstry of Health, Labour and Welfare, 43
Je, J. Y., 210, 217
Jean, C., 144
Johansson, B., 88
Johnson, J., 141
Johnson, P., 31
Johnstone, A. M., 137
Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure criteria, 80
Judaism, fish gelatin acceptable for, 205
Juices, antioxidant caseinophosphopeptides in, 35
Julka, S., 315
Jumbo flying squid, antioxidant peptides derived from, 217, 218
Jun, S. Y., 37, 217
Jung, W. K., 210, 213, 217
K
Kallikrein, 207
Karagiannis, E. D., 318
Karelin, A. A., 325
Kasaoka, S., 143
Katayama, S., 256
Katsuobushi (dried bonito) oligopeptide, 43, 44
Kawashima, K., 216
Kazuhiro, A., 123
KDR/Flk-1. lactoferrin and, 190
Kerato-epithelin, 88
Kernel, 233
Kieffer, T. J., 140
Kim, H-O, 345, 348
Kim, K. S., 31
Kim, S. K., 210, 217
Kim, Y-C, 373, 374
Kingman, S. M., 277
Kinin-nitric oxide system, blood pressure regulation and, 207
Kininogen, 207
Kinnersley, A. M., 124
Kizawa, K., 58
Klompong, V., 217
KNOS. See Kinin-nitric oxide system
Ko, W. C., 217
Kobayashi, H., 20
Kodera, T., 350
Kohama, Y., 209
Kohn, M., 77
Komatsu, T., 269
Komatuszaki, N., 126
Konig, D., 78
Kono, I., 126
Korpela, J., 249
Korvatska, E., 88
Kosmotropes, 362
Kosmotropic solutes, properties of liquid crystalline phases and, 362
Kovacs-Nolan, J., 249
Kraikova, J., 363
Kruzel, M. L., 159
Kunitz trypsin inhibitor (KTI), soy-derived, anti-inflammatory mechanisms and, 20, 22–23
Kuru disease, 90
K
LAB. See Lactic acid bacteria
Lactadherin, 88
Lactalbumin alpha
Lactalbumin alpha, bovine chromatograms of, 336, 338
mass spectrum of tryptic hydrolysate of, 338
profile of potential biological activity of, 337
Lacteal secretions, in vivo activities of lactoferrin in, 157
Lactic acid bacteria, 240
antioxidant activity of, 38–39
fermented products and, 172
GAD properties from, 123
Lactic acid bacteria (LAB)-based starter cultures, proteolytic properties of, 155
Lactobacillus, GABA biosynthesis with, 126
Lactobacillus acidophilus, high radical-scavenging activity in, 39
Lactobacillus brevis, GABA content and, 126–127
Lactobacillus casei, 21
Lactobacillus helveticus
ACE inhibitory peptides isolated from, 172
antihypertensive peptides and, 155
effect of, in spontaneously hypertensive rat, 173
Lactobacillus helveticus-fermented milk (sour milk), 44, 44
Lactobacillus jensenii, high radical-scavenging activity in, 39
Lactobacillus paracasei NFRI, GABA synthesis and, 126
Lactobacillus plantarum, lysozyme and, 251
Lactobacillus rhamnosus
GG-degraded bovine casein, 21
Lactococcus lactis subsp. cremoris FT4, ACEI peptides produced in fermented milk started by, 172
Lactoferramipin, 180
Lactoferricin, 180
Lactoferrin (Lf), 7, 20, 88, 151, 250
anti-inflammatory activity associated with, 20, 21–22
antitumor activity of, 158
applications of, and related peptides, 193–194
Lactoferrin (continued)
benevolent health effects with, 158
biological roles of, in cancer and
cell proliferation, 189–191
biological roles of, in host
defense, 185–189
anti-inflammatory properties of, 187–188
antimicrobial activities of, 185–187
pro-inflammatory properties of, 188–189
in bovine colostrum and milk, 153
characteristics of, 180
iron-binding properties and
dynamics of, 181–182
localization of Lfcin domain and
Lfampin sequence on, 183
mechanisms related to
antimicrobial activity of, 157–158
overall structure of, 181
protective effects of, 8, 179
secreted, origin of, 180
structure of, 180–181
gene structure and amino acid
sequence, 180
glycosylation of, 181
in 3D, 181
structure of biologically active
peptides of, 182–185
biologically active peptide
sequences of, 182–184
structure of Lfampin, 185
structure of Lfcin, 184–185
whey proteins and, 157–159
Lactoferrin-related peptides
biological properties and
mechanisms of, 191–193
of Lfampin, 193
of Lfcin, 191–193
Lactoglobulin beta, 334
Lactoperoxidase, 151
in bovine colostrum and milk, 153
in colostrum, 152
health benefits with, 159
whey proteins and, 159–160
Lactotransferrin, 180
Lagarde, G., 249
Lam, 281, S. S. L.
Lamellar phase, delivery of proteins
and peptides in, 360, 363
L-amino acids
bitterness associated with, 343
taste, detection threshold, and
taste-enhancing effects of, 343
Lang, V., 138.
Lasekan, J. B., 277
Late embryogenesis-abundant
protein group, 237
Lateral hypothalamus
with orexin-containing neurons,
detection of high-protein
meals and, 145
satiety and, 143
Latham, C. J., 143
Laying hens, feeding formula for,
239
L-carnitine
in animal muscle, 225
antihypertensive and
vascular effects of, 227
health benefits with, 226
hypotensive effect of, 227–228
LEA protein group. See Late
embryogenesis-abundant
protein group
Lectins, rice bran, 241–242
Lee, M., 19, 20
Lee, S. J., 20
Lee, Y. J., 320
Legionella pneumophila,
lactoferrin’s antimicrobial
activities and, 185
Legnin, 233
Legumes
health promotion and, 9
natural antioxidants in, 215
as sources of dietary protein, 273
Legumin, in chickpea seeds, 280
Lejeune, M. P., 141, 142
Leptin, 70, 71
Leucine, 248
ACE inhibitory activity, bitterness
and, 349
bitterness associated with, 343
food intake and, 143
Leuconostoc mesenteroides ssp.,
high radical-scaevenging
activity in, 39
Leu-Lys-Pro, antihypertensive
effects of, in spontaneously
hypertensive rat, 173
Leu-Lys-Pro-Asn-Met
antihypertensive effects of, in
spontaneously hypertensive
rat, 173
preparation of, 171
Leu-Val-Tyr, preparation of, 171
Leventhal, A. G., 125
L. See Lactoferrin
Lfampin
biological properties and
mechanisms of, 193
sequences of, from hLf and bLf,
184
structure of, 185
LfampinB peptide, 193
LfampinH, 193
Lfampin sequence, localization of,
on lactoferrin, 183, 183
Lfcin, 191
antimicrobial activities of, 194
biological properties and
mechanisms of, 191–193
sequences of, from hLf and bLf,
184
structure of, 184–185
LfcinB, actions of, against bacteria,
191
Lfcin domain, localization of, on
lactoferrin, 183, 183
LfcinH, actions of, against bacteria,
191
Lf gene, transcription of, 180
L-glutamic acid decarboxylase
biosynthetic pathway and
GABA metabolism and,
proposed transformation of L-Glu
to GABA by, 129
L’Heureux-Bouron, D., 142
Li, B. F., 217
Li, H., 62
Liao, F-H, 77
Li-Chan, E. C. Y., 345, 348
Lichtenstein, G. R., 20
Lifestyle modifications, hypertension management and, 43
Lim, K. T., 20t
Lin, F., 124
Lin, L., 217t
Linke, R. P., 88t
Linoleic acid, 216
Lipases, isolated from rice bran, 238
Lipid metabolism, efficacy of soy peptides on, vs. with soy protein, 267
Lipid oxidation
inhibiting, 216
mechanism of, 214
Lipids, 105
free radical attacks on, 29
functions of, 214
Lipid transfer proteins, 283
Lipophilic pathways, of drug penetration, 368, 369
Lipopolysaccharides
inflammation and, 18
lactoferrin and, 187, 188
Lipoprotein Receptor-related Protein, 182
Liposomes with ethanol, penetration experiments of CysA and, 371
Lipoxygenase, 214, 215
Liquid chromatography,
investigating bioactive peptide proteins with BIOPEP database and, 336
Liquid crystalline phases
 cubic and hexagonal
time course of in vitro skin penetration and percutaneous delivery of CysA in, compared to olive oil control formulation, 369–370, 370, 371
in vivo skin penetration of CysA in, compared to olive oil as control formulation, 371, 371
delivery of proteins and peptides and, 360, 379
Liquid crystalline systems,
entrapment and stability of proteins and peptides by, 360–366
Liquid crystal mesophases (“in meso” method), 361
Lisinopril, 208
Listeria monocytogenes,
lactoferrin’s antimicrobial activities and, 158, 185
Liu, W., 361
Livetin, in egg yolk, 248
Localized amyloidosis, 90
Loop class of proteins and peptides, 361
Lopes, L. B., 369, 371
Lovati, M. R., 79
Low-density lipoproteins, in egg yolk, 248
Low-molecular-weight glutenin, 293
LOX. See Lipoxygenase
LOX-1, 215
LOX-2, 215
L. P. See Lactoperoxidase
LPS. See Lipopolysaccharides
LPS-binding protein (LBP), 187
LRP. See Lipoprotein Receptor-related Protein
L68Q cystatin C, 90, 91, 91, 92
Magainin, penetration of fluorescein into epidermis after treatment with N-lauroyl sarcosinien and, 375, 375
Magainin peptides, skin permeability and, 373–376
Maize zein, antioxidant activity of, 216
Makin, O. S., 89
MALDI, 310
MALDI-Q-TOF, 310
MALDI-TOF-MS, 310
Mammalian Target of Rapamycin model for role of, in hypothalamic regulation of energy balance, 144
satiety, high-protein diets and, 143
Mammals, metabolic pathway in, 127
Manganese, 215
MAPKs. See Mitogen activated protein kinase
Marine peptide, 171t
Mass spectrometry
investigating bioactive peptide proteins with BIOPEP database and, 336
peptidomics and, 307, 308, 309–311
Mastitis, lactoferrin and prevention of, 194
Masuda, K., 267
incidence of, 67
milk-derived components and reducing risk of, 155
pathogenesis of, 69–71, 70
quintet of factors in, 67
soy protein action on insulin resistance in, 75
soy protein and, 6
sweet proteins and, 351
whey proteins and, 152
Metal-ion binders, 37
Metal-ion catalysts, sequestering, peptides inhibiting oxidative processes and, 37
Metallo-collagenase MMP-13, 205
Metal prooxidants, sequestering and stabilization of, 37
Met amino acid, potent antioxidant activity with, 17
Metastasis, lactoferrin as defense against, 189
Methionine, 29
in cereal grain proteins, 234
hypocholesterolemic effects of pea proteins and levels of, 276–277, 277
radical quenching activity of peptides and, 35
MHC polymorphism, food allergy and, 115
Microalbuminuria, metabolic syndrome and, 68
Microbial fermentation, 172
Microbes, lactoferrin binding to, 186
Microbial fermentation, antioxidant peptide preparation with, 38–39
Microbial growth, rice bran as substrate for, 240
Microencapsulation, bitter taste reduction and, 354
Microorganisms, GABA synthesis by, 126–127, 127
Migraine headaches, nitric oxide levels and, 56
Mikkelsen, T. L., 20
Milk
immune, history behind, 156
major bioactive whey proteins in, 153, 153
Milk basic protein, bone-strengthening effects of, 161
Milk growth factors biological functions of, 161
health benefits with, 161
Milk lysozyme, anti-inflammatory activity with, 19
Milk peptides nutritional benefits with, 154
protein-derived, as calmodulin inhibitors, 56–58
Milk proteins, 215
antioxidative stress proteins and peptides in, 18
bioactive peptides and, 8
high nutritional value of, 7–8, 151
release of bioactive proteins from, 332
selected biopeptides released by trypsin from, 334, 336
Milk whey proteins, health benefits with, 155
Miller, D. J., 227
Miller, G. M., 30
Millet, rice protein net protein utilization compared to, 240
Mine, Y., 251
Minerals, 215
salty taste and, 342
soluble peptides, 169
Miraculin, 351
Mitogen activated protein kinase, 19
Miyagawa, S., 249, 253
Molla, A., 249
Monascus, GABA biosynthesis with, 126
Monascus-fermented rice, 126, 129
Monascus purpureus CCRC 31615, GABA synthesis and, 126
Monellin, 351
Monnai, M., 20
Monoacylglycerols aqueous channel size, drug release rate and, 373
hydrated, effect of drug radius of gyration on transport from cubic phase of, 372
Monoclonal antibody-based products, 359

Matsufuji, H., 209, 213
Matsui, T., 174, 209
Matsumura, N., 209
Matthews, D. M., 265
Maury, C. P., 88
Mayonnaise, antioxidant caseinophosphopeptides in, 35
MBP. See Milk basic protein
M cells, 102
MCP-1. See Monocyte chemoattractant protein 1
MDA-MB-231 breast cancer line, lactoferrin and, 190
Meat products
lysozyme and bacteria control in, 251
rice bran proteins in, 239
Medium-chain acyl-CoA dehydrogenase, soy protein feeding in rats and, 73
Melanomas, Lfcin’s antitumor effects against, 192
Melatonin antioxidant activity and, 31, 31 chemical structure of, 31
Melittin, liquid crystalline phases and, 363
Membrane proteins, as important diagnostic and prognostic markers, 313
Membrane separation technique, for fractionation and isolation of bioactive milk proteins, 153
Mendis, E., 217
Mero, A., 161
Metabolic disorder, flavor-active components and novel therapeutic approaches to, 355
Metabolic parameters, soy protein diets and effect on, 77–78
Metabolic syndrome. See also Diabetes; Obesity; Soy protein for metabolic syndrome
chronic inflammation and, 227
criteria for definitions and diagnosis of risk factors in, 68

Monocyte chemoattractant protein 1, 71
Monocytes, 19
Monoolein
aqueous channel size, drug release rate and, 373
as penetration enhancer, 370
Monoolein cubic phase, summary of fluorescent features observed in two-photon microscopy images at various tissue depths of skin exposed to sulphorhodamine B in, 378
Monopalmitolein, aqueous channel size, drug release rate and, 373
Monosodium glutamate
bitterness masked with, 350
protein hydrolysates used with, 238
Monovaccenin, aqueous channel size, drug release rate and, 373
Mood regulation, in animals, GABA and, 124
Moran, L. J., 142
Morrison, C. D., 143
MRM. See Multireaction monitoring
MS. See Mass spectrometry; Metabolic syndrome
MSG. See Monosodium glutamate
mTOR. See Mammalian Target of Rapamycin
Multidimensional protein identification technology (MudPIT), 313
Multifunctional peptides, in BIOPEP, characteristic activity of, 332
Multireaction monitoring, 310
Murai, T., 125
Murphy, C. L., 88t, 94
Muscle-based bioactive peptides, 8
Muscle protein, antioxidant activity of peptides in, 34
Mycoleptodonoides atichisonii, aqueous extract from, 43–44, 44t
Myofibrillar proteins, in fish proteins, 204
Myoglobin, 89, 93t
Myosin, in myofibrillar tissue proteins, 204
Mytilus coruscus muscle protein, peptide with potent antioxidative activity from, 218
N
N-acetyl-5-methoxytryptamine, 31
N-acetylgalactosamine, 250
N-acetylmuramic acid, 250
N-acetylneuraminic residues, anti-inflammatory activity and, 21
NAG. See N-acetylgalactosamine
Nagai, T., 217t
Nagasawa, T., 31t
Nakajima, K., 210r, 352
NAM. See N-acetylmuramic acid
Nanofiltration techniques, fractionation of bioactive peptides and, 155
National Cancer Institute Best Practices of Biospecimen Resources, 311
National Cholesterol Education Program, 67
Natto
antioxidant peptides in, 38
inhibitory activities of, 172
Natural antioxidants, 215
Natural killer cells, food allergy and, 103, 105
Navab, M., 37t
NCEP. See National Cholesterol Education Program
NDGA. See Nordihydroguaiaretic acid
Near infrared light, 376
Neoculin, 351
Neotame, 351, 355
NEPS. See Neutral endopeptidase system
Net protein utilization, 240
Neuraminidase, 21
Neurodegenerative diseases lactoferrin and, 188
lactoferrin’s anti-inflammatory role in, 187
reactive oxygen metabolites and, 226
Neurological diseases, curing in animals, GABA and, 124
Neurological effects, muscle-based dipeptides and, 228
Neuronal isozyme, of NOS (nNOS), 56
Neuronal nitric oxide synthase, flaxseed protein-derived cationic peptide fractions and kinetics of inhibition of, 59
Neuropeptides, 307, 319
Neuropeptide Y, satiety, high-protein diets and, 143, 144
Neutral endopeptidase system, blood pressure regulation and, 207
Neutrophils, 19
Ney, K. H., 345
Ng, T. B., 282, 283
Nguyen, S. D., 37t
Nicholls, W. C., 88t
Nicin, 250
Nicotinamide adenine dinucleotide phosphate oxidase complex, 16
Nielson, K. L., 249t
Nilsson, M. R., 88t
NIR. See Near infrared light
Nitric oxide, excessive levels of, 56
Nitric oxide synthases, main isozymes of, 56
Nitrogen solubility index, 236
Nitrogen storage, of gamma-aminobutyric acid, 123
NK cell cytotoxicity, lactoferrin and promotion of, 189
N-lauroyl sarcosine (NLS) penetration of fluorescein into epidermis after treatment with magainin and, 375, 375
skin permeability study and, 374
NMBzA-induced esophageal tumors, Bowman-Birk inhibitors and, 278
Nomura, A., 210t
Nonheat stabilized rice bran, 242
Noninfectious pathologies, lactoferrin and, 188
Nonsteroidal anti-inflammatory drugs, colostrum-based products with growth factors and side effects of, 161
Noodles, instant, GABA used in, 129
Nordentoft, I., 76
Nordihydroguaiaretic acid, 92
Noriega-Lopez, L., 75
NOS. See Nitric oxide synthases
Novel peptides, peptidomics and, 320
NPU. See Net protein utilization
NPY. See Neuropeptide Y
NSI. See Nitrogen solubility index
NSRB. See Nonheat stabilized rice bran
N-terminal helix, lysozyme and, 251
Nuclear factor-kappa B, inflammation and activation of, 18–19
Nuclear layer, bran, 233
Nucleic acid-based medicinal products, 359
Nucleic acids, free radical attacks on, 29
Nutraceuticals, growing demand for, 354. See also Functional foods
Nuts, natural antioxidants in, 215

O
OBBR. See Office of Biorepositories and Biospecimen Research
Obese rat, blood lipid level of, 269
Obesity. See also Metabolic syndrome; Protein-induced satiety and food intake inhibitions; Satiation/satiety; Weight loss
bioactive milk peptides and, 163
centripetal, metabolic syndrome and, 67
flavor-active components and novel therapeutic approaches to, 355
insulin resistance promoted by, 70 metabolic syndrome and, 68r, 71
overconsumption of salty and sweet foods and, 342
soy protein and, 6
sweet proteins and, 351
type II diabetes and, 67–68, 298
OCX-36. See Ovocalyxin-36
Odashima, M., 20
Odontogenic ameloblast-associated protein, 88t
O'Dowd, A., 227
“Off-flavor” problems, interactions with proteins and, 353
Office of Biorepositories and Biospecimen Research, 311
Ogundele, M. O., 20
Oh, P. S., 20
Ohtsubo, K., 126
Oilseed proteins, antioxidant activity of, 216
Oilseeds, natural antioxidants in, 215
Ointment, commercial
summary of fluorescent features observed in two-photon microscopy images at various tissue depths of skin exposed to sulphorhodamine B and, 378t
two-photon fluorescence images showing lateral distribution of sulphorhodamine B, after 24 hours of passive diffusion in skin and, 377, 377, 379
Okamoto, A., 210
Okara, 266
Oligopeptidases, reducing bitterness of protein hydrolysates and, 350
Oligophosphopeptides, 17
Olive oil biophenols, 16
Omega-3 fatty acids, in flaxseed, 58
Ono, S., 210
Oolong tea, GABA content in, 125
Opioid peptides, 169
Oral administration of biopharmaceuticals, difficulties related to, 360
Oral health care products, lysozyme used in, 251
Oram, J. D., 159
Ornithyl-beta-alanine hydrochloride, salty taste attributed to, 345
Ornithyltaurine hydrochloride, salty taste attributed to, 345
Orthonasal contributions, to aroma perception, 354
Osajima, K., 208, 209
Osborne classification, cereal proteins and, 235
Osteoblast proliferation, lactoferrin and, 191
Osteoporosis, lactoferrin and, 191
Otani, H., 20
OTAP-92, 252
Ovalbumin, 247
antihypertensive peptides in, 257
antimicrobial peptides in, 252–253
in egg white, 254
in serpin family, 258
Ovocalyxin-36, 250
Ovoinhibitor, as serine protease inhibitor, 258
Ovokinin, 257
Ovomucin, 247
anticancer property of, 255
antimicrobial activity of, 253
immunomodulating properties of, 254
Ovomucoid, 247
Ovotransferrin, 247, 250
anti-inflammatory activity with, 19, 20r
antimicrobial activity of, 252
antioxidant activity of, 256
immunomodulating properties of, 254
Ovo-vegetarians, egg proteins and, 249
Ovomacroglobulin, antimicrobial activity of, 253
Oxidation, disease and pathogenesis associated with, 29
Oxidative stress, 15–16
antioxidative stress food factors, 16
chronic disease and, 23
defined, 5, 15
endogenous antioxidative stress mechanisms, 16
exogenous protein/peptide antioxidants, 16
Oyster, antioxidant peptides and GI digests of, 33

Pain, nitric oxide levels and, 56
Pain management, transdermal route of administration and, 360
Pan, A., 68
Pan, Y., 158
Pancreatic elastase, in BIOPEP database, 332
Papain, 171
Papain hydrolysates, high molecular weight peptides in, 275
Parasites, lactoferrin and, 187
Parenteral route of administration for biopharmaceuticals, difficulties related to, 360
Parkinson’s disease, 90
alpha-synuclein and, 92
amyloid deposits and, 89
gamma-aminobutyric acid and, 124
nitric oxide levels and, 56
peptidomics and, 319
Parotha (oily flat bread), rice bran proteins in, 239
Pastries, antioxidant caseinophosphopeptides in, 35
Pasupuleti, V. K., 74
Pathogenesis, oxidation and, 29
Pattern-recognition receptors, 18
PBPCs. See Rice bran protein concentrates
PCA. See Principal component analysis
PCR. See Polymersae chain reaction
PCT-SPS. See Pressure Cycling Technology Sample Preparation System
PDGF. See Platelet-derived growth factor
Peanut allergy model, 113
Pea protein-derived cationic peptide fractions
effect of, on intrinsic fluorescence of Ca\(^{2+}/\text{CaM}\)-dependent protein kinase II activity by, at varying CaM levels, 62, 62t
Pea protein-derived peptides as calmodulin inhibitors, 62–64
increases in Fmax/Fo values for CaMKII interactions and, 60
Pea protein hydrolysates, enzymatic, free radical (DPPH)-scavenging activity of, 275
Peas angiotensin-I converting enzyme inhibitory effects of, 280–281
anticancer effects due to Bowman-Birk protease inhibitors, 278–280
antimicrobial effects due to peptides, 281–284
antimicrobial peptides from garden pea, 281–282
chickpeas, 283
commercial utilization potential of, 283–284
cowpeas, 282–283
antioxidant effects with, 274–275
bioactivity of proteins and peptides from, 9
hypcholesterolemic effects of, 275–278
Pedroche, J., 280
Pelagic thresher, ACE inhibitory peptides isolated from, 208
Pellegrini, A., 251
Pellet cooker, rice bran stabilization and, 235
Pellet mill, rice bran stabilization and, 235
Penetratin, 192
Peng, X., 35
Pentadecapeptide (gramicidin D), 361
Pentatin, 351
Pentane, 214
Pentosans, 233
PEPCK. See Phosphoenolpyruvate carboxylase kinase
Pepsin, 154, 171
in BIOPEP database, 332
PepT1, 140
Peptide antioxidants, exogenous, 16
PeptideAtlas, 311
Peptide-based immunotherapy advantages of, 110–111
aim and rationale for, 108
B-cell epitope-based immunotherapy, 110
current experimental models of, in food allergy, 111–114
cow’s milk allergy model, 112–113
egg allergy model, 113–114
inhalant allergens, 114
peanut allergy model, 113
wheat and beef allergy model, 114
food allergies and, 7, 102
food-based hydrolyzates, 109–110
strategies for, 108
suggested mechanisms underlying, 111
T-cell epitope-based immunotherapy, 110
translation of, into human clinical applications, 114–115
large-scale production of peptides, 115
MHC polymorphism, 115
use of overlapping synthetic peptides, 109
Peptide-based vaccines, practical issues relative to, 115
Peptide hormones, 307
Peptide libraries, 107
Peptide mass fingerprinting, 336
Peptide precursors, 328
Peptides. See also Amyloidogenic proteins and peptides; Antihypertensive peptides; Anti-inflammatory proteins and peptides; Antioxidant peptides; Antioxidative stress proteins and peptides
antimicrobial proteins and, from eggs, 249–254
avidin, 254
egg cystatin, 254
Peptides (continued)
lysozyme, 250–251
ovalbumin, 252–253
ovomacroglobulin, 253
ovomucin, 253
ovotransferrin, 252
phosvitin, 253–254
antioxidant, 16–17
assessing radical-scavenging property of, 35
barriers and mechanism of bioavailability of, 366–379
binding of metal ions by, 37
bioactive, production of, 154–155
bitter taste and spatial arrangement of, 347
classes of, 361
controlled delivery of, 360
designed, 93
tenzymatic release of, with antithrombotic and antiinflammatory activity and control of gastric mucosal function, 332, 334
exogenous, examples of those exhibiting antioxidant activity in vitro and in model systems: sources and sequences, 37
flavor ingredients interacting with, 352–353
identification of, 314–315
immunomodulating, 254–255
large-scale production of, 115
liquid crystalline systems and entrapment and stability of, 360–366
novel, peptidomics and, 320
within nutraceutical food sector, 5
physico-chemical properties related to bitterness of, 345, 347
plethora of research on, 354
potential correlation between bitterness and bioactive properties of, 348–349
predicting bitterness of, 347–348
production of, from food sources, 344
from proteins, benefits with, 325
quantification of, 315–316
release of, from milk proteins, 332
separation, 313–314
size and bitterness of, 345, 347
synthetic, food allergy and use of overlapping, 109
taste-activating properties of, 344–345, 347–351
taste-active, development of, 355
therapeutic, 359
Peptide sequences, for calmodulin-binding peptides isolated from peptic hydrolysate of bovine casein and potency against phosphodiesterase I, 57
Peptide soup, 171
Peptide synthesis, automated, 115
Peptide therapeutics, improving delivery of, 10
Peptide transporters, 140
Peptide transport system, 265
amino acids transport system and, on small intestine cell, 266
Peptidic compounds, preventing amyloid formation and, 94–95
Peptidomics (or “peptide proteomics”) applications of, 317–320
peptide biomarkers in disease, 318t, 319
peptides and diet-disease associations, 318t, 319–320
peptides as biomarkers, 317–319, 318t
peptides in regulation of behavior, 318t, 320
peptidomics and novel peptides, 318t, 320
for bioactive peptide analysis, 307–320
defined, 10, 307
methods in, 308–311
affinity peptidomics, 308–309
combinatorial peptidomics, 309
mass spectrometry, 309–311
methods of, 308
sample preparation for, 311–317
enrichment and detection of proteins useful to peptidomic studies, 312–313
method validation, 317
peptide identification, 314–315
peptide quantification, 315–316
peptide separation, 313–314
posttranslational modifications, 316–317
sample collection and preanalytical treatment, 311–312
steps in sample preparation for, 312
Peptidyl antioxidants, as multifunctional compounds, 30
PeptoPro, 163
Pepys, M. B., 88
Pericarp, 233
Permeability of macromolecules, increasing, technologies for, 360
Peroxyl radicals, 29
Peroxynitrite, 29
Pessi, T., 20
Pet care supplements, bLf added to, 193
Petersen, W. E., 156
PHA. See Phytohaemagglutinin
Phagocytes, lactoferrin and activation of, 188
Pharmaceutical Research and Manufacturers of America, 359
Pharmacological applications, lysozyme used in, 251
Phe, 45
Phenolic antioxidants, 215
Phenolic compounds in flaxseed, 58
preventing amyloid formation and, 9294
Phenylalanine, 274
bitterness associated with, 343
Phifer, C. B., 144
Phormones, 326
Phosphatidylcholine, hypocholesteremic effect of legume protein and, 276
Phosphatidylethanol-amine (PE) ratio, of liver microsomes, hypocholesteremic effect of legume protein and, 276
Phosphodiesterase I, calmodulin-binding peptides isolated from peptic hydrolysate of bovine casein and potency against, 57
Phosphoenolpyruvate carboxylase kinase, 142
Phosphopeptides, 326
Phosvitin antimicrobial properties of, 253–254 antioxidant activity of, 256 in egg yolk, 248 Phosvitin phosphopeptides, 17, 17t, 18
Physical instability processes, protein and peptide drug inactivation with, 365
Phytantriol, two-photon fluorescence images showing lateral distribution of sulphorhodamine B, after 24 hours of passive diffusion in skin and, 377 Phytantriol cubic phase, summary of fluorescent features observed in two-photon microscopy images at various tissue depths of skin exposed to sulphorhodamine B in, 378t Phytic acid, in germinated brown rice, 126 Phytochemicals, 30 Phytohaemagglutinin, 21 Phytonutrients, bitter taste in, 342 Pichon, L., 137 Picrotin, 342 Piglet development, Lfcin and Lfampin chimeras and, 194 Pig skin gelatin, preparing, 205 Pisavin, 282 Pisumin, antifungal activity of, 282 PIT. See Peptide-based immunotherapy Pittaway, J. K., 276 Pituitary hormones, angiotensin II and, 207 Plant development, gamma-aminobutyric acid and, 123–124 Plant food allergens, structural superfamilies of, 105 Plant phenols, 215 Plant proteins anti-inflammatory mechanisms and, 23 antioxidant activity of, 216 antioxidative stress proteins and peptides in, 18 bioactive peptides and, 332, 334 Plants metabolic pathway in, 127 roles of GABA synthesis in, 122–124 Plant serine protease inhibitors, structurally distinct families of, 278 Plant sources of foods, 105 Plasma amino acids, as central satiety signals, 142–143 Plasmin, 171 Plasmodium falciparum, lactoferrin’s effects against, 186 Platelet-derived growth factor, in bovine mammary secretions, 152, 161 Playford, R. J., 161 Pleurotus ostreatus, sativin’s antifungal activity against, 282 Poliovirus, lactoferrin’s antimicrobial activity and, 158 Polisb, rice kernel, 234 Poly-enzymatic method, for reducing bitterness of protein hydrolysates, 350 Polymerase chain reaction, 311 Polymeric glutenins, elastic property of, 9–10 Polymorphonuclear cells, 19 Polyomvirus, lactoferrin’s effects against, 185 Polyphenol compounds, inhibitory mechanism of amyloid fibril formation by, 94 Polyphenols, bitter taste in, 342 Polyphosphates, bitterness masked with, 350 POMC. See Pro-opiomelanocortin POMC neurons, food intake and activation of, 144 Popel, A. S., 318 Pore-forming peptides, increasing skin permeability for transdermal delivery and, 373, 379 Pork gelatin, producing gelatin from fish to match gelling properties of, 219 Port protein, 216 Posttranslational modifications, 316–317 Potatoes antioxidant proteins/peptides in, 17 “wound-induced” inhibitors I and II in, 278 Potato protein, antioxidative activity of peptides in, 34 PPPs. See Phosvitin phosphopeptides Praventin, 163t Precipitation, protein and peptide drug inactivation with, 365 Polar headgroup interaction, hydrophilic and lipophilic pathways of drug interaction and, 368, 369 Polar headgroup interaction, hydrophilic and lipophilic pathways of drug interaction and, 368, 369
Precursor proteins
number of fragments with antithrombotic, antiinflammatory, and regulating stomach mucosal membrane activity released from, 334

in silico, enzymes releasing bioactive peptides from, 335–336

PREDICT 7 application, 326

Pregereinated brown rice, GABA used in, 129

PREMIER clinical trial, on soy protein and blood pressure, 80

Pressure Cycling Technology Sample Preparation System, 311

Preventative medicinal chemistry, 6

Primary amyloidosis, 90

Principal component analysis, predicting bitterness of peptides and, 348

Prion diseases, 89, 90
amyloid deposits and, 89 identifying, 90

Prion elk, 93t

Prion human peptide, 93t

Prion mouse, 93t

Prion protein, 88t, 90

Prion Syrian hamster, 93t

Pripp, A. H., 349

Pro, 45

Probiotic bacteria, commercial, bioactive peptide production and, 155

Pro calcitonin, 88t

Procasepase-3 activation, lactoferrin and, 190

ProDiet F200/Lactium, 163t

ProDom, 326

“Prodrug” peptides, 354

Prolactin, 88t

Prolamin, 290, 291–293, 295

Proline
ACE inhibitory activity, bitterness and, 348
radical quenching activity of peptides and, 35
sweet and bitter taste of, 343

Proline endopeptidase, 332
Proline oligopeptidase, in BIOPEP database, 332

Pronase, 332

Pro-opiomelanocortin, 143

Proanol, 214

Prophylactic effect, 113

Propyl gallate, 214, 215

Prorenin, 207

PROSITE, 326

Protease/amylase mixture, rice bran protein extraction and, 236

Protease inhibitors, in eggs, 258

Protein
animal muscle as valuable source of, 225
Atwater factor for, 142
cereal, 234

Protein antioxidants, exogenous, 16

Proteinase K, 171, 332

Protein-based therapeutics, physico-chemical and biological properties and delivery challenges with, 359–360

Protein-derived antioxidants in food systems, evaluation of, 34–35

Protein diet, weight loss and, 136

Protein hydrolysates antioxidant efficacy of, 38 assessing antioxidant activity of peptides in, 34 bitter peptides of, isolated by different researchers, 346–347t bitter taste in, 342 debittering approaches for, 349–351 flavor ingredients interacting with, 352–353 peripheral, gut-derived satiety hormones and, 139–140 physico-chemical properties related to bitterness of, 345, 347 plethora of research on, 354 production of, from food sources, 344

satiety triggering and, 136, 144–145
taste-activating properties of, 344–345, 347–351

Protein hydrolysis, bitter taste and, 345

Protein in diet, metabolic syndrome and, 68

Protein-induced satiety and food intake inhibition, 7, 136–144 central neuronal pathways and, 143–144 energy expenditure and glucose as metabolic signals in, 142 high-protein diets and, 137–138 high-protein preload and high-protein meal-induced satiety and food intake inhibition, 136–137 peripheral, gut-derived satiety hormones, 139–142 plasma amino acids as central satiety signals, 142–143 role of protein source and type in, 138–139

Proteins, 105. See also
Amyloidogenic proteins and peptides; Anti-inflammatory proteins and peptides; Antioxidative stress proteins and peptides
free radical attacks on, 29
immunomodulating, 254–255
in silico analysis of, 326–328, 331
interaction between sweet-taste receptors and, 351–352
in large eggs, 249
liquid crystalline systems and entrapment and stability of, 360–366
plethora of research on, 354
profiles of potential biological activity of, 337
richest subfamilies of–precursors of peptides with selected activities, 329–331
strategy for research on, 327, 327
sweet, 351
taste-active, development of, 355
taste-active properties of, 351–352
interaction between proteins and sweet-taste receptors, 351–352
sweet proteins, 351
taste-modifying property of sweet proteins, 352
therapeutic, 359
Protein sequences, BIOPEP database and motifs with 23 types of activity in, 328
Protein solubility, role of, in processed foods, 237
Protein therapeutics, improving delivery of, 10
Proteolysis in silico, release of bioactive peptides from selected precursor proteins by enzymes or enzyme conjugates and, 331–332, 334
Proteolysis simulation example, in BIOPEP database, 333
Proteolytic enzymes
bioactive peptides and, 162
BIOPEP data on, 331
Proteomic techniques, use of, 154
Proteose peptone-3, 20
anti-inflammatory mechanisms and, 20, 22
Protozoans, Lfcin’s effects on, 192
PrP. See Prion protein
PRRs. See Pattern-recognition receptors
Psd1, 282
Psd2, 282
Pseudomonas aeruginosa, lactoferrin’s antimicrobial activity and, 158
Pseudomonas spp., ovotransferrin’s effect against, 252
PT cubic phase, GMO cubic phase vs., in hydrophilic fluorescent model drugs investigation, 379
PTMs. See Posttranslational modifications
p21 protein, lactoferrin-induced overexpression of, 190
Pungent foods, 342
Purification, of bioactive milk proteins, 153
Puroindolines, 291
Q
Q-ion-trap (Q-IT), 310
QSAR. See Quantitative structure and activity relationship
QSAR modeling, ACE inhibitory activity, bitterness and, 349
Q-TOF, 310
Quantitative structure and activity relationship, 257, 258
development of functional ingredients and, 354
predicting peptide bitterness and, 347–348
Quark, bioactive peptides and, 161
Quercetin, 92
Q values, bitterness of peptides and, 345
R
Rainbow trout fibroblasts, metallo-collagenase MMP-13 isolated from, 205
Rajapakse, N., 37
Ren, J., 217
Rampath, A. R., 123
RAS. See Rennin-angiotensin system
RB. See Rice bran
RBDPs. See Rice bran dehydrin proteins
RBEE. See Rice bran enzymatic extract
RBL. See Rice bran lectin
RBPIs. See Rice bran protein isolates
Rb promoters, lactoferrin and, 190, 191
RBP. See Rice bran proteins
RDA. See Recommended daily allowance
RDI. See Recommended daily intake
Reactive oxygen species, 5, 29, 163
defined, 15
GI diseases and, 32
lactoferrin and, 188
production of, 16
Reaven, G. M., 67
Recombinant hLf, antimetastatic effects with, 189
Recommended daily allowance, 248
Recommended daily intake, 249
Red wheat, 290
Regnier, F., 315
Regular Iletin I, aggregation profiles of, 365, 365
Regular Iletin II, aggregation profiles of, 365, 365
Regulatory T cells, food allergy and, 103
Rehault, S., 249
Reidelberger, R. D., 139
Reiter, B., 159
Ren, J., 217
Renin, 207, 298
Renin-angiotensin, circulatory, updated, 45
Renin-angiotensin system, 45
blood pressure regulation and, 207, 298
hypertension and, 44
inhibition of, by ACE inhibitory peptides, 46–47
Reperfusion injury, oxidative stress and, 31–32
Residual proteins, in cereal, 235
Resistin, 70, 71
Retino-blastoma protein-mediated growth arrest, lactoferrin and, 190
Retinoid signaling pathways, lactoferrin and, 190
Retronasal contributions, to aroma perception, 354
Reverse hexagonal phase, delivery of proteins and peptides and, 360
Reverse osmosis, manufacture of whey powder and whey protein concentrates and, 153–154
Reverse phase strong cation exchange cartridge system, 318–319
Rheumatoid arthritis, lactoferrin’s anti-inflammatory role in, 187
Rhodobacter sphaeroides, 361
Rhodopsin/transducer complex, 361
Rhus verniciflua Stokes glycoprotein, anti-inflammatory mechanisms and, 20t, 23
Ribosome inactivating proteins, 282
Rice, production and milling of, 233
Rice-based vaccine, efficiency of, 115
Rice bran
composition of, 233, 234t
ACI inhibitory peptides derived from, 208
hypotensive effects of, in spontaneously hypertensive rats, 213
Salmonella enteritidis,
ovo transferrin’s effect against, 252
Salmonella typhimurium,
lactoferrin’s antimicrobial activities and, 158, 185
“Salting-out” effect, liquid crystalline phases and, 362
Salt-soluble globulin, 290
Salt taste, 10, 342
dipeptides and, 345
triggering of, 342
SAM. See S-adenosyl methionine
Sarcoplasmic proteins, in fish proteins, 204
Sardine, ACE inhibitory peptides derived from, 208, 210
hypotensive effects of, in spontaneously hypertensive rats, 213
Sardine muscle, hypotensive effects of, in spontaneously hypertensive rats, 213
Sardine peptide, 44, 44
Sathivel, S., 217, 218
Satiation/satiety, 135
brain’s response to retronasal aroma release and, 354
complex and complementary pathways and mediation of, 145
defined, 135
egg breakfasts vs. bagel breakfasts and, 248
food intake inhibition in high-protein diets and, 137–138
high-protein meal-induced, high-protein preload and, 136–137
luminal events within GI tract and, 138
plasma amino acids as central signals in, 142–143
protein-induced, 7
central neuronal pathways and, 143–144
energy expenditure and glucose as metabolic signals in, 142
role of protein source and type in, 138–139
Satiety hormones, peripheral, gut-derived, 139
Sativin, antifungal activity of, 282
Savory peptides, in foods, 344
Savory taste, 343
Sawai, Y., 125
SAXS patterns. See Small angle x-ray scattering patterns
SBEAMs architecture, 311
SBP. See Systolic blood pressure
SCD-1. See Stearoyl-CoA desaturase
Schiff-base, formation of, by substrate and PLP, 128
Schiff-base exchange reaction, PLP enzymes and, 127
Schulz-Knappe, P., 314
Scrubton, H., 157
SD-RBPs. See Spray-dried rice bran proteins
SDS. See Sodiumdodecyl sulfate
SDS-PAGE, 237
Sea bream
ACE inhibitory peptides derived from, 208, 210
hypotensive effects of, in spontaneously hypertensive rats, 213
“Search for active fragments” icon, in BIOPEP, 332
Secondary amyloidosis, 90
Selenium, 215, 225
Semengolin I, 88
Semolina, 289
Sensitization phase, in allergic response to food antigens, 103
Sensory profile of food, amino acids and, 344
Sensory rhodopsin, 361
Septicemia, 194
Septic shock, lactoferrin and prevention of, 187
Serine, 37
collagenases, 205
in fish gelatin, 206
sweet taste of, 343
Serpell, L. C., 89
Serpins, 291
Serum lipids, soy protein and, 76, 79
Sesame peptides, 44
Sesamene tea, 171
Severe Acute Respiratory Syndrome, 194
Shah, J. C., 365, 366
Shahidi, F., 217
Shanghai Women’s Health Study, 79
Shell eggs, 247
Shellfish
antioxidant peptide production in GI system and, 33
antioxidant peptides from, 217 branched amino acids present in antioxidant peptides from, 216
Shigella dysenteriae, lactoferrin’s antimicrobial activities and, 185
Shigella flexneri, immune milk preparations and, 156
Shin, K., 20
Short-term preload paradigm, 136
SHRs. See Spontaneously hypertensive rats
Sick fat, 71
SISCAPA. See Stable Isotope Standards and Capture by Anti-Peptide Antibodies
SIT. See Specific immunotherapy
Sites, C. K., 78
Skarra, L., 353
Skeletal muscle, oxidative deterioration of, 225
Skin allergy, lactoferrin and, 187, 188
Skin barrier, pathways of drug penetration across, 368, 368
Skin penetration, time course of percutaneous delivery of CysA incorporated in cubic and hexagonal liquid crystalline phases, with olive oil control, 369–370, 370
Skin permeability
biochemical enhancers and
increase in, for transdermal
drug delivery, 373
fluorescein and measurements of,
374, 374
magainin peptides and, 373–376
Skip-jack tuna
ACE inhibitory peptides derived
from, 209
Indonesian dried-salted, ACE
inhibitory activity exhibited
by, 211
Skp1 promoters, lactoferrin and,
190, 191
Sleep regulation,
gamma-aminobutyric acid
and, 125
Sletten, K., 88
Small angle x-ray scattering
patterns, 363, 364
Small peptides
amyloidogenicity of, 92
antihypertensive mechanism of,
46–51
inhibition of renin-angiotensin
system by ACE inhibitory
peptides and, 46–47
relaxation of vascular
constrictive events by
dipeptides and, 48–51
effect of, on Ang II stimulation or
Bay K 8644 stimulation, 48, 48
Smeets, A. J., 136, 141
Smoking cessation, transdermal
route of administration and,
360
Smooth hound (shark), antioxidant
peptides from, 217t
SOD. See Superoxide dismutase
Sodiumdodecyl sulfate,
hydrophobicity of insoluble
glutelins and, 25
Sodium sterate, hydrophobicity of
insoluble glutelins and, 235
Sodium substitutes, 345
Sole, antioxidant peptides from,
217t
Soleimanpour, M. R., 265
Solubilization, of rice bran proteins,
235
Somatic and testicular ACE, 211
Son, D. O., 227
Sour milk, bioactive peptides and,
161
Sour taste, triggering of, 343
Soy
anti-inflammatory mechanisms
and, 22–23
di- and tri-enriched peptides
developed from, 266
Soybean paste, ACEI peptides in,
173
Soybean protein, antioxidant activity
of, 216
Soybeans, typical industrial
processing of, 69
Soybean seedlings, GABA used in,
129
Soymilk, GABA content and, 126
Soy peptide ingestion, comparison
of placebo, soy protein, and
soy peptide on GH and CPK
levels measured at 30
minutes and 18 hours after,
268
Soy peptides
antiobesity effect of, 268–269
antioxidant activities related to,
17
di- and tri-enriched peptides from
soy and, 266
efficacy of
on lipid metabolism compared
with soy protein, 267–269
in sports, soy protein vs., 267
as functional food system,
265–269
health promotion and, 9
manufacturing process for, 266
peptide transport system, 265
production of, 267
Soy proteins
antioxidant activity of peptides in,
34
effects of animal protein and, on
body fat ratio of obese rat
and genetically obese mice, 269
efficacy of soy peptides in sports,
soy proteins vs., 267
flavor ingredients interacting
with, 353
health benefits with, 68, 81
high demand for, 239
lipid metabolism and efficacy of
soy peptides vs., 267
for metabolic syndrome, 6, 67–81
blood pressure and, 79–80
glycemic control and insulin
resistance, 74–76
reduction of caloric intake, 74
serum lipids and, 76, 79
weight loss and adiposity
reduction, 71, 72r, 73–74
soy peptides prepared from, 9
Soy sauce, inhibitory activities in,
172
Specific immunotherapy, food
allergy and, 108
Spellman, D., 350
Spices, natural antioxidants in, 215
Spielmann, J., 276
Spontaneously hypertensive rats, 8,
155, 170
ACE-inhibitory fish peptides and,
212–214
evaluating antihypertensive
activity of ACEI peptides in,
173
hypotensive effects of
fish-derived peptides in, 213t
ovokinin’s effects in, 257
stroke-prone, ACE activity in
aorta of, 174
Sports, soy peptides vs. soy protein
and, 267
Sprague-Dawley (SD) rat aorta
rings, carnosine relaxation
effect in, 49
Spray-dried rice bran proteins, 237
Spring wheat, 290
SPS. See Stiff-person syndrome
SP-sepharose, 58
Squid, ACE inhibitory peptides
derived from, 210t
SRB. See Sulphorhodamine B
SREBP-1. See Sterol regulatory
element-binding protein-1
SREBP-2. See Sterol regulatory element-binding protein-2
SREBPs. See Sterol regulatory element binding proteins
SSADH. See Succinic semialdehyde dehydrogenase
SS31 peptide, antioxidant activity and, 31, 31
Stable Isotope Standards and Capture by Anti-Peptide Antibodies, 314
Staphylococcus aureus
lactoferrin’s antimicrobial activity and, 158
ovotransferrin’s effect against, 252
Staphylococcus spp., lactoferrin’s antimicrobial activities and, 185
Starchy endosperm, rice kernel, 234
STC-1 cells, 140
Stearoyl-CoA desaturase, soy protein and, 79
Stemplot analysis, 328, 336
Sterol regulatory element-binding protein-1, soy protein and, 79
Sterol regulatory element-binding protein-2, 276
Sterol regulatory element binding proteins, soy protein and, 71
Stiff-person syndrome, 124
Stimulating site, 347
St-Onge, M. P., 78
Stratum corneum
permeation of, by drug molecules, 367–368
in vitro penetration of CysA in, at 6 and 12 hours following topical application using hexagonal phase nanodispersion or control olive oil formulation, 372
water content in, 368
Streptococcus mutans
immune milk preparations and, 156
lactoferrin’s antimicrobial activity and, 158
lysozyme effect against, 251
ovotransferrin’s effect against, 252
Streptococcus spp.
GABA biosynthesis with, 126
lactoferrin’s antimicrobial activities and, 185
Streptococcus thermophilus, lactoferrin and, 194
Streptokinase, 360
Stress food factors, antioxidative, 16
Stress relief, alpha-lactalbumin and, 156–157
Stroke, nitric oxide levels and, 56
Subcutaneous route of administration, for biopharmaceuticals, 360
Subtilisin, 154, 171
Succinic semialdehyde dehydrogenase, 127, 128, 129
Succinyl-1-proline, 207
Sucralose, 351
Sucrose, 351
Suetsuna, K., 208, 209
Sugiyama, K., 276
Sulphorhodamine B
chemical structure of, 376
summary of fluorescent features observed in two-photon microscopy images at various tissue depths of skin exposed to using different vehicles, 378
transdermal study of, using four delivery systems, 376–377
two-photon fluorescence images showing lateral distribution of, after 24 hours of passive diffusion in skin using four delivery systems, 377
Sunde, M., 89
Sunflower oil, amino acids with antioxidant activity in, 216
Supercritical water, rice bran protein extraction and, 237
Superoxide anion, 29
Superoxide dismutase, 16, 256
Suppressor T cells. See Regulatory T cells
Surface adsorption, protein and peptide drug inactivation with, 365
Surface nucleolin, lactoferrin binding and, 186
Sweet proteins, 351, 352
Sweet taste, 10, 342
peptides with, 344
triggering of, 342
Sweet-taste receptors, interaction between proteins and, 351–352
SWISS-PROT, 326
Syndrome X. See Metabolic syndrome
Synthetic antioxidants, 215
Synthetic peptides, overlapping, food allergy and, 109
Synthetic vaccines, 359
Systemic amyloidosis, 90
Systolic blood pressure, ovokinin and, 257
T
T. gondii, lactoferrin’s effects against, 186
Tagging-via-substrate approach, for global identification of O-glycosyl enrichment, 314
Tamaru, S., 268
Tammen, H., 318
Tanaka, M., 95
Tancredi, T., 351
TAS approach. See Tagging-via-substrate approach
Taste, synergistic interactions with effect on, 344
Taste-active properties of peptides and protein hydrolysates
approaches for debittering or production of less bitter protein hydrolysates, 349–351
physico-chemical properties related to bitterness of, 345, 347
Taste-active properties (continued)
potential correlation between bitterness and bioactive properties of peptides, 348–349
prediction of bitterness in peptides, 347–348
of proteins, 351–352
interaction between proteins and sweet-taste receptors, 351–352
sweet proteins, 351
taste-modifying property of sweet proteins, 352

Taste characteristics, of amino acids, 343–344
Taste modalities, 10, 342
Taste receptor cells, 342–343
Tau, 88
Tau, 93
Taurine, in animal muscle, 225
Taylor, A. A., 49
Taylor, C. G., 31
TBARS. See Thiobarbituric acid reactive substances
T-cell epitope-based immunotherapy food allergy and, 110
potential mechanisms underlying, 112
T-cell epitopes
antigen, representation of, 106
food allergen, 105–106
mapping, 106–107
T-cell receptors, 106
T-cell regulation, currently accepted view on, 105
T cells, allergic responses and, 105
TCRs. See T-cell receptors
Tea
antioxidant caseinophosphopeptides in, 35
GABA and, 125
natural antioxidants in, 215
Telomere shortening, carnosine protective against, 228
Tempeh, antioxidant peptides in, 38
Testa, 233
Textural profile analysis, 239

TGF-beta, food allergy and, 104, 116
TGF-beta1, in bovine mammary secretions, 152, 153, 161
TGF-beta2, in bovine mammary secretions, 152, 153, 161
THAA. See Total hydrophobic amino acids content
Thaumatin, 351
T helper cell (ThO), food allergy and, 103
Therapeutic effect, 113
Therapeutic macromolecules, oral administration of, difficulties related to, 360
Therapeutic proteins and peptides, 359
Thermal-processing, rice bran stabilization and, 235
Thermogenesis, diet-induced by protein, 142
Thermolysin, 154, 171
Thiansilakul, Y., 217
Thiobarbituric acid reactive substances, 34
THM. See Tsukuba-Hypertensive Mouse
Thomas, D. A., 31
Th1 response, lactoferrin and, 188–189
Th1/Th2 cytokine balance, lactoferrin and, 188
Th1/Th2 model, food allergy and, 103
Threonine, 37, 343
Th17 cells, 105
Thymus-derived Tregs, food allergy and, 104
Tissue array technology, 311
Tityus serrulatus venom peptides, identifying, 320
TLR4. See Toll-like receptor 4
TLRs. See Toll like receptors
T-lymphocytes
food allergy and roles of, 103–105
lactoferrin and, 188
TMAB. See Trimethylammoniumbutyrate
TNBS. See Trinitrobenzenesulfonic acid

Tobacco smoke, reactive oxygen species and, 16
Tofu, fermented, inhibitory activities in, 172
Togawa, J., 20
“Tolerance” induction, food allergy and, 108
Tolerogenicity, hypoallergenicity vs., 112–113
“Tolerogenic” peptides, 108
Toll-like receptor 4, lactoferrin and, 187
Toll like receptors, 18
Tomato, “wound-induced” inhibitors I and II of, 278
T1R2-T1R3 receptors, proteins and, 351–352
Total hydrophobic amino acids content, antioxidant effects from peas and, 274
Toxoplasma gondii, Lfcin’s effects on, 192
TPA. See Textural profile analysis
TPM. See Two-photon microscopy
Transcellular route of administration, across stratum corneum, 368, 368
Transdermal route of administration, for biopharmaceuticals, 360
Transepidermal route of administration across stratum corneum, 368
divisions of, 368
for permeation of stratum corneum by drug molecules, 367–368
Transfollicular route of administration, across stratum corneum, 368
Transforming growth factor, in bovine mammary secretions, 152, 161
Transglandular route of administration across stratum corneum, 368
Transthyretin, 88
TRCs. See Taste receptor cells
Tregs, food allergy and, 103, 104–105
Treharose, 95
TrEMBL, 326
Tremblay, F., 75
Trichityum sphaerococcum, 290
Triglycerides
metabolic syndrome and levels of, 68
soy protein and, 76
Tri-glycine peptides, absorption of, 265
Trimethylammoniumbutyrate, 316
Trinitrobenzenesulfonic acid, in rats, anti-inflammatory effect of GMP and, 21
Tripeptide ACE inhibitors, 212
Tripeptides
antioxidant properties and, 37
development of, from soy, 266
intestinal adsorption of, 174
release of, from milk proteins, 332
Triplet repeat disease, 92
Triticum aegilopoides, 290
Triticum aestivum, 289, 290, 290
amino acid sequence of α-amylase inhibitor in, 291
amino acid sequence of alphabeta-gliadin in, 292
amino acid sequence of α-gliadins in, 292
Triticum compactum, 289, 290, 290
Triticum dicoccoides, 290
Triticum dicoccum, 290
Triticum durum, 289, 290, 290
Triticum macha, 290
Triticum monococcum, 290
Triticum orientale, 290
Triticum polonicum, 290
Triticum spelta, 290
Triticum turgidum, 290
Triticum urartu, 290
Triticum vavilovii, 290
Tritrichomonas foetus, lactoferrin’s effects against, 185
Tropomyosin, in myofibrillar tissue proteins, 204
Troponin, in myofibrillar tissue proteins, 204
Trp, 17, 45
Trp-His
schematic representation of binding site to voltage-gated L-type Ca2+ channel in VSMC, 52
vascular relaxation profiles of, in endothelium-intact (+) or endothelium-denuded Sprague-Dawley rat aorta rings, 51
Trypanosoma brucei, lactoferrin’s effects against, 185
Trypanosoma cruzi, lactoferrin’s effects against, 185
Trypsin, 154, 171, 250
in BIOPEP database, 332
Bowman-Birk inhibitors and, 278
identification of selected biopeptides released by, from milk proteins, 334, 336
Trypsin hydrolysates, 275
Tryptic hydrolysates, of casein, 43, 44
Tryptophan, 274
ACE inhibitory activity, bitterness and, 348
radical quenching activity of peptides and, 35
Tryptophan, 274
ACE inhibitory activity, bitterness and, 348
radical quenching activity of peptides and, 35
Tsukuba-Hypertensive Mouse, 46
Tsushida, T., 125
TR family, of bitter receptors, 343
Tumorigenesis, lactoferrin as defense against, 189, 190
Tumor necrosis factor-alpha, 18, 19, 187, 188
Tumor suppressor proteins, lactoferrin acting as, 191
Tuna
ACE inhibitory peptides derived from, 208, 209
antioxidant peptides from, 217
hypotensive effects of, in spontaneously hypertensive rats, 213
Two-screw extruder, rice bran stabilization and, 235
Two-dimensional electrophoresis, investigating bioactive peptide proteins with BIOPEP database and, 336
2-D-methylsuccinyl-1-proline, 207
Two-photon microscopy, transdermal studies and use of, 376, 377, 377, 379
Type I diabetes, 298
Type II diabetes, 71, 75, 298
Tyr, 17, 45
Tyrosine, 29, 274
antioxidant activity of peptides and, 216
bitterness associated with, 343
food intake and, 142, 143
radical quenching activity of peptides and, 35
Tyr-Val, vascular relaxation effect of, in 18-week-old SHR thoracic aorta rings constricted by 30 mmol/L KCl, 49
U
U. S. Department of Agriculture Foreign Agriculture Service, 9
UCPs. See Uncoupling proteins
UDN. See Ulmus davidiana Nakai
UF. See Ultrafiltration
Ulcers, carnosine and healing of, 228
Ulmus davidiana Nakai, anti-inflammatory mechanisms and, 20, 23
Ultrafiltration
fractionation of bioactive peptides and, 155
manufacture of whey powder and whey protein concentrates and, 153–154
Umami taste, 10, 342, 343
glutamate and, 344
peptides with, 344
triggering of, 342
Uncoupling proteins, soy protein and, 74
United States, rice bran production in, 233
U.S. Department of Agriculture, Foreign Agricultural Service, 289
U.S. Food and Drug Administration, 115, 129, 159
USDA. See U. S. Department of Agriculture
UV radiation, reactive oxygen species and, 16

V
Vaccines, synthetic, 359
Vagal afferent pathways, protein sensing and signalling to brain and, 144
Valenti, P., 249t
Valine
ACE inhibitory activity, bitterness and, 348, 349
bitterness associated with, 343
Valio (Finland), 170
Val-Pro, antihypertensive effects of, in spontaneously hypertensive rat, 173
Val-Pro-Pro, 162, 172
absorption of, 174
antihypertensive effect of milk tested in hypertensive patients, 173
casein hydrolyzate with, 170
hypotensive capacity of, 155
Val-Tyr
with ACE inhibitory activity, 171
antihypertensive effects of, in spontaneously hypertensive rat, 173
change in systolic blood pressure and ACE activities of 18-week-old spontaneously hypertensive rat after administration of, 47
inhibition of renin-angiotensin system and, 46–47
regulation of vascular events by dipeptides and, 47–48
vascular relaxation effect of, in 18-week-old SHR thoracic aorta rings constricted by 30 mmol/L KCl, 49
Vascular constrictive events, dipeptides and, 47–51
Vascular smooth muscle cell, 47
Trp-His binding site to voltage-gated L-type Ca²⁺ channel in, 52

“Vectors of Hydrophobic, Steric, and Electronic,” predicting bitterness of peptides and, 348

Vegetable oils, amino acids with antioxidant activity in, 216
Vegetable proteins, hypcholesterolemic effects of, 275–278
Vegetables, natural antioxidants in, 215
Vegetable sources of foods, 105
Ventromedial nucleus, satiety and, 143
Verbeek, M. M., 88t
Verma, D. D., 371
Vermeirssen, V., 281
Very-low-density lipoproteins, 71, 180

Vibrio cholerae, lactoferrin’s antimicrobial activities and, 158, 185
Vibrio parahaemolyticus, halophilic, Lfcin and Lfampin chimeras and, 194
Verickers, Z., 141
Vidal, R., 88t
“View the report with the results” option, in BIOPEP, 332
Virchow, Rudolf, 89
Virtanen, T., 39
Viscozyme, 237–238
Visfatin, 70
Vitamin C, 30
Vitamin E, 30

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weighted holistic invariant molecular index descriptors, predicting bitterness of peptides and, 348

Water, as penetration enhancer, 368
Water channels, drug rate of transfer and size of, 373
Water-soluble albumin, 290
Water-soluble oryzanol enzyme extract, antioxidative function of, 242
Water-soluble proteins and peptides, properties of liquid crystalline phases and, 362

Water vehicle
summary of fluorescent features observed in two-photon microscopy images at various tissue depths of skin exposed to sulphorhodamine B and, 378t
two-photon fluorescence images showing lateral distribution of sulphorhodamine B, after 24 hours of passive diffusion in skin and, 377

WDEIA. See Wheat-dependent exercise-induced anaphylaxis
Wei, C., 37t

WDEIA. See Wheat-dependent exercise-induced anaphylaxis
Wei, C., 37t

Weighted holistic invariant molecular index descriptors, predicting bitterness of peptides and, 348

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136

Weight loss
eggs and, 248
gamma-aminobutyric acid and, 125
high-protein meals and diets and, 145
soy protein’s effect on, 71, 72t, 73–74, 77–78t
sustained high-protein diet and, 136
Weight management, whey proteins and, 152
Weight reduction, high-protein diets and, 68
Westermark, P., 88, 91
Westerterp-Plantenga, M. S., 137
Wheat
classification of, 289–290
families of alpha-amylase inhibitors in, 298
grain color of, 290
major cultivated species of, 289, 290
rice protein net protein utilization compared to, 240
sowing seasons for, 290
world-wide production and consumption of, 289, 290
Wheat albumin, 291, 298
Wheat allergy, 295–298
baker’s asthma, 295, 296, 299
celiac disease, 295, 297, 299
reduction of, 297–298
symptoms of, 295–296
types of, 295
wheat-dependent exercise-induced anaphylaxis, 295, 296–297, 299
Wheat allergy model, 114
Wheat-dependent exercise-induced anaphylaxis, 10, 295, 296–297, 299
Wheat gliadin, antioxidant activity of, 216
Wheat peptides, hypertension prevention and, 298–299
Wheat production, cereal production and, 9
Wheat protein antioxidant activity of peptides in, 34
classification of, 290–295
albumin, 291
glutelin (glutenin), 293, 295
gluten, 295
prolam (gliadin), 291–293
etiopic structure of, 297
Whey, health-promoting proteins and peptides in, 7–8
Whey powder, membrane separation processes and, 153–154
Whey protein hydrolysate, gel filtration of OH signals for samples containing different peptide fractions, 36
Whey protein isolates, gel filtration and, 154
Whey proteins antioxidant activity of peptides in, 34
beneficial health effects with, 155–156
bioactive in bovine colostrum and milk, 153
occurrence and isolation of, 152–154
biological functions and applications of, 155–160
alpha-lactalbumin, 156–157
beta-lactoglobulin, 157
glycomacropeptide, 160
immunoglobulins, 156
lactoferrin, 157–159
lactoperoxidase, 159–160
concentrates of, membrane separation processes and, 153–154
functional peptides in, 171
glutathione concentrations in, 18
health benefits in, 151–152
increase in GLP-1 concentrations in casein vs., 141
membrane separation processes and, 153–154
membrane system to produce and separate antioxidant peptides from, 38
WHIM descriptors. See Weighted holistic invariant molecular index descriptors
White kidney bean (Phaseolus vulgaris), antioxidant effects of, 274
White wheat, 290
Wine production, lysozyme used in, 213
Y
Yamashita, H., 296
Yang, H., 217
Ye, X. Y., 282, 283
Yeast prion sup35, 93
Yeasts, Lfcin and inhibition of, 192
Yellowfin sole ACE inhibitory peptides derived from, 208, 210
antioxidant peptides from, 217
Yellowfin sole frame protein, 211
Yellowfin sole frame protein hydrolysates, 216
Yellowfin sole protein, branched amino acids present in antioxidant peptides from, 216
Yellowsole, hypotensive effects of, in spontaneously hypertensive rats, 213
Yellow stripe trevally antioxidant peptides from, 217
antioxidative activity of protein hydrolysates from, 218
Yemenicioglu, A., 274
YFPNs. See Yellowfin sole frame protein hydrolysates
Yogurt bioactive peptides and, 155, 161
GABA concentration in, 126
Yokoyama, K., 209
Yolk of egg, major proteins in, 248
Yoshikawa, M., 209
Yust, M. M., 280
<table>
<thead>
<tr>
<th>Z</th>
<th>Zein, 290</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>antioxidant peptides and in vitro digests of, 32–34</td>
</tr>
<tr>
<td></td>
<td>reducing, metal chelation, and ABTS scavenging activity of, in vitro digests, 33</td>
</tr>
<tr>
<td></td>
<td>Zimecki, M., 20t, 159</td>
</tr>
<tr>
<td></td>
<td>Zinc, 215</td>
</tr>
<tr>
<td></td>
<td>Zinc ion, active site of ACE and, 212</td>
</tr>
<tr>
<td></td>
<td>Zittel, T. T., 144</td>
</tr>
</tbody>
</table>